Что такое совершенные числа. Совершенные числа

Мы сталкиваемся с числами буквально каждое мгновение нашей земной жизни. Еще у древних греков существовала гематрия (нумерология). Для изображения чисел использовались буквы алфавита. Каждому имени или написанному слову соответствовало определенное число. На сегодня наука математика достигла очень высокой степени развития. Используемых в различных расчетах чисел так много, что они сведены в определенные группы. Особое место среди них занимают совершенные числа.

Истоки

В Древней Греции люди сравнивали свойства чисел в соответствии с их именами. Делителям чисел была отведена особая роль в нумерологии. В связи с этим, идеальными (совершенными) числами были те, что равнялись сумме своих делителей. Но, древние греки в состав делителей не включали само число. Чтобы лучше понять, что такое совершенные числа, покажем это на примерах.

Исходя из этого определения, самое меньшее идеальное число - это 6. После него будет 28. Затем 496.

Пифагор считал, что есть особенные числа. Такого же мнения придерживался и Эвклид. Для них эти числа были настолько необыкновенны и специфичны, что они ассоциировали их с мистическими. Таким числам свойственно быть совершенными. Вот, что такое совершенные числа для Пифагора и Эвклида. К ним относились 6 и 28.

Ключ

Математики всегда стремятся при решении задачи с несколькими вариантами решения найти общий ключ для нахождения ответа.

Так, они искали формулу, определяющую идеальное число. Но получалась лишь гипотеза, которую нужно было еще доказать. Представьте себе, уже определив, что такое совершенные числа, математики потратили больше тысячи лет, чтобы определить пятое из них! Спустя 1500 лет оно стало известно.

Очень весомый вклад в расчетах идеальных чисел внесли ученые Ферма и Мерсен (XVII ст.). Они предложили формулу для их вычисления. Благодаря французским математикам и трудам многих других ученых на начало 2018 года количество совершенных чисел достигло 50.

Прогресс

Безусловно, если на открытие совершенного числа, которое по счету было уже пятым, ушло полтора тысячелетия, то сегодня благодаря компьютерам они вычисляются намного быстрее. Например, открытие 39-го идеального числа пришлось на 2001 год. Оно имеет 4 миллиона знаков. В феврале 2008 года открыли 44-е совершенное число. В 2010 году - 47-е идеальное, и к 2018 году, как было сказано выше, открыто 50-е число со статусом совершенства.

Есть еще одна интересная особенность. Изучая, что такое совершенные числа, математики сделали открытие - они все четные.

Немного истории

Доподлинно неизвестно, когда впервые были замечены числа, соответствующие идеалу. Однако предполагают, что еще в древнем Египте и Вавилоне они изображались на пальцевом счете. И нетрудно догадаться, какое совершенное число они изображали. было 6. До самого пятого века нашей эры сохранялся счет с помощью пальцев. Для показа числа 6 на руке загибали безымянный палец и выпрямляли остальные.

В Древнем Египте мерой длины служил локоть. Это было равносильно длине двадцати восьми пальцев. А, например, в Древнем Риме был интересный обычай - отводить шестое место на пирах почетным и знатным гостям.

Последователи Пифагора

Последователи Пифагора тоже увлекались идеальными числами. Какое из чисел является совершенным после 28, очень интересовало Евклида (IV в. до н. э.). Он дал ключ к поиску всех идеальных четных чисел. Интерес представляет девятая книга Евклидовых «Начал». Среди его теорем есть та, которая объясняет, что совершенным называется число, обладающее замечательным свойством:

значение р будет равносильно выражению 1+2+4+…+2n, что можно записать как 2n+1-1. Это простое число. Но уже 2np будет совершенным.

Чтобы убедиться в справедливости этого утверждения, нужно рассмотреть все собственные делители числа 2np и подсчитать их сумму.

Это открытие предположительно принадлежит ученикам Пифагора.

Правило Евклида

Кроме того, Евклид доказал: вид четного совершенного числа представлен математически как 2n-1(2n-1). Если n - простое и 2n-1 будет простым.

Правилом Евклида пользовался Никомах из Герасы (I-II в.). Он нашел идеальные числа как 6, 28, 496, 8128. Никомах Геразский высказывался об идеальных числах как про очень красивые, но малочисленные математические понятия.

Полторы тысячи лет спустя немецкий ученый Региомонтан (Йоганн Мюллер) открыл пятое совершенное число в математике. Им оказалось 33 550 336.

Дальнейшие поиски математиков

Числа, которые считаются простыми и относятся к ряду 2n-1, носят название - числа Мерсенна. Это название им дано в честь французского математика, жившего в XVII веке. Именно он открыл восьмое совершенное число в 1644 году.

А вот в 1867 году математический мир потрясла новость от шестнадцатилетнего итальянца Никколо Паганини (тезка известного скрипача), который сообщил о дружественной паре чисел 1184 и 1210. Она ближайшая к 220 и 284. Удивительно, но пару проглядели все именитые математики, занимавшиеся изучением дружественных чисел.

Древние греки первыми установили, что число «6» равно сумме всех делителей, исключая само это число: 6=1+2+3. Из-за этого свойства они назвали число «6» совершенным и поставили вопрос, сколько всего существует совершенных чисел?

Легко было обнаружено проверкой второе совершенное число «28»: 1+2+4+7+14=28. Затем Эвклид доказав что всякое число, которое может быть представлено в виде произведения 2 n-1 (2 n -1), где 2 n -1есть простое число, является совершенным числом. В случае n=2 и n=3, числа 2 2 -1=3 и 2 3 -1=7 простые, поэтому 2 1 (2 2 - 1) =6 и 2 2 (2 3 - 1) =28 - совершенные числа. Формула помогла обнаружить еще два совершенных числа (n=5, n=7).

Но отыскание дальнейших совершенных чисел этим способом казалось делом трудным. Николай Геразский (I век н. э.) писал: Совершенные числа красивы. Но известно, что красивые вещи редки и немногочисленны, безобразные же встречаются в изобилии. Избыточными и недостаточными являются почти все числа, в то время как совершенных чисел немного.

В течение столетий авторы, писавшие о совершенных числах, интересовались больше суевериями и фантазиями, связанными с этими числами, чем их математической природой. Например, в диалогах Платона число «6» занимает особое место. У римлян на пирах самым почетным местом было шестое.

В Риме при подземных работах в 1917 году была обнаружена постройка - общий зал с кельями вокруг него. Оказалось, что это здание - помещение неопифагорийской академии, в которой было 28 членов.

По религиозным преданиям мир был создан за 6 дней. Английский богослов VIII века Алкуин учил, что человечество, происшедшее после потопа от 8 лиц, бывших в ковчеге Ноя, менее совершенно, чем до потопа, так как «8» - число несовершенное. В XII веке церковники рекомендовали изучение совершенных чисел для спасения души.

Если первые четыре совершенных числа были известны в глубокой древности, то пятое совершенное число (n=13, 2 12 (2 13 -1) =33 550 336) было обнаружено лишь в XV веке, более чем через полторы тысячи лет после Евклида.

В 1644 году французский математик Марин Мерсенн объявил, не приводя доказательства, что первыми одиннадцатью совершенными числами вида 2 n-1 (2 n -1) являются числа, отвечающие следующим значениям n: 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257. Математикам того времени было очевидно, что Мерсенн не мог проверить непосредственным вычислением простоту чисел 2 n -1 при всех указанных значениях n. Непосредственно удалось проверить только первые три из указанных Мерсенном шести новых совершенных чисел. Они действительно оказались совершенными. Вот эти числа: 8589869056, 137438691328, 2305843008139952128

В 1876 году французский математик Э. Люка указал метод, позволяющий проверить простоту числа без выполнения деления его на всевозможные простые делители. Он же установил, что число 2 127 -1 является простым числом. Этот результат был правильно предсказан Мерсенном, однако в других случаях он ошибся. Было установлено, что показатели n = 67 и n = 257 вопреки указанию Мерсенна не дают совершенных чисел, но их дают не указанные Мерсенном показатели 61, 89 и 107.

P. S. О чем еще говорят британские ученые: о том, что знание теории совершенных чисел может даже помочь на ОГЭ по математике онлайн , не говоря уж о простых математических экзаменах.

Оперируя большими числами, ученые пользуются степенями 10 для того, чтобы избавиться от огромного количества нулей. Например, 19 160 000 000 000 миль можно записать как 1,916·10 13 миль. Так же точно очень маленькое число, например 0,0000154324 г, может быть записано 1,54324·10 –5 г. Из приставок, используемых перед числительными, самой малой величине соответствует атто, происходящая от датского или норвежского atten – восемнадцать. Приставка означает 10 –18 . Приставка экса (от греческого hexa, т.е. 6 групп по 3 нуля), или сокращенно Э, означает 10 18 .

Самые большие числа

Самым большим числом, встречающимся в толковых словарях и имеющим название – степенью 10, является центилион, впервые использованный в 1852 г. Это миллион в сотой степени, или единица с 600 нулями.

Самым большим имеющим название недесятичным числом является буддистское число асанкхейя , равное 10 140 ; оно упоминается в трудах Джайна-сутры, относящихся к 100 г. до н.э.

Число 10 100 называется гугол . Этот термин был предложен 9-летним племянником Эдварда Каснера (США) (ум. в 1955 г.). 10 в степени гугол называется гуголплексом. Некоторое представление об этой величине можно получить, вспомнив, что количество электронов в наблюдаемой Вселенной, согласно некоторым теориям, не превышает 10 87 .

Самым большим числом, когда-либо применявшимся в математическом доказательстве, является предельная величина, известная как число Грэма, впервые использованная в 1977 г. Оно связано с бихроматическими гиперкубами и не может быть выражено без особой 64-уровневой системы специальных математических символов, введённых Кнутом в 1977 г.

Наибольшее число множителей

Специалисты по ЭВМ, использовав более 400 связанных между собой компьютеров, нашли множители 100-значного числа. Вычисления, занявшие 26 дней, ставят под вопрос надежность многих современных шифровальных систем.

Простые числа

Простым числом является любое положительное целое число (кроме 1), делящееся только на себя или на единицу, т.е. 2, 3, 5, 7 или 11. Самое маленькое простое число – 2. Самое большое простое число, 391 581·2 216193 – 1, было открыто 6 августа 1989 г. группой Aмдал-6 . Число, содержащее 65 087 знаков, было получено на суперкомпьютере «Амдал-1200» в Санта-Кларе, штат Калифорния, США. Группа также открыла самые большие парные простые числа: (1 706 595·2 11235 – 1) и (1 706 595·2 11235 + 1). Самым маленьким непростым или составным числом (кроме 1) является 4.

Совершенные числа

Число является совершенным, если оно равно сумме своих делителей, отличных от самого числа, например 1 + 2 + 4 + 7 + 14 = 28. Самое маленькое совершенное число: 6 = 1 + 2 + 3.

Самое большое известное, 31-е по счету открытое на сегодняшний день, число: (2 216091 – 1)·2 216090 . Это число получено благодаря открытию в сентябре 1985 г. математиком Марсенном (США) числа 2 216091 – 1, которое в настоящее время известно как второе самое большое простое число.

Новейшая математическая константа

В ходе исследований турбулентного течения воды, погоды и других хаотических явлений выявилось существование новой универсальной константы – числа Фейгенбаума, названного по имени его первооткрывателя. Приблизительно оно равно 4,669201609102990.

Максимальное число доказательств теоремы

Самое длинное доказательство

Доказательство классификации всех конечных простых групп заняло более 14 тыс. страниц, вмещающих почти 500 научных работ, авторами которых явились более 100 математиков. Доказательство продолжалось более 35 лет.

Самая старая математическая задача

Она датируется 1650 г. до н.э. и в русской версии звучит следующим образом:

По дороге на Дижон
Встретил я мужа и семь его жён.
У каждой жены по семь тюков,
Вкаждом тюке по семь котов.
Сколько котов, тюков и жён
Мирно двигались в Дижон?

Самое большое претендовавшее на точность число в физике

Английский астроном сэр Артур Эддингтон (1882...1944) заявил в 1938 г., что во Вселенной ровно 15 747 724 136 275 002 577 605 653 961 181 555 468 044 717 914 527 116 709 366 231 425 076 185 631 031 296 протонов и столько же электронов. К сожалению Эддингтона, никто не согласился с его сверхточными подсчетами, которые в настоящее время всерьёз не воспринимаются.

Самый плодовитый математик

Леонард Эйлер (Швейцария, Россия) (1707...1783) был настолько плодовит, что и через 50 с лишним лет после его смерти его труды все ещё печатались впервые. Собрание его сочинений частями выпускается в свет, начиная с 1910 г., и в конечном итоге составит 75 больших томов размером ин-кварто.

Самая большая премия

Д-р Пауль Вольфскелл завещал в 1908 г. премию в 100 тыс. немецких марок тому, кто первым докажет «Великую теорему» Ферма . В результате инфляции размер премии составляет сейчас немногим более 10 тыс. немецких марок.

Самый длительный поиск на ЭВМ ответа на вопрос: да или нет?

20-е число Ферма + 1 было проверено на суперкомпьютере «Крэй-2» в 1986 г. с целью ответа на вопрос, является ли оно простым. После 10 дней вычислений был получен ответ – НЕТ.

Самые неграмотные в математическом отношении

Люди племени намбиквара, живущие на северо-западе штата Мату-Гросу, Бразилия, самые неграмотные в математике. У них полностью отсутствует система чисел. Правда, они пользуются глаголом, который обозначает «они равны».

Самое точное и неточное значение числа π

Самое большое количество десятичных знаков числа π, равное 1 011 196 691 знаку после запятой, было получено в 1989 г. Дэвидом и Грегори Чудновски из Колумбийского университета, Нью-Йорк, США, использовавшими суперкомпьютер «Крэй-2» и сеть компьютеров ИБМ 3090. Вычисления были сверены для точности. Кстати, десятичные разряды π с 762-го по 767-й после запятой содержат 6 девяток подряд.

В 1897 г. Генеральная Ассамблея американского штата Индиана утвердила билль 246, согласно которому число π принималось равным 4. В 1853 г. Уильям Шанкс опубликовал свои расчеты числа π до 707-го десятичного знака, произведённые вручную. Спустя 92 года, в 1945 г., было обнаружено, что последние 180 цифр неверны.

Самые древние единицы измерения

Самой древней известной мерой веса является бека амратского периода египетской цивилизации (около 3800 г. до н.э.), найденная в Накаде, Египет. Гири были цилиндрической формы с закруглёнными концами. Они весили от 188,7 до 211,2 г.

По-видимому, строители гробниц эпохи мегалита на северо-западе Европы (около 3500 г. до н.э.) пользовались мерой длины, равной 82,9 ± 0,09 см. К такому выводу пришел профессор Александр Том (1894...1985) в 1966 г.

Измерение времени

Вследствие изменения продолжительности суток, которые увеличиваются в среднем на 1 мс за век под влиянием приливных сил Луны, было пересмотрено определение секунды. Вместо 1/86 400 части средних солнечных суток ее длительность с 1960 г. определяется как 1/315 569 259 747 часть солнечного (или тропического) года по состоянию на 12 часов эфемеридного времени января 1900 г. В 1958 г. секунда принята равной 9 192 631 770 ± 20 периодам излучения, соответствующего переходу между уровнями основного состояния атома цезия-133 в отсутствие внешних полей. Самое большое суточное изменение было зарегистрировано 8 августа 1972 г., оно составляло 10 мс и было вызвано самой мощной солнечной бурей, наблюдаемой за последние 370 лет.

Точность цезиевого эталона частоты приближается к 8 частям на 10 14 , что выше, чем 2 части на 10 13 для гелиево-неонового лазера, стабилизированного метаном, и чем 6 частей на 10 13 для водородного мазера.

Самой длинной мерой времени является кальпа в индуистской хронологии. Она равна 4320 млн лет. В астрономии космический год есть период обращения Солнца вокруг центра Млечного Пути, он равен 225 млн лет. В позднем меловом периоде (около 85 млн лет назад) Земля вращалась быстрее, в результате чего год состоял из 370,3 суток. Имеются также свидетельства тому, что в эпоху кембрия (600 млн лет назад) год длился более 425 суток.

Книга рекордов Гиннеса, 1998 г.

Примеры

  • 1-е совершенное число - имеет следующие собственные делители: 1, 2, 3; их сумма 1 + 2 + 3 равна 6.
  • 2-е совершенное число - имеет следующие собственные делители: 1, 2, 4, 7, 14; их сумма 1 + 2 + 4 + 7 + 14 равна 28.
  • 3-е совершенное число - имеет следующие собственные делители: 1, 2, 4, 8, 16, 31, 62, 124, 248; их сумма 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 равна 496.
  • 4-е совершенное число - имеет следующие собственные делители: 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064; их сумма 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064 равна 8128.

История изучения

Чётные совершенные числа

Алгоритм построения чётных совершенных чисел описан в IX книге Начал Евклида , где было доказано, что число является совершенным, если число является простым (т. н. простые числа Мерсенна) . Впоследствии Леонард Эйлер доказал, что все чётные совершенные числа имеют вид, указанный Евклидом.

Первые четыре совершенных числа приведены в Арифметике Никомаха Геразского . Пятое совершенное число 33 550 336 обнаружил немецкий математик Региомонтан (XV век). В XVI веке немецкий ученый Шейбель нашел ещё два совершенных числа: 8 589 869 056 и 137 438 691 328. Они соответствуют р = 17 и р = 19. В начале XX века были найдены ещё три совершенных числа (для р = 89, 107 и 127). В дальнейшем поиск затормозился вплоть до середины XX века, когда с появлением компьютеров стали возможными вычисления, превосходившие человеческие возможности.

На апрель 2010 года известно 47 простых чисел Мерсенна и соответствующих им чётных совершенных чисел, поиском новых простых чисел Мерсенна занимается проект распределённых вычислений GIMPS .

Нечётные совершенные числа

Нечётных совершенных чисел до сих пор не обнаружено, однако не доказано и то, что их не существует. Неизвестно также, бесконечно ли множество всех совершенных чисел.

Доказано, что нечётное совершенное число, если оно существует, имеет не менее 9 различных простых делителей и не менее 75 простых делителей с учетом кратности. Поиском нечётных совершенных чисел занимается проект распределённых вычислений OddPerfect.org .

Свойства

Примечательные факты

Особенный («совершенный») характер чисел 6 и 28 был признан в культурах, базирующихся на авраамических религиях , - утверждающих, что Бог сотворил мир за 6 дней и обративших внимание на то, что Луна совершает оборот вокруг Земли примерно за 28 дней.

«Не менее важна идея, выраженная числом 496. Это „теософское расширение“ числа 31 (то есть сумма всех целых чисел от 1 до 31). Помимо всего прочего, это сумма слова Малькут , означающего „Царство“. Таким образом, Царство, полное проявление первичной идеи Бога, предстает в гематрии как естественное дополнение или проявление числа 31, которое является числом имени 78».

"Число 6 совершенно само по себе, а не потому, что Господь сотворил все сущее за 6 дней; скорее наоборот, Бог сотворил все сущее за 6 дней потому, что это число совершенно. И оно оставалось бы совершенным, даже если бы не было сотворения за 6 дней."

См. также

  • Слегка избыточные числа (квазисовершенные числа)

Примечания

Ссылки

  • Депман И. Совершенные числа // Квант . - 1991. - № 5. - С. 13-17.

Wikimedia Foundation . 2010 .

Смотреть что такое "Совершенное число" в других словарях:

    СОВЕРШЕННОЕ ЧИСЛО, см. ЧИСЛО СОВЕРШЕННОЕ …

    Натуральное число, равное сумме всех своих правильных (т. е. меньших этого числа) делителей. Напр., 6=1+2+3 и 28=1+2+4+7+14 суть совершенные числа … Большой Энциклопедический словарь

    Натуральное число, равное сумме всех своих правильных (то есть меньших этого числа) делителей. Например, 6 = 1 + 2 + 3 и 28 = 1 + 2 + 4 + 7 + 14 суть совершенного числа. * * * СОВЕРШЕННОЕ ЧИСЛО СОВЕРШЕННОЕ ЧИСЛО, натуральное число, равное сумме… … Энциклопедический словарь

    Целое положительное число, обладающее свойством, что оно совпадает с суммой всех своих положительных делителей, отличных от самого этого числа. Таким образом, целое число является С. ч., если С. ч. являются, напр., числа 6, 28, 496, 8128,33550336 … Математическая энциклопедия

    ЧИСЛО, СОВЕРШЕННОЕ, ЦЕЛОЕ число, равное сумме своих ДЕЛИТЕЛЕЙ, включая 1. Например, число 28 является совершенным числом, поскольку его делителями являются числа 1, 2, 4, 7 и 14 (не считая само число 28), а их сумма равна 28. Не известно,… … Научно-технический энциклопедический словарь

    Числа вида Mn = 2n 1, где n натуральное число. Названы в честь французского математика Мерсенна. Последовательность чисел Мерсенна начинается так: 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, ... (последовательность A000225 в OEIS) Иногда числами… … Википедия

    Число - С древнейших времен различным числам приписывали тайные значения. Философы, последователи Пифагора (около 500 г. до Р.Хр.), утверждали, что числа являются основным началом и сущностью вещей и подробно определили качества и роды чисел. По их… … Словарь библейских имен

    Непрерывное замкнутое отображение топологич. пространств, при к ром прообразы всех точек бикомпактны. С. о. во многом аналогичны непрерывным отображениям бикомпактов в хаусдорфовы пространства (каждое такой отображение совершенно), но сферой… … Математическая энциклопедия

    Шестиугольное число фигурное число. n ое шестиугольное число число точек в шестиугольнике, на каждой стороне которого ровно n точек. Формула для n го шестиугольного числа … Википедия

    У этого термина существуют и другие значения, см. 6 (значения). 6 шесть 3 · 4 · 5 · 6 · 7 · 8 · 9 Факторизация: 2×3 Римская запись: VI Двоичное: 110 Восьмеричное: 6 Шестна … Википедия


Собственный делитель натурального числа - это любой делитель, кроме самого этого числа. Если число равно сумме своих собственных делителей, то оно называется совершенным . Так, 6 = 3 + 2 + 1 - это наименьшее из всех совершенных чисел (1 не в счет), 28 = 14 + 7 + 4 + 2 + 1 - это еще одно такое число.

Совершенные числа были известны еще в древности и интересовали ученых во все времена. В «Началах» Евклида доказано, что если простое число имеет вид 2 n – 1 (такие числа называют простыми числами Мерсенна), то число 2 n –1 (2 n – 1) - совершенное. А в XVIII веке Леонард Эйлер доказал, что любое четное совершенное число имеет такой вид.

Задача

Попробуйте доказать эти факты и найти еще пару-тройку совершенных чисел.


Подсказка 1

а) Чтобы доказать утверждение из «Начал» (что если простое число имеет вид 2 n – 1, то число 2 n –1 (2 n – 1) - совершенное), удобно рассмотреть сигма-функцию, которая равна сумме всех положительных делителей натурального числа n . Например, σ (3) = 1 + 3 = 4, а σ (4) = 1 + 2 + 4 = 7. Эта функция обладает полезным свойством: она мультипликативна , то есть σ (ab ) = σ (a )σ (b ); равенство выполняется для любых двух взаимно простых натуральных чисел a и b (взаимно простыми называются числа, у которых нет общих делителей). Это свойство можно попытаться доказать или принять на веру.

При помощи сигма-функции доказательство совершенности числа N = 2 n –1 (2 n – 1) сводится к проверке того, что σ (N ) = 2N . Для этого пригодится мультипликативность этой функции.

б) Другой путь решения не использует никаких дополнительных конструкций вроде сигма-функции. Он опирается только на определение совершенного числа: нужно выписать все делители числа 2 n –1 (2 n – 1) и найти их сумму. Должно получиться это же число.

Подсказка 2

Доказывать, что любое четное совершенное число - это степень двойки, умноженная на простое число Мерсенна, также удобно с помощью сигма-функции. Пусть N - какое-нибудь четное совершенное число. Тогда σ (N ) = 2N . Представим N в виде N = 2 k ·m , где m - нечетное число. Поэтому σ (N ) = σ (2 k ·m ) = σ (2 k )σ (m ) = (1 + 2 + ... + 2 k )σ (m ) = (2 k +1 – 1)σ (m ).

Получается, что 2·2 k ·m = (2 k +1 – 1)σ (m ). Значит, 2 k +1 – 1 делит произведение 2 k +1 ·m , а поскольку 2 k +1 – 1 и 2 k +1 взаимно просты, то m должно делиться на 2 k +1 – 1. То есть m можно записать в виде m = (2 k +1 – 1)·M . Подставив это выражение в предыдущее равенство и сократив на 2 k +1 – 1, получим 2 k +1 ·M = σ (m ). Теперь до окончания доказательства остается всего один, хотя и не самый очевидный, шаг.

Решение

В подсказках содержится значительная часть доказательств обоих фактов. Восполним здесь недостающие шаги.

1. Теорема Евклида.

а) Для начала нужно доказать, что сигма-функция действительно мультипликативна. На самом деле, поскольку каждое натуральное число однозначно раскладывается на простые множители (это утверждение называют основной теоремой арифметики), достаточно доказать, что σ (pq ) = σ (p )σ (q ), где p и q - различные простые числа. Но довольно очевидно, что в этом случае σ (p ) = 1 + p , σ (q ) = 1 + q , а σ (pq ) = 1 + p + q + pq = (1 + p )(1 + q ).

Теперь завершим доказательство первого факта: если простое число имеет вид 2 n – 1, то число N = 2 n –1 (2 n – 1) - совершенное. Для этого достаточно проверить, что σ (N ) = 2N (так как сигма-функция - это сумма всех делителей числа, то есть сумма собственных делителей плюс само число). Проверяем: σ (N ) = σ (2 n –1 (2 n – 1)) = σ (2 n –1)σ (2 n – 1) = (1 + 2 + ... + 2 n –1)·((2 n – 1) + 1) = (2 n – 1)·2 n = 2N . Здесь было использовано, что раз 2 n – 1 - простое число, то σ (2 n – 1) = (2 n – 1) + 1 = 2 n .

б) Доведем до конца и второе решение. Найдем все собственные делители числа 2 n –1 (2 n – 1). Это 1; степени двойки 2, 2 2 , ..., 2 n –1 ; простое число p = 2 n – 1; а также делители вида 2 m ·p , где 1 ≤ m n – 2. Суммирование всех делителей тем самым разбивается на подсчет сумм двух геометрических прогрессий . Первая начинается с 1, а вторая - с числа p ; у обеих знаменатель равен 2. По формуле суммы элементов геометрической прогрессии сумма всех элементов первой прогрессии равна 1 + 2 + ... + 2 n –1 = (2 n – 1)/2 – 1 = 2 n – 1 (и это равно p ). Вторая прогрессия дает p ·(2 n –1 – 1)/(2 – 1) = p ·(2 n –1 – 1). Итого, получается p + p ·(2 n –1 – 1) = 2 n –1 ·p - то, что надо.

Скорее всего, Евклид не был знаком с сигма-функцией (да и вообще с понятием функции), поэтому его доказательство изложено несколько другим языком и ближе к решению из пункта б). Оно содержится в предложении 36 из IX книги «Начал» и доступно, например, .

2. Теорема Эйлера.

Прежде чем доказывать теорему Эйлера, отметим еще, что если 2 n – 1 - простое число Мерсенна , то n также должно быть простым числом. Дело в том, что если n = km - составное, то 2 km – 1 = (2 k ) m – 1 делится на 2 k – 1 (поскольку выражение x m – 1 делится на x – 1, это одна из формул сокращенного умножения). А это противоречит простоте числа 2 n – 1. Обратное утверждение - «если n - простое, то 2 n – 1 также простое» - не верно: 2 11 – 1 = 23·89.

Вернемся к теореме Эйлера. Наша цель - доказать, что любое четное совершенное число имеет вид, полученный еще Евклидом. В подсказке 2 были намечены первые этапы доказательства, и осталось сделать решающий шаг. Из равенства 2 k +1 ·M = σ (m ) следует, что m делится на M . Но m делится также и на само себя. При этом M + m = M + (2 k +1 – 1)·M = 2 k +1 ·M = σ (m ). Это означает, что у числа m нет других делителей, кроме M и m . Значит, M = 1, а m - простое число, которое имеет вид 2 k +1 – 1. Тогда N = 2 k ·m = 2 k (2 k +1 – 1), что и требовалось.

Итак, формулы доказаны. Применим их, чтобы найти какие-нибудь совершенные числа. При n = 2 формула дает 6, а при n = 3 получается 28; это первые два совершенных числа. По свойству простых чисел Мерсенна, нам нужно подобрать такое простое n , что 2 n – 1 будет также простым числом, а составные n можно вообще не рассматривать. При n = 5 получится 2 n – 1 = 32 – 1 = 31, это нам подходит. Вот и третье совершенное число - 16·31 = 496. На всякий случай проверим его совершенность явно. Выпишем все собственные делители 496: 1, 2, 4, 8, 16, 31, 62, 124, 248. Их сумма равна 496, так что всё в порядке. Следующее совершенное число получается при n = 7, это 8128. Соответствующее простое число Мерсенна равно 2 7 – 1 = 127, и довольно легко проверить, что оно действительно простое. А вот пятое совершенное число получается при n = 13 и равно 33 550 336. Но проверять его вручную уже очень утомительно (однако это не помешало кому-то открыть его еще в XV веке!).

Послесловие

Первые два совершенных числа - 6 и 28 - были известны с незапамятных времен. Евклид (и мы вслед за ним), применив доказанную нами формулу из «Начал», нашел третье и четвертое совершенные числа - 496 и 8128. То есть сначала было известно всего два, а потом четыре числа с красивым свойством «быть равными сумме своих делителей». Больше таких чисел обнаружить не могли, да и эти, на первый взгляд, ничего не объединяло. В эпоху древности люди были склонны вкладывать мистический смысл в таинственные и непонятные явления, поэтому и совершенные числа получили особый статус. Пифагорейцы , оказавшие сильное влияние на развитие науки и культуры того времени, также поспособствовали этому. «Всё есть число», - говорили они; число 6 в их учении обладало особыми магическими свойствами. А ранние толкователи Библии объясняли, что мир был сотворен именно на шестой день, потому что число 6 - самое совершенное среди чисел, ибо оно первое среди них. Также многим казалось неслучайным, что Луна делает оборот вокруг Земли примерно за 28 дней.

Пятое совершенное число - 33 550 336 - было найдено только в XV веке. Еще почти через полтора века итальянец Катальди нашел шестое и седьмое совершенные числа: 8 589 869 056 и 137 438 691 328. Им соответствуют n = 17 и n = 19 в формуле Евклида. Обратите внимание, что счет идет уже на миллиарды, и страшно даже представить, что все вычисления были проделаны без калькуляторов и компьютеров!

Как мы знаем, Леонард Эйлер доказал, что любое четное совершенное число должно иметь вид 2 n –1 (2 n – 1), причем 2 n – 1 должно быть простым. Восьмое число - 2 305 843 008 139 952 128 - нашел тоже Эйлер в 1772 году. Здесь n = 31. После его достижений можно было осторожно сказать, что про четные совершенные числа науке стало что-то понятно. Да, они быстро растут, и их трудно вычислять, но хотя бы ясно, как это делать: надо брать числа Мерсенна 2 n – 1 и искать среди них простые. Про нечетные совершенные числа неизвестно почти ничего. На сегодняшний день не найдено ни одного такого числа, при том что проверены все числа до 10 300 (видимо, нижняя граница отодвинута даже дальше, просто соответствующие результаты еще не опубликованы). Для сравнения: число атомов в видимой части Вселенной оценивается величиной порядка 10 80 . При этом не доказано, что нечетных совершенных чисел не существует, просто это может быть очень большое число. Даже настолько большое, что наши вычислительные мощности никогда до него не доберутся. Существует ли такое число или нет - одна из открытых на сегодня проблем математики. Компьютерным поиском нечетных совершенных чисел занимаются участники проекта OddPerfect.org .

Вернемся к четным совершенным числам. Девятое число было найдено в 1883 году сельским священником из Пермcкой губернии И. М. Первушиным . В этом числе 37 цифр. Таким образом, к началу XX века было найдено всего 9 совершенных чисел. В это время появились механические арифметические машины, а в середине века - и первые компьютеры. С их помощью дело пошло быстрее. Сейчас найдено 47 совершенных чисел. Причем только у первых сорока известны порядковые номера. Еще про семь чисел пока точно не установлено, какие они по счету. В основном поиском новых мерсенновских простых (а с ними - и новых совершенных чисел) занимаются участники проекта GIMPS (mersenne.org).

В 2008 году участниками проекта было найдено первое простое число, в котором больше 10 000 000 = 10 7 цифр. За это они получили приз $100 000. Денежные призы 150 000 и 250 000 долларов также обещаны за простые числа, состоящие из больше чем 10 8 и 10 9 цифр соответственно. Предполагается, что из этих денег получат вознаграждение и те, кто нашел меньшие, но еще не открытые простые числа Мерсенна. Правда, на современных компьютерах проверка чисел такой длины на простоту займет годы, и это, наверное, дело будущего. Самое большое простое число на сегодня равно 2 43112609 – 1. Оно состоит из 12 978 189 цифр. Отметим, что благодаря тесту Люка-Лемера (см. его доказательство: A proof of the Lucas–Lehmer Test) сильно упрощается проверка на простоту чисел Мерсенна: не нужно пытаться найти хотя бы один делитель очередного кандидата (это очень трудоемкая работа, которая для таких больших чисел практически невыполнима сейчас).

У совершенных чисел есть забавные арифметические свойства:

  • Каждое четное совершенное число является также треугольным числом , то есть представимо в виде 1 + 2 + ... + k = k (k + 1)/2 для некоторого k .
  • Каждое четное совершенное число, кроме 6, является суммой кубов последовательных нечетных натуральных чисел. Например, 28 = 1 3 + 3 3 , а 496 = 1 3 + 3 3 + 5 3 + 7 3 .
  • В двоичной системе счисления совершенное число 2 n –1 (2 n – 1) записывается очень просто: сначала идут n единиц, а потом - n – 1 нулей (это следует из формулы Евклида). Например, 6 10 = 110 2 , 28 10 = 11100 2 , 33550336 10 = 1111111111111000000000000 2 .
  • Сумма чисел, обратных всем делителям совершенного числа (само число здесь тоже участвует), равна 2. Например, 1/1 + 1/2 + 1/4 + 1/7 + 1/14 + 1/28 = 2.