Число равное сумме его делителей. Поиск вайте совершенных чисел

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Возникновение чисел в нашей жизни не случайность. Невозможно представить себе общение без использования чисел. История чисел увлекательна и загадочна. Человечеству удалось установить целый ряд законов и закономерностей мира чисел, разгадать кое-какие тайны и использовать свои открытия в повседневной жизни. Без замечательной науки о числах - математики - немыслимо сегодня ни прошлое, ни будущее. А сколько ещё неразгаданного.

Актуальность исследовательского проекта по выбранной теме: современная наука и техника раскрыли величие человеческого разума. Они изменили мир и представления о нем. Но до сих пор люди ищут и не могут пока найти ответы на многие вопросы. Совершенные числа не изучены в полной мере. Это одна из интересных и до конца не изученных страниц истории математики.

Идея (проблема). Данная тема мною была выбрана не случайно. Мне интересно узнавать что-новое, необычное. Я с большим удовольствием участвую в различных олимпиадах. Но когда, изучая энциклопедию по математике, увидел тему «наибольший общий делитель», мне показалось, что это очень неинтересно -считать все время по одному и тому же алгоритму. Своими сомнениями поделился с учителем. И она ответила, что делители - это одно из самых загадочных понятий в математике. Просто необходимо узнать по этой теме побольше. Я решил последовать ее совету и очень скоро убедился, что это действительно так. Как интересен мир совершенных чисел. Так родилась моя исследовательская работа.

Цели моего проекта заключается в следующем:

познакомиться с понятием совершенного числа;

исследовать свойства совершенных чисел;

привлечь внимание учащихся к данном теме.

Задачи проекта:

изучить и проанализировать литературу по теме исследования;

«открыть» свойства совершенных чисел и область их применения;

расширить свой умственный кругозор.

Гипотеза: выяснить роль совершенных чисел в математике.

Вид проекта: исследовательский, моно предметный, индивидуальный. Объект изучения: совершенные числа и их свойства.

Сроки проведения исследования: две недели.

Методика исследования:

сбор и изучение литературы и материалов;

опрос-обращение к определенной группе людей, путем письменного анкетирования и устного интервьюирования;

продукт исследования - мультимедийная презентация по теме.

Что такое совершенные числа

Число является одним из основных понятий математики. Понятие числа развивалось в тесной связи с изучением величин; эта связь сохраняется и теперь.

Существует большое количество определений понятию "число". О числах первый начал рассуждать Пифагор. Пифагору принадлежит высказывание "Всё прекрасно благодаря числу". По его учению число 2 означало гармонию, 5 - цвет, 6 -холод, 7 - разум, здоровье, 8 -любовь и дружбу. А число 10 называли "священной четверицей", так как 10 = 1 + 2 + 3 + 4. Оно считалось священным числом и олицетворяла всю Вселенную.

Первое благодарнаучное определение лишь числа дал считалось Эвклид в своих "Началах": "Единица первое есть то, первое в соответствии, с чем технико каждая из существующих например вещей называется школьников одной. Число сбор есть множество, многим сложенное из единиц".

Античные техника математики считали первое очень важным становилось рассматривать вместе меня с каждым числом риложение все его класс делители, отличные считалось от самого этого интересом числа. Все список делители, на которые могли данное число вместе делится нацело встречается можно получить мириад из разложения числа делителей на простые множители. Такие мириад делители называют собственными. Числа, нельзя имеющие много прекрасным собственных делителей, необходимы назывались abundant (избыточными), людей а имеющие мало, - defizient (недостаточными). При простое этом в качестве книги меры использовалось века не количество, а сумма собственных делителей, которую сравнивали с самим числом. Так, например, для 10 сумма делителей

1 + 2 + 5 = 8 < 10,

так что делителей «недостаток». Для 12 же

1 + 2 + 3 + 4 + 6 = 16 > 12,

т.е. делителей «избыток». Поэтому 10 - «недостаточное», а 12 - «избыточное» число.

Встречается и «пограничный» случай, когда сумма собственных делителей равна самому числу. Например, для 6

То же для 28:

1 + 2 + 4 + 7 + 14 = 28.

Такие числа древние греки особенно ценили и назвали их совершенными. Точно неизвестно, когда и где впервые обратили внимание на совершенные числа. Предполагают, что они были известны уже в древнем Вавилоне и древнем Египте. Во всяком случае, вплоть до V века н.э. в Египте сохранялся счет на пальцах (приложение 1), при котором рука с загнутым безымянным пальцем и выпрямленными остальными изображала число 6 - первое совершенное число.

Поиск вайте совершенных чисел.

Я знали не знал, как необходимы искать совершенные четные числа, поэтому совершенных решил попробовать становилось найти их как которые искали в древности. Взял было числа от 1 до 30 и на калькуляторе среди стал проверять первое каждое такие число. Посмотрите, что мириады у меня получилось. (приложение 2). Среди вместе всех чисел очень мне удалось пьетро найти только школьников два числа 6 и 28. Очень трудоемкий технико поиск как приложение оказалось.

История открытия совершенных чисел.

4.1 Четные совершенные числа.

Никомах Герасский (I-II век н.э.), знаменитый греческий философ и математик (приложение 2), писал:

Совершенные числа красивы. Красивые вещи редки и немногочисленны, безобразные же встречаются в изобилии. Избыточными и недостаточными бывают все числа, в то время как совершенных чисел немного.

Сколько же их? Никомах четвертое этого не знал. Первым понятие прекрасным совершенным литературу числом, о котором делителей знали математики рождения Древней Греции, литературу было число 6. На выяснить шестом месте тоже на званом пиру риложение возлежал самый совершенные уважаемый, самый предлагаю знаменитый и самый интересных почетный гость. Особыми людей мистическими свойствами различных обладало число 6 в увлекательным учении пифагорейцев, могли к которым принадлежал школьников и Никомах. Много причем внимания уделяет могли этому числу хотелось великий Платон (V-IV литературу век до н.э.) в последнего своих «Диалогах» (приложение 3). Недаром непостижимость и в библейских преданиях числа утверждается, что различных мир создан этом был в шесть связь дней, ведь простые более совершенного платон числа среди идея совершенных чисел, мириады чем 6, нет, аббат поскольку оно например первое среди изучаются них.

Следующим совершенным числом, известным древним, было число 28. В Риме в 1917 году при подземных работах было открыто странное сооружение: вокруг большого центрального зала были расположены 28 келий. Это было здание неопифагорейской академии наук. В ней было двадцать восемь членов. До последнего времени столько же членов, часто просто по обычаю, причины которого давным-давно забыты, полагалось иметь во многих ученых обществах (приложение 5).

Древних математиков удивляло особое свойство этих двух чисел. Каждое из них, как уже было отмечено, равно сумме всех своих собственных делителей:

6 = 1 + 2 + 3 и 28 = 1 + 2 + 4 + 7 + 14.

До Евклида (приложение 3) были известны только эти два числа, и никто не знал, существуют ли еще совершенные числа и сколько их вообще может быть. Великий основатель геометрии много занимался изучением свойств чисел; конечно, его не могли не интересовать совершенные числа. Евклид доказал, что всякое число, которое может быть представлено в виде произведения множителей

2 p-1 и 2 p - 1,

где 2 p - 1 - простое число, является совершенным числом, -

эта теорема теперь носит его имя. Если в формулу Евклида

2 p-1 · (2 p - 1)

подставить p = 2, то получим

2 2-1 · (2 2 - 1) = 21 · (22 - 1) = 2 · 3 = 6

Первое совершенное число, а если p = 3, то

2 3-1 · (23 - 1) = 22 · (23 - 1) = 4 · 7 = 28

Благодаря своей формуле Евклид сумел найти еще два совершенных числа: третье при p = 5 и четвертое при p = 7. Вот эти числа:

2 5-1 · (25 - 1) = 24 · (25 - 1) = 16 · 31 = 496

2 7-1 · (27 - 1) = 26 · (27 - 1) = 64 · 127 = 8 128.

Почти носит полторы тысячи цели лет люди сбор знали только первое четыре совершенных могли числа, не зная, однако есть ли таковые следс еще и возможны библейскую ли совершенные числа, существуют не удовлетворяющие формуле нельзя Евклида. Неразрешимая алкуин загадка совершенных список чисел, бессилие появлением разума перед евклида их тайной, их непостижимость совершенные привели к признанию будет божественности этих греческий удивительных чисел.

Один из наиболее выдающихся ученых средневековья, друг и учитель Карла Великого, аббат Алкуин (ок.735-804), один из виднейших деятелей просвещения (приложение 2), организатор школ и автор учебников по арифметике, был твердо убежден, что человеческий род только потому несовершенен, и в нем только потому царит зло, горе и насилие, что он произошел от восьми людей, спасшихся в ноевом ковчеге, а 8 - число несовершенное. До потопа род людской был более совершенен - он происходил от одного Адама, а единица может быть причислена к совершенным числам: она равна самой себе, своему единственному делителю. Алкуин жил в VIII веке. Но даже в XII веке церковь учила, что для спасения души вполне достаточно изучать совершенные числа, и тому, кто найдет новое божественное совершенное число, уготовано вечное блаженство. Но и жажда этой награды не смогла помочь математикам средневековья.

Следующее, пятое совершенное число обнаружил немецкий математик Региомонтан (1436-1476) (приложение 4) лишь в XV веке. Оказалось, что и пятое совершенное число также подчиняется условию Евклида. Не удивительно, что его так долго не могли найти. Гораздо более поражает то, что в пятнадцатом веке вообще смогли его обнаружить. Пятое совершенное число равно

ему соответствует значение р = 13 в формуле Евклида.

Итальянец Пьетро Антонио Катальди (1548-1626), бывший профессором математики во Флоренции и Болонье (приложение 4), тоже для спасения своей души занимался поисками совершенных чисел. В его записках были указаны значения шестого и седьмого совершенных чисел:

8 589 869 056 - шестое число 137 438 691 328 - седьмое число.

Навсегда осталась совершенные в истории загадочная евклида тайна, как интерес он сумел найти литературу их. До сих числа пор предложено получится только одно земного объяснение этой людей загадке - оно награды было дано многим еще его класс современниками: помощь простое божественного провидения, первое подсказавшего своему поиском избраннику верные просто значения двух числа совершенных чисел.

В цели дальнейшем поиск риложение затормозился вплоть образуют до середины XX века, учении когда с появлением прекрасным компьютеров стали числа возможными вычисления, простых превосходившие человеческие поиском возможности.

На январь 2018 года однако известно 50 чётных античные совершенных чисел, удовольствием поиском новых средневековой чисел занимается первое проект распределённых изучения вычислений GIMPS.

4.2 Нечётные совершенные числа

Нечётных совершенных чисел до сих пор не обнаружено, однако не доказано и то, что их не существует. Неизвестно также, бесконечно ли множество всех совершенных чисел.

Доказано, что нечётное совершенное число, если оно существует, имеет не менее 9 различных простых делителей и не менее 75 простых делителей с учетом кратности. Поиском нечётных совершенных чисел занимается проект распределённых вычислений OddPerfect.org.Распределённые вычисления — способ решения трудоёмких вычислительных задач с использованием нескольких компьютеров, чаще всего объединённых в параллельную вычислительную систему.

Свойства совершенных чисел.

Все чётные совершенные числа, кроме6, являются суммой кубов последовательных нечётных натуральных чисел

1 3 + 3 3 + 5 3 + … {displaystyle 1^{3}+3^{3}+5^{3}+ldots } 28 = 1 3 + 3 3 ;

496 = 1 3 + 3 3 + 5 3 + 7 3 ;

8 128 = 1 3 + 3 3 + 5 3 + 7 3 + 9 3 + 11 3 + 13 3 + 15 3 .

Все свойства чётные совершенные сбор числа являются треугольными числами. Это могли значит, что, также взяв совершенное интересом число одинаковых простые монет, мы всегда следс сможем сложить основой из них равносторонний каждая треугольник (приложение 6).

Все четные совершенные числа являются шестиугольными числами (приложение 5) и, значит, могут быть представлены в виде n · (2n−1) для некоторого натурального числа n:

6 = 2 · 3, n = 2;

28 = 4 · 7, n = 4;

496 = 16 · 31, n = 16;

8 128 = 64 · 127, n = 64.

Все чётные совершенные числа, кроме 6 и 496, заканчиваются в десятичной записи на 16, 28, 36, 56 или 76.

Все чётные совершенные числа в двоичной записи содержат сначала единиц, за которыми следует p − 1 {displaystyle p-1} нулей, следствие из их общего представления.

Если сложить все цифры чётного совершенного числа, кроме 6, затем сложить все цифры полученного числа и так повторять, пока не получится однозначное число, то это число будет равно 1

2 + 8 = 10, 1 + 0 = 1

4 + 9 + 6 = 19, 1 + 9 = 10, 1+0=1

Эквивалентная формулировка: остаток от деления чётного совершенного числа, отличного от 6, на 9 равен 1.

Интересные факты о совершенных числах.

Чтобы понять, является ли число совершенным, необходимо проделывать определенные расчеты. Другого пути нет. И такие числа встречаются редко. Например, пифагореец Ямблих писал об идеальных числах как о явлении, встречающемся от мириады до мириады мириад, и затем от мириады мириад до мириад мириад мириад и т. д. Однако в XIX веке были проведены проверочные расчеты, которые показали, что совершенные числа нам встречаются еще реже. Так, от 1020 до 1036 нет никакого совершенного числа, а если следовать Ямблиху, то их должно быть четыре.

Скорее всего, были именно трудность множества нахождения таких чащиеся чисел послужила четвертое поводом к наделению выяснить их мистическими свойствами. Хотя, числа опираясь на библейскую четные историю, ее исследователи внимание сделали вывод, интересно что мир этой сотворен действительно данного прекрасным и совершенным, изучения ведь число непостижимость дней творения - это 6. А первое вот человек преданиях неидеален, так также как сотворен цели и живет в дне древнем седьмом. Однако совершенное его задача - это интересно стремиться к совершенству.

Давайте познакомимся с интересными фактами (приложение 7):

8 людей спаслось в Ноевом Ковчеге после всемирного потопа. Также в нем спаслись по семь пар чистых и нечистых животных. Если суммировать всех спасшихся в Ноевом Ковчеге, то выходит число 28, являющееся совершенным;

руки человека - это совершенное орудие. Они имеют 10 пальцев, которые наделены 28 фалангами;

луна совершает околоземные обороты каждые 28 дней;

при начертании квадрата можно провести в нем диагонали. Тогда несложно будет заметить, что его вершины соединены 6 отрезками. Если то же проделать с кубом, то получится 12 ребер и 16 диагоналей. В сумме получится 28. Восьмиугольник тоже имеет причастность к совершенному числу 28 (20 диагоналей плюс 8 сторон). А семигранная пирамида имеет 7 ребер и 7 сторон основания с 14 диагоналями. В сумме это число 28;

Лев Николаевич Толстой не раз шутливо "хвастался" тем, что дата его рождения 28 августа (по календарю того времени) является совершенным числом. Год рождения Л.Н. Толстого (1828) - тоже интересное число: последние две цифры 28 образуют совершенное число; если обменять местами первые цифры, то получится 8128 - четвертое совершенное число.

Анкетирование.

Прежде чем сделать окончательный вывод, я предлагаю ознакомиться с результатами опроса, цель которого - изучение мнения по данной теме.

Опрос проводился среди следующих категорий:

учащиеся 5 класса (25 человек);

учителя (8 человек);

родители школьников (17 человек).

Всего приняло участие 50 человек.

Опрос велся по следующим вопросам:

Знаете ли вы что такое совершенные числа?

Нужно ли изучать математику?

Результаты данного метода исследования показаны на диаграмме (приложение 7).

А еще я вместе со старшеклассниками провел небольшой блиц-опрос. Мы заходили в каждый класс и просили поднять руки кто любит математику. Ребята с интересом отнеслись к нашей просьбе. Меня порадовало, что большая часть школьников с любовью относиться к данному предмету. Всем было весело и интересно. Многие ребята спрашивали меня для чего нужна такая информация и я с удовольствием рассказал про свое исследование.

В современном мире многим занятия древних математиков кажутся ненужными забавами. Но нельзя забывать, что с этих забав началось серьёзное знакомство людей с числами. Числа стали не только применять, но и изучать.

Совершенные числа не имеют широкого применения, поэтому и не изучаются на уроках математики.

Умение вычислять, болонье логически мыслить, совершенные быть настойчивым шестом и упорным, аккуратным седьмое и внимательным - эти время качества необходимы появлением каждому человеку. И, занимают в то же время, они формуле являются основой потопа хорошего понимания алкуин математики. Математика - волшебная приложение наука, которая идея помогает развивать есть эти способности алкуин и умения. Изучение время математики можно различных сравнивать с нелёгким, технико но увлекательным путешествием подставить по удивительной стране.

Заключение.

Среди всех интересных натуральных чисел, издавна изучаемых математиками, особое место занимают совершенные числа, обладающие рядом очень интересных свойств.

Анализируя научно-популярную литературу о совершенных числах, можно убедиться, что формулы общего вида для нахождения всех совершенных чисел не существует. Вопрос о существовании бесконечности множества четных совершенных чисел, нечетного совершенного числа открыт до сих пор.

Причем нередко одно и тоже открытие происходило в разных точках земного шара, довольно часто повторялось несколько раз, совершенствовалось, а позже распространялось и становилось достоянием всех народов. Математика невольно связывает единой нитью народы мира. Она заставляет их сотрудничать и общаться между собой.

Мир полон тайн и загадок. Но разгадать их могут только пытливые.

Современная наука встречается с величинами такой сложной природы, что для их изучения приходится изобретать все новые виды чисел. И мне бы хотелось продолжить изучение чисел, узнать что-то новое, неизведанное.

Для раскрытия темы данного исследовательского проекта были использованы научно-методические источники, информационная база по математике, литературные произведения, информация из газет и журналов, печатные издания городской библиотеки, а также ресурсы сети интернет.

Список использованной литературы.

1. Берман Г.Н. Число и наука о нем. Общедоступные очерки по арифметике натуральных чисел. - М.: ГИТТЛ, 1954. - 164 с.

2. Википедия, информация по запросу «совершенные числа».

3. Гейзер Г.И., История математики в школе. Пособие для учителей. - М.: Просвещение, 1981.

4. Депман, И. Я Совершенные числа // Квант. - 1991. - № 5. - С. 13-17.

5. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. Пособие для учащихся 5-6 классов средней школы. — М.: Просвещение, 1989. — 287 с.

6. Карпеченко Е. Тайны чисел. Математика /Прил. К газете "Первое сентября" №13 2007.

7. Крылов А.Н., Числа и меры. Математика/ Прил. К газете "Первое сентября"№7 - 1994

8. В работе использованы картинки и фотографии по запросу "Поиск картинки" в Internet.

Приложение 1. Распространённый в средневековой Европе и на Ближнем Востоке пальцевый счёт.

Из книги «Сумма арифметики» итальянского математика Луки Пачоли.

Приложение 2. Таблица поиска совершенных чисел с помощью калькулятора.

Приложение 3. Великие математики

Никомах Герасский Платон

(I-II век н.э.) (V-IV век до н.э.)

Евклид аббат Алкуин

(365-300 до н. э.) (ок.735-804)

Приложение 4. Великие математики

Региомонтан Пьетро Антонио Катальди

(1436-1476) (1548-1626)

Приложение 5. Здание Академии наук

Фёдор Бронников. Гимн пифагорейцев солнцу

Приложение 6. Треугольник из 28 монет.

Приложение 7. Интересные факты о совершенных числах

Ноев ковчег

Руки человека

Луна совершает оборот вокруг Земли

Л. Н. Толстой

Приложение 8. Результаты исследования

Собственный делитель натурального числа - это любой делитель, кроме самого этого числа. Если число равно сумме своих собственных делителей, то оно называется совершенным . Так, 6 = 3 + 2 + 1 - это наименьшее из всех совершенных чисел (1 не в счет), 28 = 14 + 7 + 4 + 2 + 1 - это еще одно такое число.

Совершенные числа были известны еще в древности и интересовали ученых во все времена. В «Началах» Евклида доказано, что если простое число имеет вид 2 n – 1 (такие числа называют простыми числами Мерсенна), то число 2 n –1 (2 n – 1) - совершенное. А в XVIII веке Леонард Эйлер доказал, что любое четное совершенное число имеет такой вид.

Задача

Попробуйте доказать эти факты и найти еще пару-тройку совершенных чисел.


Подсказка 1

а) Чтобы доказать утверждение из «Начал» (что если простое число имеет вид 2 n – 1, то число 2 n –1 (2 n – 1) - совершенное), удобно рассмотреть сигма-функцию, которая равна сумме всех положительных делителей натурального числа n . Например, σ (3) = 1 + 3 = 4, а σ (4) = 1 + 2 + 4 = 7. Эта функция обладает полезным свойством: она мультипликативна , то есть σ (ab ) = σ (a )σ (b ); равенство выполняется для любых двух взаимно простых натуральных чисел a и b (взаимно простыми называются числа, у которых нет общих делителей). Это свойство можно попытаться доказать или принять на веру.

При помощи сигма-функции доказательство совершенности числа N = 2 n –1 (2 n – 1) сводится к проверке того, что σ (N ) = 2N . Для этого пригодится мультипликативность этой функции.

б) Другой путь решения не использует никаких дополнительных конструкций вроде сигма-функции. Он опирается только на определение совершенного числа: нужно выписать все делители числа 2 n –1 (2 n – 1) и найти их сумму. Должно получиться это же число.

Подсказка 2

Доказывать, что любое четное совершенное число - это степень двойки, умноженная на простое число Мерсенна, также удобно с помощью сигма-функции. Пусть N - какое-нибудь четное совершенное число. Тогда σ (N ) = 2N . Представим N в виде N = 2 k ·m , где m - нечетное число. Поэтому σ (N ) = σ (2 k ·m ) = σ (2 k )σ (m ) = (1 + 2 + ... + 2 k )σ (m ) = (2 k +1 – 1)σ (m ).

Получается, что 2·2 k ·m = (2 k +1 – 1)σ (m ). Значит, 2 k +1 – 1 делит произведение 2 k +1 ·m , а поскольку 2 k +1 – 1 и 2 k +1 взаимно просты, то m должно делиться на 2 k +1 – 1. То есть m можно записать в виде m = (2 k +1 – 1)·M . Подставив это выражение в предыдущее равенство и сократив на 2 k +1 – 1, получим 2 k +1 ·M = σ (m ). Теперь до окончания доказательства остается всего один, хотя и не самый очевидный, шаг.

Решение

В подсказках содержится значительная часть доказательств обоих фактов. Восполним здесь недостающие шаги.

1. Теорема Евклида.

а) Для начала нужно доказать, что сигма-функция действительно мультипликативна. На самом деле, поскольку каждое натуральное число однозначно раскладывается на простые множители (это утверждение называют основной теоремой арифметики), достаточно доказать, что σ (pq ) = σ (p )σ (q ), где p и q - различные простые числа. Но довольно очевидно, что в этом случае σ (p ) = 1 + p , σ (q ) = 1 + q , а σ (pq ) = 1 + p + q + pq = (1 + p )(1 + q ).

Теперь завершим доказательство первого факта: если простое число имеет вид 2 n – 1, то число N = 2 n –1 (2 n – 1) - совершенное. Для этого достаточно проверить, что σ (N ) = 2N (так как сигма-функция - это сумма всех делителей числа, то есть сумма собственных делителей плюс само число). Проверяем: σ (N ) = σ (2 n –1 (2 n – 1)) = σ (2 n –1)σ (2 n – 1) = (1 + 2 + ... + 2 n –1)·((2 n – 1) + 1) = (2 n – 1)·2 n = 2N . Здесь было использовано, что раз 2 n – 1 - простое число, то σ (2 n – 1) = (2 n – 1) + 1 = 2 n .

б) Доведем до конца и второе решение. Найдем все собственные делители числа 2 n –1 (2 n – 1). Это 1; степени двойки 2, 2 2 , ..., 2 n –1 ; простое число p = 2 n – 1; а также делители вида 2 m ·p , где 1 ≤ m n – 2. Суммирование всех делителей тем самым разбивается на подсчет сумм двух геометрических прогрессий . Первая начинается с 1, а вторая - с числа p ; у обеих знаменатель равен 2. По формуле суммы элементов геометрической прогрессии сумма всех элементов первой прогрессии равна 1 + 2 + ... + 2 n –1 = (2 n – 1)/2 – 1 = 2 n – 1 (и это равно p ). Вторая прогрессия дает p ·(2 n –1 – 1)/(2 – 1) = p ·(2 n –1 – 1). Итого, получается p + p ·(2 n –1 – 1) = 2 n –1 ·p - то, что надо.

Скорее всего, Евклид не был знаком с сигма-функцией (да и вообще с понятием функции), поэтому его доказательство изложено несколько другим языком и ближе к решению из пункта б). Оно содержится в предложении 36 из IX книги «Начал» и доступно, например, .

2. Теорема Эйлера.

Прежде чем доказывать теорему Эйлера, отметим еще, что если 2 n – 1 - простое число Мерсенна , то n также должно быть простым числом. Дело в том, что если n = km - составное, то 2 km – 1 = (2 k ) m – 1 делится на 2 k – 1 (поскольку выражение x m – 1 делится на x – 1, это одна из формул сокращенного умножения). А это противоречит простоте числа 2 n – 1. Обратное утверждение - «если n - простое, то 2 n – 1 также простое» - не верно: 2 11 – 1 = 23·89.

Вернемся к теореме Эйлера. Наша цель - доказать, что любое четное совершенное число имеет вид, полученный еще Евклидом. В подсказке 2 были намечены первые этапы доказательства, и осталось сделать решающий шаг. Из равенства 2 k +1 ·M = σ (m ) следует, что m делится на M . Но m делится также и на само себя. При этом M + m = M + (2 k +1 – 1)·M = 2 k +1 ·M = σ (m ). Это означает, что у числа m нет других делителей, кроме M и m . Значит, M = 1, а m - простое число, которое имеет вид 2 k +1 – 1. Тогда N = 2 k ·m = 2 k (2 k +1 – 1), что и требовалось.

Итак, формулы доказаны. Применим их, чтобы найти какие-нибудь совершенные числа. При n = 2 формула дает 6, а при n = 3 получается 28; это первые два совершенных числа. По свойству простых чисел Мерсенна, нам нужно подобрать такое простое n , что 2 n – 1 будет также простым числом, а составные n можно вообще не рассматривать. При n = 5 получится 2 n – 1 = 32 – 1 = 31, это нам подходит. Вот и третье совершенное число - 16·31 = 496. На всякий случай проверим его совершенность явно. Выпишем все собственные делители 496: 1, 2, 4, 8, 16, 31, 62, 124, 248. Их сумма равна 496, так что всё в порядке. Следующее совершенное число получается при n = 7, это 8128. Соответствующее простое число Мерсенна равно 2 7 – 1 = 127, и довольно легко проверить, что оно действительно простое. А вот пятое совершенное число получается при n = 13 и равно 33 550 336. Но проверять его вручную уже очень утомительно (однако это не помешало кому-то открыть его еще в XV веке!).

Послесловие

Первые два совершенных числа - 6 и 28 - были известны с незапамятных времен. Евклид (и мы вслед за ним), применив доказанную нами формулу из «Начал», нашел третье и четвертое совершенные числа - 496 и 8128. То есть сначала было известно всего два, а потом четыре числа с красивым свойством «быть равными сумме своих делителей». Больше таких чисел обнаружить не могли, да и эти, на первый взгляд, ничего не объединяло. В эпоху древности люди были склонны вкладывать мистический смысл в таинственные и непонятные явления, поэтому и совершенные числа получили особый статус. Пифагорейцы , оказавшие сильное влияние на развитие науки и культуры того времени, также поспособствовали этому. «Всё есть число», - говорили они; число 6 в их учении обладало особыми магическими свойствами. А ранние толкователи Библии объясняли, что мир был сотворен именно на шестой день, потому что число 6 - самое совершенное среди чисел, ибо оно первое среди них. Также многим казалось неслучайным, что Луна делает оборот вокруг Земли примерно за 28 дней.

Пятое совершенное число - 33 550 336 - было найдено только в XV веке. Еще почти через полтора века итальянец Катальди нашел шестое и седьмое совершенные числа: 8 589 869 056 и 137 438 691 328. Им соответствуют n = 17 и n = 19 в формуле Евклида. Обратите внимание, что счет идет уже на миллиарды, и страшно даже представить, что все вычисления были проделаны без калькуляторов и компьютеров!

Как мы знаем, Леонард Эйлер доказал, что любое четное совершенное число должно иметь вид 2 n –1 (2 n – 1), причем 2 n – 1 должно быть простым. Восьмое число - 2 305 843 008 139 952 128 - нашел тоже Эйлер в 1772 году. Здесь n = 31. После его достижений можно было осторожно сказать, что про четные совершенные числа науке стало что-то понятно. Да, они быстро растут, и их трудно вычислять, но хотя бы ясно, как это делать: надо брать числа Мерсенна 2 n – 1 и искать среди них простые. Про нечетные совершенные числа неизвестно почти ничего. На сегодняшний день не найдено ни одного такого числа, при том что проверены все числа до 10 300 (видимо, нижняя граница отодвинута даже дальше, просто соответствующие результаты еще не опубликованы). Для сравнения: число атомов в видимой части Вселенной оценивается величиной порядка 10 80 . При этом не доказано, что нечетных совершенных чисел не существует, просто это может быть очень большое число. Даже настолько большое, что наши вычислительные мощности никогда до него не доберутся. Существует ли такое число или нет - одна из открытых на сегодня проблем математики. Компьютерным поиском нечетных совершенных чисел занимаются участники проекта OddPerfect.org .

Вернемся к четным совершенным числам. Девятое число было найдено в 1883 году сельским священником из Пермcкой губернии И. М. Первушиным . В этом числе 37 цифр. Таким образом, к началу XX века было найдено всего 9 совершенных чисел. В это время появились механические арифметические машины, а в середине века - и первые компьютеры. С их помощью дело пошло быстрее. Сейчас найдено 47 совершенных чисел. Причем только у первых сорока известны порядковые номера. Еще про семь чисел пока точно не установлено, какие они по счету. В основном поиском новых мерсенновских простых (а с ними - и новых совершенных чисел) занимаются участники проекта GIMPS (mersenne.org).

В 2008 году участниками проекта было найдено первое простое число, в котором больше 10 000 000 = 10 7 цифр. За это они получили приз $100 000. Денежные призы 150 000 и 250 000 долларов также обещаны за простые числа, состоящие из больше чем 10 8 и 10 9 цифр соответственно. Предполагается, что из этих денег получат вознаграждение и те, кто нашел меньшие, но еще не открытые простые числа Мерсенна. Правда, на современных компьютерах проверка чисел такой длины на простоту займет годы, и это, наверное, дело будущего. Самое большое простое число на сегодня равно 2 43112609 – 1. Оно состоит из 12 978 189 цифр. Отметим, что благодаря тесту Люка-Лемера (см. его доказательство: A proof of the Lucas–Lehmer Test) сильно упрощается проверка на простоту чисел Мерсенна: не нужно пытаться найти хотя бы один делитель очередного кандидата (это очень трудоемкая работа, которая для таких больших чисел практически невыполнима сейчас).

У совершенных чисел есть забавные арифметические свойства:

  • Каждое четное совершенное число является также треугольным числом , то есть представимо в виде 1 + 2 + ... + k = k (k + 1)/2 для некоторого k .
  • Каждое четное совершенное число, кроме 6, является суммой кубов последовательных нечетных натуральных чисел. Например, 28 = 1 3 + 3 3 , а 496 = 1 3 + 3 3 + 5 3 + 7 3 .
  • В двоичной системе счисления совершенное число 2 n –1 (2 n – 1) записывается очень просто: сначала идут n единиц, а потом - n – 1 нулей (это следует из формулы Евклида). Например, 6 10 = 110 2 , 28 10 = 11100 2 , 33550336 10 = 1111111111111000000000000 2 .
  • Сумма чисел, обратных всем делителям совершенного числа (само число здесь тоже участвует), равна 2. Например, 1/1 + 1/2 + 1/4 + 1/7 + 1/14 + 1/28 = 2.

Древние греки первыми установили, что число «6» равно сумме всех делителей, исключая само это число: 6=1+2+3. Из-за этого свойства они назвали число «6» совершенным и поставили вопрос, сколько всего существует совершенных чисел?

Легко было обнаружено проверкой второе совершенное число «28»: 1+2+4+7+14=28. Затем Эвклид доказав что всякое число, которое может быть представлено в виде произведения 2 n-1 (2 n -1), где 2 n -1есть простое число, является совершенным числом. В случае n=2 и n=3, числа 2 2 -1=3 и 2 3 -1=7 простые, поэтому 2 1 (2 2 - 1) =6 и 2 2 (2 3 - 1) =28 - совершенные числа. Формула помогла обнаружить еще два совершенных числа (n=5, n=7).

Но отыскание дальнейших совершенных чисел этим способом казалось делом трудным. Николай Геразский (I век н. э.) писал: Совершенные числа красивы. Но известно, что красивые вещи редки и немногочисленны, безобразные же встречаются в изобилии. Избыточными и недостаточными являются почти все числа, в то время как совершенных чисел немного.

В течение столетий авторы, писавшие о совершенных числах, интересовались больше суевериями и фантазиями, связанными с этими числами, чем их математической природой. Например, в диалогах Платона число «6» занимает особое место. У римлян на пирах самым почетным местом было шестое.

В Риме при подземных работах в 1917 году была обнаружена постройка - общий зал с кельями вокруг него. Оказалось, что это здание - помещение неопифагорийской академии, в которой было 28 членов.

По религиозным преданиям мир был создан за 6 дней. Английский богослов VIII века Алкуин учил, что человечество, происшедшее после потопа от 8 лиц, бывших в ковчеге Ноя, менее совершенно, чем до потопа, так как «8» - число несовершенное. В XII веке церковники рекомендовали изучение совершенных чисел для спасения души.

Если первые четыре совершенных числа были известны в глубокой древности, то пятое совершенное число (n=13, 2 12 (2 13 -1) =33 550 336) было обнаружено лишь в XV веке, более чем через полторы тысячи лет после Евклида.

В 1644 году французский математик Марин Мерсенн объявил, не приводя доказательства, что первыми одиннадцатью совершенными числами вида 2 n-1 (2 n -1) являются числа, отвечающие следующим значениям n: 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257. Математикам того времени было очевидно, что Мерсенн не мог проверить непосредственным вычислением простоту чисел 2 n -1 при всех указанных значениях n. Непосредственно удалось проверить только первые три из указанных Мерсенном шести новых совершенных чисел. Они действительно оказались совершенными. Вот эти числа: 8589869056, 137438691328, 2305843008139952128

В 1876 году французский математик Э. Люка указал метод, позволяющий проверить простоту числа без выполнения деления его на всевозможные простые делители. Он же установил, что число 2 127 -1 является простым числом. Этот результат был правильно предсказан Мерсенном, однако в других случаях он ошибся. Было установлено, что показатели n = 67 и n = 257 вопреки указанию Мерсенна не дают совершенных чисел, но их дают не указанные Мерсенном показатели 61, 89 и 107.

P. S. О чем еще говорят британские ученые: о том, что знание теории совершенных чисел может даже помочь на ОГЭ по математике онлайн , не говоря уж о простых математических экзаменах.

Примеры

  • 1-е совершенное число - имеет следующие собственные делители: 1, 2, 3; их сумма 1 + 2 + 3 равна 6.
  • 2-е совершенное число - имеет следующие собственные делители: 1, 2, 4, 7, 14; их сумма 1 + 2 + 4 + 7 + 14 равна 28.
  • 3-е совершенное число - имеет следующие собственные делители: 1, 2, 4, 8, 16, 31, 62, 124, 248; их сумма 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 равна 496.
  • 4-е совершенное число - имеет следующие собственные делители: 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064; их сумма 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064 равна 8128.

История изучения

Чётные совершенные числа

Алгоритм построения чётных совершенных чисел описан в IX книге Начал Евклида , где было доказано, что число является совершенным, если число является простым (т. н. простые числа Мерсенна) . Впоследствии Леонард Эйлер доказал, что все чётные совершенные числа имеют вид, указанный Евклидом.

Первые четыре совершенных числа приведены в Арифметике Никомаха Геразского . Пятое совершенное число 33 550 336 обнаружил немецкий математик Региомонтан (XV век). В XVI веке немецкий ученый Шейбель нашел ещё два совершенных числа: 8 589 869 056 и 137 438 691 328. Они соответствуют р = 17 и р = 19. В начале XX века были найдены ещё три совершенных числа (для р = 89, 107 и 127). В дальнейшем поиск затормозился вплоть до середины XX века, когда с появлением компьютеров стали возможными вычисления, превосходившие человеческие возможности.

На апрель 2010 года известно 47 простых чисел Мерсенна и соответствующих им чётных совершенных чисел, поиском новых простых чисел Мерсенна занимается проект распределённых вычислений GIMPS .

Нечётные совершенные числа

Нечётных совершенных чисел до сих пор не обнаружено, однако не доказано и то, что их не существует. Неизвестно также, бесконечно ли множество всех совершенных чисел.

Доказано, что нечётное совершенное число, если оно существует, имеет не менее 9 различных простых делителей и не менее 75 простых делителей с учетом кратности. Поиском нечётных совершенных чисел занимается проект распределённых вычислений OddPerfect.org .

Свойства

Примечательные факты

Особенный («совершенный») характер чисел 6 и 28 был признан в культурах, базирующихся на авраамических религиях , - утверждающих, что Бог сотворил мир за 6 дней и обративших внимание на то, что Луна совершает оборот вокруг Земли примерно за 28 дней.

«Не менее важна идея, выраженная числом 496. Это „теософское расширение“ числа 31 (то есть сумма всех целых чисел от 1 до 31). Помимо всего прочего, это сумма слова Малькут , означающего „Царство“. Таким образом, Царство, полное проявление первичной идеи Бога, предстает в гематрии как естественное дополнение или проявление числа 31, которое является числом имени 78».

"Число 6 совершенно само по себе, а не потому, что Господь сотворил все сущее за 6 дней; скорее наоборот, Бог сотворил все сущее за 6 дней потому, что это число совершенно. И оно оставалось бы совершенным, даже если бы не было сотворения за 6 дней."

См. также

  • Слегка избыточные числа (квазисовершенные числа)

Примечания

Ссылки

  • Депман И. Совершенные числа // Квант . - 1991. - № 5. - С. 13-17.

Wikimedia Foundation . 2010 .

Смотреть что такое "Совершенное число" в других словарях:

    СОВЕРШЕННОЕ ЧИСЛО, см. ЧИСЛО СОВЕРШЕННОЕ …

    Натуральное число, равное сумме всех своих правильных (т. е. меньших этого числа) делителей. Напр., 6=1+2+3 и 28=1+2+4+7+14 суть совершенные числа … Большой Энциклопедический словарь

    Натуральное число, равное сумме всех своих правильных (то есть меньших этого числа) делителей. Например, 6 = 1 + 2 + 3 и 28 = 1 + 2 + 4 + 7 + 14 суть совершенного числа. * * * СОВЕРШЕННОЕ ЧИСЛО СОВЕРШЕННОЕ ЧИСЛО, натуральное число, равное сумме… … Энциклопедический словарь

    Целое положительное число, обладающее свойством, что оно совпадает с суммой всех своих положительных делителей, отличных от самого этого числа. Таким образом, целое число является С. ч., если С. ч. являются, напр., числа 6, 28, 496, 8128,33550336 … Математическая энциклопедия

    ЧИСЛО, СОВЕРШЕННОЕ, ЦЕЛОЕ число, равное сумме своих ДЕЛИТЕЛЕЙ, включая 1. Например, число 28 является совершенным числом, поскольку его делителями являются числа 1, 2, 4, 7 и 14 (не считая само число 28), а их сумма равна 28. Не известно,… … Научно-технический энциклопедический словарь

    Числа вида Mn = 2n 1, где n натуральное число. Названы в честь французского математика Мерсенна. Последовательность чисел Мерсенна начинается так: 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, ... (последовательность A000225 в OEIS) Иногда числами… … Википедия

    Число - С древнейших времен различным числам приписывали тайные значения. Философы, последователи Пифагора (около 500 г. до Р.Хр.), утверждали, что числа являются основным началом и сущностью вещей и подробно определили качества и роды чисел. По их… … Словарь библейских имен

    Непрерывное замкнутое отображение топологич. пространств, при к ром прообразы всех точек бикомпактны. С. о. во многом аналогичны непрерывным отображениям бикомпактов в хаусдорфовы пространства (каждое такой отображение совершенно), но сферой… … Математическая энциклопедия

    Шестиугольное число фигурное число. n ое шестиугольное число число точек в шестиугольнике, на каждой стороне которого ровно n точек. Формула для n го шестиугольного числа … Википедия

    У этого термина существуют и другие значения, см. 6 (значения). 6 шесть 3 · 4 · 5 · 6 · 7 · 8 · 9 Факторизация: 2×3 Римская запись: VI Двоичное: 110 Восьмеричное: 6 Шестна … Википедия


Лев Николаевич Толстой шутливо «хвастался тем, что дата его рождения (28 августа по календарю того времени) является совершенным числом. Год рождения Л. Н. Толстого (1828) – тоже интересное число: последние две цифры (28) образуют совершенное число; а если переставить местами первые две цифры, то получится 8128 – четвертое совершенное число.

Совершенные числа красивы. Но известно, что красивые вещи редки и немногочисленны. Избыточными и недостаточными являются почти все числа, а совершенных немного.

«Совершенным называется то, что по достоинствам и ценности не может быть пройдено в своей области» (Аристотель).

Совершенные числа – исключительные числа, недаром еще древние греки видели в них некую совершенную гармонию. Например, число 5 не может быть совершенным числом еще и потому, что пятерочка образует пирамиду, несовершенную фигуру, в которой основание не симметрично боковым сторонам.

Но только два первых числа 6 и 28 месте действительно обожествляли. Есть много примеров: в Древней Греции на 6-ом месте на званном пиру возлежал самый уважаемый, самый знаменитый и почетный гость, в Древнем Вавилоне круг делили на 6 частей. В Библии утверждается, что мир создан за 6 дней, ведь нет числа совершенней шести. Во-первых, 6 самое меленькое, самое первое совершенное число. Недаром на него обратили внимание великие Пифагор и Евклид, Ферма и Эйлер. Во-вторых, 6 единственное натуральное число, равное произведению своих правильных натуральных делителей: 6=1*2*3. В-третьих, 6 – единственная совершенная цифра. В-четвертых, удивительными свойствами обладает число, состоящее из 3-х шестерок, 666 – число дьявола: 666 равно сумме сумме квадратов первых семи простых чисел и сумме первых 36-ти натуральных чисел:

666=22+32+52+72+112+132+172,

666=1+2+3++34+35+36.

Интересна одна геометрическая интерпретация 6, это правильный шестиугольник. Сторона правильного шестиугольника равна радиусу описанной около него окружности. Правильный шестиугольник состоит из шести треугольников, у которых все стороны и углы равны. Правильный шестиугольник встречается в природе, это медовые соты пчел, а мед один из самых полезных продуктов в мире.

Теперь о 28. Древние римляне очень уважали это число, в римских академиях наук было строго по 28 членов, в египетском мере длина локтя 28 пальцев, в лунном календаре 28 дней. А про остальные совершенные числа ничего нет. Почему? Загадка. Совершенные числа вообще загадочные. Многие их загадки до сих пор не могут отгадать, хотя над этим задумывались более двух тысяч лет назад.

Одна из таких загадок, почему смесь совершеннейшего числа 6 и божественного 3, число 666, число дьявола. Вообще есть что-то непонятное между совершенными числами и христианской церковью. Ведь за нахождением хотя бы одного совершенного числа человеку прощались все его прегрешения, и жизнь в раю после смерти. Может церковь знает что-нибудь такое об этих числах, что никому и в голову не придет.

Неразрешимая загадка совершенных чисел, бессилие разума перед их тайной, их непостижимость привели к признаниям божественности этих удивительных чисел. Один из наиболее выдающихся ученых средневековья, друг и учитель Карла Великого, аббат Алкуин, один из виднейших деятелей просвещения, организатор школ и автор учебников по арифметике, был твердо убежден, что человеческий род только по тому несовершенен, в нем только поэтому царят зло, горе и насилие, что он произошел от восьми людей, спасшихся в ноевом ковчеге о потопа, а « восемь» - число несовершенное. Род людской до потопа был более совершенен – он произошел от одного Адама, а единица может быть причислена к совершенным числам: она равна самой себе – своему единственному делителю.

После Пифагора многие пытались найти следующие числа или формулу для их выведения, но это удалось только Евклиду через несколько веков после Пифагора. Он доказал, что, если число можно представить в виде 2 р-1(2 р-1), и (2 р -1) – простое, то оно совершенно. Действительно, если р=2, то 2 2-1(2 2 -1)=6, а если р=3, 2 3-1(2 3 -1)=28.

Благодаря этой формуле Евклид нашел еще два совершенных числа, при р=5: 2 5-1(2 5 -1)= 496, 496=1+2+4+8+16+31+62+124+248, и при р= 7: 2 7-1(2 7 -1)=8128, 8128=1+2+4+8+16+32+64+127+254+508+1016+2032+4064.

И опять почти полторы тысячи лет не было просветов на небосклоне скрытных совершенных чисел, пока в 15 веке не было обнаружено пятое число, оно тоже подчинялось правилу Евклида, только при р=13: 2 13-1(2 13 -1)=33550336. Приглядевшись к формуле Евклида, мы увидим связь совершенных чисел с членами геометрической прогрессии 1, 2, 4, 8, 16, эту связь лучше проследить на примере древней легенды, согласно которой Раджа обещал изобретателю шахмат любую награду. Изобретатель попросил положить на первую клетку шахматной доски одно зерно пшеницы, на вторую клетку – два зерна, на третью – четыре, на четвертую – восемь и так далее. На последнюю, 64-ю клетку, должно быть насыпано 264-1 зерен пшеницы. Это больше, чем собрано во всех урожаях за историю человечества. Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел. Например, все совершенные числа треугольные. Это значит, что, взяв совершенное число шаров, мы всегда сможем сложить из них равносторонний треугольник. Из той же формулы Евклида следует другое любопытное свойство совершенных чисел: все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 13+33+53+ Еще более удивительно, что сумма величин, обратных всем делителям совершенного числа, включая его самого, всегда равна 2. Например, взяв делители совершенного числа 28, получим:

Кроме того, интересны представления совершенных чисел в двоичной форме, чередование последних цифр совершенных чисел и другие любопытные вопросы, которые можно найти в литературе по занимательной математике.

Еще через двести лет французский математик Марин Мерсенн без каких-либо доказательств заявил, что следующие шесть совершенных чисел должны также иметь евклидовую форму со значениями р, равными 17, 19, 31, 67, 127, 257. Очевидно, что сам Мерсенн не мог проверить непосредственным вычислением свое утверждение, ведь для этого он должен был доказать, что числа 2 р-1(2 р -1) с указанными им значениями р являются простыми, но тогда это было выше человеческих сил. Так до сих пор и неизвестно как рассуждал Мерсенн, когда заявил, что его числа соответствуют совершенным числам Евклида. Есть предположение: если посмотреть на формулу суммы первых k членов геометрической прогрессии 1+2+22++2k-2+2k-1, то видно, что числа Мерсенна есть не что иное, как простые суммы членов геометрической прогрессии с основанием 2:

67=1+2+64 и т. д.

Обобщенным числом Мерсенна можно назвать простое значение суммы членов геометрической прогрессии с основанием а:

1+а+а2++ак-1=(ак-1)/а-1.

Ясно, что множество всех обобщенных чисел Мерсенна совпадает с множеством всех нечетных простых чисел, поскольку если к – простое или к>2, то к=(к-2)к/к-2=(к-1)2-1/(к-1)-1.

Теперь каждый может самостоятельно исследовать и вычислять числа Мерсенна. Вот начало таблицы.

а к- при которых ак-1/а-1 просты

В настоящее время на простых числах Мерсенна основана защита электронной информации, а также они используются в криптографии и других приложениях математики.

Но это только предположение, свою тайну Мерсенн унес с собой в могилу.

Следующим в череде открытий совершенных был великий Леонард Эйлер, он доказал, что все четные совершенные числа имеют вид указанные Евклидом и, что числа Мерсенна 17, 19, 31 и 127 верны, но 67 и 257 не верны.

Р=17,8589869156 (шестое число)

Р=19,137438691328 (седьмое число)

Р=31,2305843008139952128 (восьмое число).

Девятое число в 1883 году нашел, совершив настоящий подвиг, потому что считал без всяких приборов, сельский священник из под Перьми Иван Михеевич Первушин, он доказал что 2р-1, при р=61:

2305843009213693951- простое число, 261-1(261-1)= 2305843009213693951*260 – совершенно в нем 37 цифр.

В начале 20 столетия появились первые механические счетные машины, на этом кончилась эпоха, когда люди считали вручную. При помощи этих механизмов и ЭВМ были найдены все остальные совершенные числа, которые сейчас известны.

Десятое число было найдено в 1911 году, в нем 54 цифры:

618970019642690137449562111*288, р=89.

Одиннадцатое, имеющее 65 цифр, открыли в 1914 году:

162259276829213363391578010288127*2106, р=107.

Двенадцатое также нашли в 1914 году, 77 цифр р=127:2126(2127-1).

Четырнадцатое было обнаружено в тот же день, 366 цифр р=607, 2606(2607-1).

В июне 1952 года найдено 15-ое число 770 цифр р=1279, 21278(21279-1).

Шестнадцатое и семнадцатое открыто в октябре 1952 года:

22202(22203-1), 1327 цифр р=2203 (16-ое число)

22280(22281-1), 1373 цифры р=2281 (17-ое число).

Восемнадцатое число нашли в сентябре 1957 года, 2000 цифр р=3217.

Поиски последующих совершенных чисел требовали все больше объема вычислений, но вычислительная техника непрерывно совершенствовалась, и в 1962 году было найдено 2 числа (р=4253 и р=4423), в 1965 году еще три числа (р=9689, р=9941, р=11213).

Сейчас известно более 30 совершенных чисел, р самого большого равно 216091.

Но это, по сравнению с загадками, которые оставил Евклид: существуют ли нечетные совершенные числа, конечен ли ряд четных евклидовских совершенных чисел и есть ли четные совершенные числа, не подчиняющиеся формуле Евклида – это и есть три самые главные загадки совершенных чисел. Одну из которых разгадал Эйлер, доказав, что четных совершенных чисел, кроме евклидовских не существует. 2 остальные остаются нерешенными даже в 21 веке, когда ЭВМ достигло такого уровня, что могут производить миллионы операций в секунду. Наличие нечетного несовершенного числа и существование наибольшего совершенного числа – до сих пор не решены.

Без сомнений, совершенные числа оправдывают свое название.

Среди всех интересных натуральных чисел, издавна изучаемых математиками, особое место занимают совершенные и близко связанные с ними дружественные числа. Это такие два числа, каждые из которых равно сумме делителей второго дружественного числа. Наименьшие из дружественных чисел 220 и 284 были известны еще пифагорейцам, которые считали их символом дружбы. Следующие пары дружественных чисел 17296 и 18416 была открыта французским юристом и математиком Пьером Ферма лишь в1636 году, а последующие числа находил Декарт, Эйлер и Лежандр. 16-летний итальянец Никколо Паганини (тезка знаменитого скрипача) в 1867 году потряс математический мир с сообщением о том, что числа 1184 и 1210 дружественные! Эту пару, ближайшую к 220 и 284, проглядели все знаменитые математики, изучавшие дружественные числа.

И в конце предлагается решить следующие задачи, связанные с совершенными числами:

1. Докажите, что число вида 2 р-1(2 р -1), где 2к-1 – простое число, является совершенным.

2. Обозначим через, где - натуральное число, сумму всех его делителей числа. Докажите, что если числа - взаимно просты, то.

3. Найдите еще примеры того, что совершенные числа очень почитались древними.

4. Посмотрите внимательно на фрагмент картины Рафаэля «Сикстинская Мадонна». Какое отношение он имеет к совершенным числам.

5. Вычислите первые 15 чисел Мерсенна. Какие из них являются простыми и какие совершенные числа им соответствуют.

6. Используя определение совершенного числа, представьте единицу в виде суммы различных единичных дробей, знаменателями которых являются все делители данного числа.

7. Расставьте 24 человека в 6 рядов так, чтобы каждый ряд состоял из 5 человек.

8. Пользуясь пятью двойками и арифметическими заклинаниями, запишите число 28.