4 совершенных числа. Рекорды в науке и технике

Совершенные числа

Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе. Никомах Герасский, знаменитый философ и математик, писал: " Совершенные числа красивы. Но известно, что вещи редки и немногочисленны, безобразные встречаются в изобилии. Избыточными и недостаточными являются почти все числа, в то время как совершенных чисел немного" Но, сколько их, Никомах, живший в первом столетии нашей эры не знал.

Совершенным называется число, равное сумме всех своих делителей (включая 1, но исключая само число).

Первым прекрасным совершенным числом, о котором знали математики Древней Греции, было число "6". На шестом месте на званном пиру возлежал самый уважаемый, самый почетный гость. В библейских преданиях утверждается, что мир был создан в шесть дней, ведь более совершенного числа, среди совершенных чисел, чем "6", нет, поскольку оно первое среди них.

Рассмотрим число 6. Число имеет делители 1, 2, 3 и само число 6. Если сложить делители, отличные от самого числа 1 + 2 + 3 то мы получим 6. Значит, число 6 дружественно самому себе и является первым совершенным числом.

Следующим совершенным числом, известным древним, было "28". Мартин Гарднер усматривал в этом числе особый смысл. По его мнению, Луна обновляется за 28 суток, потому что число "28" - совершенное. В Риме в 1917 году при подземных работах было открыто странное сооружение: вокруг большого центрального зала расположены двадцать восемь келий. Это было здание неопифагорейской академии наук. В ней было двадцать восемь членов. До последнего времени столько же членов, часто просто по обычаю, причины которого давным-давно забыты, полагалось иметь во многих ученых обществах. До Евклида были известны только эти два совершенных числа, и никто не знал, существуют ли другие совершенные числа и сколько таких чисел вообще может быть.

Благодаря своей формуле, Евклид сумел найти еще два совершенных числа: 496 и 8128.

Почти полторы тысячи лет люди знали только четыре совершенных числа, и никто не знал, могут ли существовать еще числа, которые можно представить в евклидовской формуле, и никто не мог сказать, возможны ли совершенные числа, не удовлетворяющие формуле Евклида.

Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел.

Все совершенные числа треугольные. Это значит, что, взяв совершенные число шаров, мы всегда сможем сложить из них равносторонний треугольник.

Все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 1 3 + 3 3 + 5 3 …

Сумма обратных всем делителям совершенного числа, включая его самого, всегда равна 2.

Кроме того, совершенство чисел тесно связано с двоичностью. Числа: 4=22, 8 = 2? 2? 2, 16 = 2 ? 2 ? 2 ? 2 и т.д. называются степенями числа 2 и могут быть представлены в виде 2n, где n - число перемноженных двоек. Все степени числа 2 чуть-чуть "не достают" до того, чтобы стать совершенными, так как сумма их делителей всегда на единицу меньше самого числа.

Все совершенные числа (кроме 6) заканчиваются в десятичной записи на 16, 28, 36, 56, 76 или 96.

Компанейские числа

Понятия совершенных и дружественных чисел часто упоминаются в литературе по занимательной математике. Однако почему-то мало говорится о том, что числа могут дружить и компаниями. Понятие компанейских чисел хорошо раскрывается в англоязычных источниках.

Компанейскими называется такая группа из k чисел, в которых сумма собственных делителей первого числа равна второму, сумма собственных делителей второго - третьему и т.д. А первое число равно сумме собственных делителей k-го числа.

Есть компании по 4, 5, 6, 8, 9 и даже 28 участников, а вот по три не найдено. Пример пятёрки, пока единственной известной: 12496, 14288, 15472, 14536, 14264.

Собственный делитель натурального числа - это любой делитель, кроме самого этого числа. Если число равно сумме своих собственных делителей, то оно называется совершенным . Так, 6 = 3 + 2 + 1 - это наименьшее из всех совершенных чисел (1 не в счет), 28 = 14 + 7 + 4 + 2 + 1 - это еще одно такое число.

Совершенные числа были известны еще в древности и интересовали ученых во все времена. В «Началах» Евклида доказано, что если простое число имеет вид 2 n – 1 (такие числа называют простыми числами Мерсенна), то число 2 n –1 (2 n – 1) - совершенное. А в XVIII веке Леонард Эйлер доказал, что любое четное совершенное число имеет такой вид.

Задача

Попробуйте доказать эти факты и найти еще пару-тройку совершенных чисел.


Подсказка 1

а) Чтобы доказать утверждение из «Начал» (что если простое число имеет вид 2 n – 1, то число 2 n –1 (2 n – 1) - совершенное), удобно рассмотреть сигма-функцию, которая равна сумме всех положительных делителей натурального числа n . Например, σ (3) = 1 + 3 = 4, а σ (4) = 1 + 2 + 4 = 7. Эта функция обладает полезным свойством: она мультипликативна , то есть σ (ab ) = σ (a )σ (b ); равенство выполняется для любых двух взаимно простых натуральных чисел a и b (взаимно простыми называются числа, у которых нет общих делителей). Это свойство можно попытаться доказать или принять на веру.

При помощи сигма-функции доказательство совершенности числа N = 2 n –1 (2 n – 1) сводится к проверке того, что σ (N ) = 2N . Для этого пригодится мультипликативность этой функции.

б) Другой путь решения не использует никаких дополнительных конструкций вроде сигма-функции. Он опирается только на определение совершенного числа: нужно выписать все делители числа 2 n –1 (2 n – 1) и найти их сумму. Должно получиться это же число.

Подсказка 2

Доказывать, что любое четное совершенное число - это степень двойки, умноженная на простое число Мерсенна, также удобно с помощью сигма-функции. Пусть N - какое-нибудь четное совершенное число. Тогда σ (N ) = 2N . Представим N в виде N = 2 k ·m , где m - нечетное число. Поэтому σ (N ) = σ (2 k ·m ) = σ (2 k )σ (m ) = (1 + 2 + ... + 2 k )σ (m ) = (2 k +1 – 1)σ (m ).

Получается, что 2·2 k ·m = (2 k +1 – 1)σ (m ). Значит, 2 k +1 – 1 делит произведение 2 k +1 ·m , а поскольку 2 k +1 – 1 и 2 k +1 взаимно просты, то m должно делиться на 2 k +1 – 1. То есть m можно записать в виде m = (2 k +1 – 1)·M . Подставив это выражение в предыдущее равенство и сократив на 2 k +1 – 1, получим 2 k +1 ·M = σ (m ). Теперь до окончания доказательства остается всего один, хотя и не самый очевидный, шаг.

Решение

В подсказках содержится значительная часть доказательств обоих фактов. Восполним здесь недостающие шаги.

1. Теорема Евклида.

а) Для начала нужно доказать, что сигма-функция действительно мультипликативна. На самом деле, поскольку каждое натуральное число однозначно раскладывается на простые множители (это утверждение называют основной теоремой арифметики), достаточно доказать, что σ (pq ) = σ (p )σ (q ), где p и q - различные простые числа. Но довольно очевидно, что в этом случае σ (p ) = 1 + p , σ (q ) = 1 + q , а σ (pq ) = 1 + p + q + pq = (1 + p )(1 + q ).

Теперь завершим доказательство первого факта: если простое число имеет вид 2 n – 1, то число N = 2 n –1 (2 n – 1) - совершенное. Для этого достаточно проверить, что σ (N ) = 2N (так как сигма-функция - это сумма всех делителей числа, то есть сумма собственных делителей плюс само число). Проверяем: σ (N ) = σ (2 n –1 (2 n – 1)) = σ (2 n –1)σ (2 n – 1) = (1 + 2 + ... + 2 n –1)·((2 n – 1) + 1) = (2 n – 1)·2 n = 2N . Здесь было использовано, что раз 2 n – 1 - простое число, то σ (2 n – 1) = (2 n – 1) + 1 = 2 n .

б) Доведем до конца и второе решение. Найдем все собственные делители числа 2 n –1 (2 n – 1). Это 1; степени двойки 2, 2 2 , ..., 2 n –1 ; простое число p = 2 n – 1; а также делители вида 2 m ·p , где 1 ≤ m n – 2. Суммирование всех делителей тем самым разбивается на подсчет сумм двух геометрических прогрессий . Первая начинается с 1, а вторая - с числа p ; у обеих знаменатель равен 2. По формуле суммы элементов геометрической прогрессии сумма всех элементов первой прогрессии равна 1 + 2 + ... + 2 n –1 = (2 n – 1)/2 – 1 = 2 n – 1 (и это равно p ). Вторая прогрессия дает p ·(2 n –1 – 1)/(2 – 1) = p ·(2 n –1 – 1). Итого, получается p + p ·(2 n –1 – 1) = 2 n –1 ·p - то, что надо.

Скорее всего, Евклид не был знаком с сигма-функцией (да и вообще с понятием функции), поэтому его доказательство изложено несколько другим языком и ближе к решению из пункта б). Оно содержится в предложении 36 из IX книги «Начал» и доступно, например, .

2. Теорема Эйлера.

Прежде чем доказывать теорему Эйлера, отметим еще, что если 2 n – 1 - простое число Мерсенна , то n также должно быть простым числом. Дело в том, что если n = km - составное, то 2 km – 1 = (2 k ) m – 1 делится на 2 k – 1 (поскольку выражение x m – 1 делится на x – 1, это одна из формул сокращенного умножения). А это противоречит простоте числа 2 n – 1. Обратное утверждение - «если n - простое, то 2 n – 1 также простое» - не верно: 2 11 – 1 = 23·89.

Вернемся к теореме Эйлера. Наша цель - доказать, что любое четное совершенное число имеет вид, полученный еще Евклидом. В подсказке 2 были намечены первые этапы доказательства, и осталось сделать решающий шаг. Из равенства 2 k +1 ·M = σ (m ) следует, что m делится на M . Но m делится также и на само себя. При этом M + m = M + (2 k +1 – 1)·M = 2 k +1 ·M = σ (m ). Это означает, что у числа m нет других делителей, кроме M и m . Значит, M = 1, а m - простое число, которое имеет вид 2 k +1 – 1. Тогда N = 2 k ·m = 2 k (2 k +1 – 1), что и требовалось.

Итак, формулы доказаны. Применим их, чтобы найти какие-нибудь совершенные числа. При n = 2 формула дает 6, а при n = 3 получается 28; это первые два совершенных числа. По свойству простых чисел Мерсенна, нам нужно подобрать такое простое n , что 2 n – 1 будет также простым числом, а составные n можно вообще не рассматривать. При n = 5 получится 2 n – 1 = 32 – 1 = 31, это нам подходит. Вот и третье совершенное число - 16·31 = 496. На всякий случай проверим его совершенность явно. Выпишем все собственные делители 496: 1, 2, 4, 8, 16, 31, 62, 124, 248. Их сумма равна 496, так что всё в порядке. Следующее совершенное число получается при n = 7, это 8128. Соответствующее простое число Мерсенна равно 2 7 – 1 = 127, и довольно легко проверить, что оно действительно простое. А вот пятое совершенное число получается при n = 13 и равно 33 550 336. Но проверять его вручную уже очень утомительно (однако это не помешало кому-то открыть его еще в XV веке!).

Послесловие

Первые два совершенных числа - 6 и 28 - были известны с незапамятных времен. Евклид (и мы вслед за ним), применив доказанную нами формулу из «Начал», нашел третье и четвертое совершенные числа - 496 и 8128. То есть сначала было известно всего два, а потом четыре числа с красивым свойством «быть равными сумме своих делителей». Больше таких чисел обнаружить не могли, да и эти, на первый взгляд, ничего не объединяло. В эпоху древности люди были склонны вкладывать мистический смысл в таинственные и непонятные явления, поэтому и совершенные числа получили особый статус. Пифагорейцы , оказавшие сильное влияние на развитие науки и культуры того времени, также поспособствовали этому. «Всё есть число», - говорили они; число 6 в их учении обладало особыми магическими свойствами. А ранние толкователи Библии объясняли, что мир был сотворен именно на шестой день, потому что число 6 - самое совершенное среди чисел, ибо оно первое среди них. Также многим казалось неслучайным, что Луна делает оборот вокруг Земли примерно за 28 дней.

Пятое совершенное число - 33 550 336 - было найдено только в XV веке. Еще почти через полтора века итальянец Катальди нашел шестое и седьмое совершенные числа: 8 589 869 056 и 137 438 691 328. Им соответствуют n = 17 и n = 19 в формуле Евклида. Обратите внимание, что счет идет уже на миллиарды, и страшно даже представить, что все вычисления были проделаны без калькуляторов и компьютеров!

Как мы знаем, Леонард Эйлер доказал, что любое четное совершенное число должно иметь вид 2 n –1 (2 n – 1), причем 2 n – 1 должно быть простым. Восьмое число - 2 305 843 008 139 952 128 - нашел тоже Эйлер в 1772 году. Здесь n = 31. После его достижений можно было осторожно сказать, что про четные совершенные числа науке стало что-то понятно. Да, они быстро растут, и их трудно вычислять, но хотя бы ясно, как это делать: надо брать числа Мерсенна 2 n – 1 и искать среди них простые. Про нечетные совершенные числа неизвестно почти ничего. На сегодняшний день не найдено ни одного такого числа, при том что проверены все числа до 10 300 (видимо, нижняя граница отодвинута даже дальше, просто соответствующие результаты еще не опубликованы). Для сравнения: число атомов в видимой части Вселенной оценивается величиной порядка 10 80 . При этом не доказано, что нечетных совершенных чисел не существует, просто это может быть очень большое число. Даже настолько большое, что наши вычислительные мощности никогда до него не доберутся. Существует ли такое число или нет - одна из открытых на сегодня проблем математики. Компьютерным поиском нечетных совершенных чисел занимаются участники проекта OddPerfect.org .

Вернемся к четным совершенным числам. Девятое число было найдено в 1883 году сельским священником из Пермcкой губернии И. М. Первушиным . В этом числе 37 цифр. Таким образом, к началу XX века было найдено всего 9 совершенных чисел. В это время появились механические арифметические машины, а в середине века - и первые компьютеры. С их помощью дело пошло быстрее. Сейчас найдено 47 совершенных чисел. Причем только у первых сорока известны порядковые номера. Еще про семь чисел пока точно не установлено, какие они по счету. В основном поиском новых мерсенновских простых (а с ними - и новых совершенных чисел) занимаются участники проекта GIMPS (mersenne.org).

В 2008 году участниками проекта было найдено первое простое число, в котором больше 10 000 000 = 10 7 цифр. За это они получили приз $100 000. Денежные призы 150 000 и 250 000 долларов также обещаны за простые числа, состоящие из больше чем 10 8 и 10 9 цифр соответственно. Предполагается, что из этих денег получат вознаграждение и те, кто нашел меньшие, но еще не открытые простые числа Мерсенна. Правда, на современных компьютерах проверка чисел такой длины на простоту займет годы, и это, наверное, дело будущего. Самое большое простое число на сегодня равно 2 43112609 – 1. Оно состоит из 12 978 189 цифр. Отметим, что благодаря тесту Люка-Лемера (см. его доказательство: A proof of the Lucas–Lehmer Test) сильно упрощается проверка на простоту чисел Мерсенна: не нужно пытаться найти хотя бы один делитель очередного кандидата (это очень трудоемкая работа, которая для таких больших чисел практически невыполнима сейчас).

У совершенных чисел есть забавные арифметические свойства:

  • Каждое четное совершенное число является также треугольным числом , то есть представимо в виде 1 + 2 + ... + k = k (k + 1)/2 для некоторого k .
  • Каждое четное совершенное число, кроме 6, является суммой кубов последовательных нечетных натуральных чисел. Например, 28 = 1 3 + 3 3 , а 496 = 1 3 + 3 3 + 5 3 + 7 3 .
  • В двоичной системе счисления совершенное число 2 n –1 (2 n – 1) записывается очень просто: сначала идут n единиц, а потом - n – 1 нулей (это следует из формулы Евклида). Например, 6 10 = 110 2 , 28 10 = 11100 2 , 33550336 10 = 1111111111111000000000000 2 .
  • Сумма чисел, обратных всем делителям совершенного числа (само число здесь тоже участвует), равна 2. Например, 1/1 + 1/2 + 1/4 + 1/7 + 1/14 + 1/28 = 2.

§ 4. Совершенные числа

Нумерология (или гематрия, как ее иногда еще называют) была распространенным увлечением у древних греков. Естественным объяснением этому является то, что числа в Древней Греции изображались буквами греческого алфавита, и поэтому каждому написанному слову, каждому имени соответствовало некоторое число. Люди могли сравнивать свойства чисел, соответствующих их именам.

Делители или аликвотные части чисел играли важную роль в нумерологии. В этом смысле идеальными, или, как их называют, совершенными числами являлись такие числа, которые составлялись из своих аликвотиых частей, т. е. равнялись сумме своих делителей. Здесь следует отметить, что древние греки не включали само число в состав его делителей.

Наименьшим совершенным числом является 6:

За ним следует число 28:

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248.

Часто математик, увлеченный решением какой-либо проблемы и имеющий одно или несколько частных решений этой задачи, пытается найти закономерности, которые смогли бы дать ключ к нахождению общего решения. Указанные нами совершенные числа могут быть записаны в виде

6 = 2 3 = 2(2 2 - 1),

28 = 2 2 7 = 2 2 (2 3 - 1),

496 = 24 31 = 2 4 (2 5 - 1).

Это наталкивает нас на гипотезу:

Число является совершенным, если оно представляется в виде

Р = 2 p -1 (2 p - 1) = 2 р q , (3.4.1)

q = 2 p - 1

является простым числом Мерсенна.

Этот результат, известный еще грекам, несложно доказать. Делителями числа Р , включая само число Р , очевидно, являются следующие числа:

1, 2, 2 2 …, 2 р-1 ,

q , 2q , 2 2 q …, 2 р-1 q .

Запишем сумму этих делителей

1 + 2 +… + 2 р -1 + q (1 + 2 +… + 2 р -1),

которая равна

(1 + 2 +… + 2 р -1)(q + 1) = (1 + 2 +… + 2 р -1) 2 р

Если вы не помните формулы для суммы членов геометрической прогрессии,

S = 1 + 2 +… + 2 р -1 ,

то умножьте эту сумму на 2:

2S = 2 + 2 2 +… +2 р -1 + 2 р ,

а затем, вычтя S , получите

S = 2 p - 1 = q .

Таким образом, сумма всех делителей числа Р есть

2 p q = 2 2 p -1 q,

а сумма всех делителей, кроме самого числа Р = 2 p -1 q , равна

2 2 p -1 q - 2 p -1 q = 2 p -1 q = Р.

Итак, наше число является совершенным.

Из этого результата следует, что каждое простое число Мерсенна порождает совершенное число. В § 2 второй главы говорилось, что известно всего 23 простых числа Мерсенна, следовательно, мы знаем также и 23 совершенных числа. Существуют ли другие виды совершенных чисел? Все совершенные числа вида (3.4.1) являются четными, можно доказать, что любое четное совершенное число имеет вид (3.4.1). Остается вопрос: существуют ли нечетные совершенные числа? В настоящее время мы не знаем ни одного такого числа, и вопрос о существовании нечетных совершенных чисел является одной из самых знаменитых проблем теории чисел. Если бы удалось обнаружить такое число, то это было бы крупным достижением. Вы можете поддаться соблазну найти такое число, перебирая различные нечетные числа. Но мы не советуем этого делать, так как по последним сообщениям Брайена Такхермана из IBM (1968), нечетное совершенное число должно иметь по крайней мере 36 знаков.

Система задач 3.4.

1. Используя список простых чисел Мерсенна, найдите четвертое и пятое совершенные числа.

Из книги Искатели необычайных автографов автора Левшин Владимир Артурович

ЧИСЛА, ЧИСЛА, ЧИСЛА… - Есть такая книга, - начал Мате, - «Диалоги о математике». Написал ее выдающийся венгерский математик нашего века Альфред Реньи. Форма диалога выбрана им не случайно, как не случайно, вероятно, обратился к ней когда-то Галилео Галилей.Жанр диалога

Из книги Приглашение в теорию чисел автора Оре Ойстин

§ 4. Фигурные числа В теории чисел мы часто встречаемся с квадратами, т. е. такими числами, как32 = 9, 72 = 49, 102 = 100,и аналогично с кубами, т. е. такими числами, как23 = 8, 33 = 27, 53 = 125. Рис. 2.Этот геометрический образ рассматриваемой операции с числами является частью богатого

Из книги Научные фокусы и загадки автора Перельман Яков Исидорович

ГЛАВА 2 ПРОСТЫЕ ЧИСЛА § 1. Простые и составные числа Должно быть, одним из первых свойств чисел, открытых человеком, было то, что некоторые из них могут быть разложены на два или более множителя, например,6 = 2 3, 9 = 3 3, 30 = 2 15 = 3 10,в то время как другие, например,3, 7, 13, 37,не

Из книги Апология математики, или О математике как части духовной культуры автора Успенский Владимир Андреевич

§ 2. Простые числа Мерсенна В течение нескольких столетий шла погоня за простыми числами. Многие математики боролись за честь стать открывателем самого большого из известных простых чисел. Разумеется, можно было бы выбрать несколько очень больших чисел, не имеющих таких

Из книги Математика любви. Закономерности, доказательства и поиск идеального решения автора Фрай Ханна

§ 3. Простые числа Ферма Существует также еще один тип простых чисел с большой и интересной историей. Они были впервые введены французским юристом Пьером Ферма (1601–1665), который прославился своими выдающимися математическими работами. Первыми пятью простыми числами

Из книги Тайная жизнь чисел [Любопытные разделы математики] автора Наварро Хоакин

§ 5. Дружественные числа Дружественные числа также входят в наследство, доставшееся нам от греческой нумерологии. Если у двух людей имена были таковы, что их числовые значения удовлетворяли следующему условию: сумма частей (делителей) одного из них равнялась второму

Из книги Том 9. Загадка Ферма. Трехвековой вызов математике автора Виолант-и-Хольц Альберт

§ 2. Взаимно простые числа Число 1 является общим делителем для любой пары чисел а и b. Может случиться, что единица будет единственным их общим делителем, т. е.d0 = D(a, b) = 1. (4.2.1)В этом случае мы говорим, что числа а и b взаимно простые.Пример. (39, 22) = 1.Если числа имеют общий

Из книги автора

§ 1. Числа «Все есть число» - учили древние пифагорейцы. Однако количество чисел, которыми они пользовались, ничтожно по сравнению с фантастической пляской цифр, окружающих нас сегодня в повседневной жизни. Огромные числа появляются, когда считаем мы, и тогда, когда

Из книги автора

44. Какие числа? Какие два целых числа, если их перемножить, составят семь?Не забудьте, что оба числа должны быть целые, поэтому такие ответы, как З1/2 ? 2 или 21/3 ? 3, не

Из книги автора

47. Три числа Какие три целых числа, если их перемножить, дают столько же, сколько получается от их Из книги автора

Магические числа Как и во многих ранее проведенных опросах, выяснилось, что среднее число сексуальных партнеров в течение жизни респондентов относительно невелико: примерно семь для гетеросексуальных женщин и примерно тринадцать для гетеросексуальных мужчин.

Из книги автора

Глава 1 Числа Альберт! Перестань указывать Богу, что Ему делать! Нильс Бор - Альберту Эйнштейну Вначале были число и фигура. Когда человек попытался овладеть ими, родилась наука, и человек начал познавать окружающий мир. Развитие науки часто сопровождалось забавными,

Из книги автора

Приложение Фигурные числа Фигурное число - это число, которое может быть представлено в виде точек, расположенных в форме правильного многоугольника. Эти числа долгое время служили объектом пристального внимания математиков. Греки приписывали им магические свойства,

Мы сталкиваемся с числами буквально каждое мгновение нашей земной жизни. Еще у древних греков существовала гематрия (нумерология). Для изображения чисел использовались буквы алфавита. Каждому имени или написанному слову соответствовало определенное число. На сегодня наука математика достигла очень высокой степени развития. Используемых в различных расчетах чисел так много, что они сведены в определенные группы. Особое место среди них занимают совершенные числа.

Истоки

В Древней Греции люди сравнивали свойства чисел в соответствии с их именами. Делителям чисел была отведена особая роль в нумерологии. В связи с этим, идеальными (совершенными) числами были те, что равнялись сумме своих делителей. Но, древние греки в состав делителей не включали само число. Чтобы лучше понять, что такое совершенные числа, покажем это на примерах.

Исходя из этого определения, самое меньшее идеальное число - это 6. После него будет 28. Затем 496.

Пифагор считал, что есть особенные числа. Такого же мнения придерживался и Эвклид. Для них эти числа были настолько необыкновенны и специфичны, что они ассоциировали их с мистическими. Таким числам свойственно быть совершенными. Вот, что такое совершенные числа для Пифагора и Эвклида. К ним относились 6 и 28.

Ключ

Математики всегда стремятся при решении задачи с несколькими вариантами решения найти общий ключ для нахождения ответа.

Так, они искали формулу, определяющую идеальное число. Но получалась лишь гипотеза, которую нужно было еще доказать. Представьте себе, уже определив, что такое совершенные числа, математики потратили больше тысячи лет, чтобы определить пятое из них! Спустя 1500 лет оно стало известно.

Очень весомый вклад в расчетах идеальных чисел внесли ученые Ферма и Мерсен (XVII ст.). Они предложили формулу для их вычисления. Благодаря французским математикам и трудам многих других ученых на начало 2018 года количество совершенных чисел достигло 50.

Прогресс

Безусловно, если на открытие совершенного числа, которое по счету было уже пятым, ушло полтора тысячелетия, то сегодня благодаря компьютерам они вычисляются намного быстрее. Например, открытие 39-го идеального числа пришлось на 2001 год. Оно имеет 4 миллиона знаков. В феврале 2008 года открыли 44-е совершенное число. В 2010 году - 47-е идеальное, и к 2018 году, как было сказано выше, открыто 50-е число со статусом совершенства.

Есть еще одна интересная особенность. Изучая, что такое совершенные числа, математики сделали открытие - они все четные.

Немного истории

Доподлинно неизвестно, когда впервые были замечены числа, соответствующие идеалу. Однако предполагают, что еще в древнем Египте и Вавилоне они изображались на пальцевом счете. И нетрудно догадаться, какое совершенное число они изображали. было 6. До самого пятого века нашей эры сохранялся счет с помощью пальцев. Для показа числа 6 на руке загибали безымянный палец и выпрямляли остальные.

В Древнем Египте мерой длины служил локоть. Это было равносильно длине двадцати восьми пальцев. А, например, в Древнем Риме был интересный обычай - отводить шестое место на пирах почетным и знатным гостям.

Последователи Пифагора

Последователи Пифагора тоже увлекались идеальными числами. Какое из чисел является совершенным после 28, очень интересовало Евклида (IV в. до н. э.). Он дал ключ к поиску всех идеальных четных чисел. Интерес представляет девятая книга Евклидовых «Начал». Среди его теорем есть та, которая объясняет, что совершенным называется число, обладающее замечательным свойством:

значение р будет равносильно выражению 1+2+4+…+2n, что можно записать как 2n+1-1. Это простое число. Но уже 2np будет совершенным.

Чтобы убедиться в справедливости этого утверждения, нужно рассмотреть все собственные делители числа 2np и подсчитать их сумму.

Это открытие предположительно принадлежит ученикам Пифагора.

Правило Евклида

Кроме того, Евклид доказал: вид четного совершенного числа представлен математически как 2n-1(2n-1). Если n - простое и 2n-1 будет простым.

Правилом Евклида пользовался Никомах из Герасы (I-II в.). Он нашел идеальные числа как 6, 28, 496, 8128. Никомах Геразский высказывался об идеальных числах как про очень красивые, но малочисленные математические понятия.

Полторы тысячи лет спустя немецкий ученый Региомонтан (Йоганн Мюллер) открыл пятое совершенное число в математике. Им оказалось 33 550 336.

Дальнейшие поиски математиков

Числа, которые считаются простыми и относятся к ряду 2n-1, носят название - числа Мерсенна. Это название им дано в честь французского математика, жившего в XVII веке. Именно он открыл восьмое совершенное число в 1644 году.

А вот в 1867 году математический мир потрясла новость от шестнадцатилетнего итальянца Никколо Паганини (тезка известного скрипача), который сообщил о дружественной паре чисел 1184 и 1210. Она ближайшая к 220 и 284. Удивительно, но пару проглядели все именитые математики, занимавшиеся изучением дружественных чисел.

(т. е. всех делителей, отличных от самого́ числа).

Первое совершенное число - 6 (1 + 2 + 3 = 6 ), следующее - 28 (1 + 2 + 4 + 7 + 14 = 28 ). По мере того как возрастают, совершенные числа встречаются всё реже. Третье совершенное число - 496, четвёртое - 8 128, пятое - 33 550 336, шестое - 8 589 869 056.

История изучения

Совершенный характер чисел 6 и 28 был признан многими культурами, обратившими внимание на то, что совершает оборот вокруг каждые 28 дней, и утверждавшими, что сотворил мир за 6 дней. В сочинении «Град Божий» высказал мысль о том, что хотя Бог мог сотворить мир в одно мгновенье, Он предпочел сотворить его за 6 дней, дабы поразмыслить над совершенством мира. По мнению Св. Августина, число 6 совершенно не потому, что Бог избрал его, а потому, что совершенство внутренне присуще природе этого числа. «Число 6 совершенно само по себе, а не потому, что Господь сотворил все сущее за 6 дней; скорее наоборот, Бог сотворил все сущее за 6 дней потому, что это число совершенно. И оно оставалось бы совершенным, даже если бы не было сотворения за 6 дней».

Совершенные числа были предметом пристального внимания пифагорейцев, хотя в их время были известны только 2 первых совершенных числа. В частности, заметил, что совершенные числа не только равны сумме своих делителей, но и обладают некоторыми другими изящными свойствами. Например, совершенные числа всегда равны сумме последовательных натуральных чисел, начиная с единицы (т. е. являются ):

6 = 1 + 2 + 3 ,
28 = 1 + 2 + 3 + 4 + 5 + 6 + 7 ,
496 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + ... + 30 + 31 ,
8128 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + ... + 126 + 127 .

Кроме того, одно из его открытий состояло в том, что совершенство чисел тесно связано с «двоичностью». Числа 4=2\cdot2 , 8=2\cdot2\cdot2 , 16=2\cdot2\cdot2\cdot2 и т. д. называются степенями числа 2 и могут быть представлены в виде 2 n , где n - число перемноженных двоек. Все степени числа 2 чуть-чуть «не достают» до того, чтобы стать совершенными, так как сумма их делителей всегда на единицу меньше самого числа, т. е. все степени двойки :

2 2 =2\cdot2 = 4 , 1 + 2 = 3 ,
2 3 =2\cdot2\cdot2 = 8 , 1 + 2 + 4 = 7 ,
2 4 =2\cdot2\cdot2\cdot2 = 16 , 1 + 2 + 4 + 8 = 15 ,
2 5 =2\cdot2\cdot2\cdot2\cdot2 = 32 , 1 + 2 + 4 + 8 + 16 = 31 ,

Так как каждому чётному совершенному числу соответствует некоторое простое число Мерсенна (и наоборот), то открытие новых чётных совершенных чисел равносильно открытию новых простых чисел Мерсенна, распределённым поиском которых занимается проект . На данный момент (ноябрь 2006) известно 44 простых числа Мерсенна, а значит, и 44 чётных совершенных числа.