Решение нэша онлайн. Равновесие по нэшу

В играх с ненулевой суммой в выигрыше или проигрыше могут оказаться все участники игры. Биматричная игра – это конечная игра двух игроков с ненулевой суммой. В этом случае для каждой игровой ситуации A i B j каждый из игроков имеет свой выигрыш a ij для первого игрока и b ij – для второго игрока. К биматричной игре сводится, например, поведение производителей на рынках несовершенной конкуренции. С помощью онлайн-калькулятора можно найти решение биматричной игры , а также ситуации оптимальные по Парето и ситуации устойчивые по Нэшу .

Рассмотрим конфликтную ситуацию, в которой каждый из двух участников имеет следующие возможности для выбора своей линии поведения:

  • игрок А – может выбрать любую из стратегий А 1 ,…,А m ,
  • игрок В – любую из стратегий В 1 ,…,В n .

При этом их совместный выбор оценивается вполне определённо: если игрок А выбрал i-ю стратегию А i , а игрок В – k -ю стратегию В k , то в итоге выигрыш игрока А будет равен некоторому числу a ik , а выигрыш игрока В некоторому, вообще говоря, другому числу b ik .
Последовательно перебирая все стратегии игрока А и все стратегии игрока В, мы сможем заполнить их выигрышами две таблицы.

Первая из таблиц описывает выигрыш игрока А, а вторая – выигрыш игрока В. Обычно эти таблицы записывают в виде матрицы.
Здесь А – платёжная матрица игрока А, В – платёжная матрица игрока В.

Таким образом, в случае, когда интересы игроков различны (но не обязательно противоположны) получаются две платёжные матрицы: одна – матрица выплат игроку А, другая – матрица выплат игроку В. Поэтому совершенно естественно звучит название, которое обычно присваивается подобной игре – биматричная .

Равновесие Нэша – равновесие, когда каждый участник игры выбирает стратегию, которая является для него оптимальной при условии, что остальные участники игры придерживаются определенной стратегии.
Равновесие Нэша не всегда является наиболее оптимальным для участников. В этом случае говорят, что равновесие не является Парето-оптимальным .
Чистая стратегия – определенная реакция игрока на возможные варианты поведения других игроков.
Смешанная стратегия – вероятностная (не определенная точно) реакция игрока на поведение других игроков.

Пример №1 . Борьба за рынки сбыта.
Фирма а намерена сбыть партию товара на одном из двух рынков, контролируемых более крупной фирмой b . С этой целью она проводит подготовительную работу, связанную с определенными затратами. Если фирма b разгадает, на каком из рынков фирма а будет продавать свой товар, она примет контрмеры и воспрепятствует "захвату" рынка (этот вариант означает поражение фирмы а); если нет, то фирма а одерживает победу. Предположим, что для фирмы а проникновение на первый рынок более выгодно, чем проникновение на второй, но и борьба на первом рынке требует от нее больших средств. Например, победа фирмы а на первом рынке приносит ей вдвое большую прибыль, чем победа на втором, но зато поражение на первом рынке полностью ее разоряет.
Составим математическую модель этого конфликта, считая фирму а игроком 1 и фирму b игроком 2. Стратегии игрока 1: А 1 – проникновение на рынок 1, А 2 – проникновение на рынок 2; стратегии игрока 2: В 1 – контрмеры на рынке 1, В 2 – контрмеры на рынке 2. Пусть для фирмы а ее победа на 1-м рынке оценивается в 2 единицы, а победа на 2-м рынке – в 1 единицу; поражение фирмы а на 1-м рынке оценивается в -10, а на 2-м в -1. Для фирмы b ее победа составляет соответственно 5 и 1 единицу, а поражение -2 и -1. Получаем в итоге биматричную игру Г с матрицами выигрышей
.
По теореме эта игра может иметь либо чистые, либо вполне смешанные ситуации равновесия. Ситуаций равновесия в чистых стратегиях здесь нет. Убедимся теперь, что данная игра имеет вполне смешанную ситуацию равновесия. Находим , .
Итак, рассматриваемая игра имеет единственную ситуацию равновесия , где , . Она может быть реализована при многократном повторении игры (то есть при многократном воспроизведении описанной ситуации) следующим образом: фирма а должна использовать чистые стратегии 1 и 2 с частотами 2/9 и 7/9, а фирма b – чистые стратегии 1 и 2 с частотами 3/14 и 11/14. Любая из фирм, отклонившись от указанной смешанной стратегии, уменьшает свой ожидаемый выигрыш.

Пример №2 . Найти ситуации оптимальные по Парето и ситуации устойчивые по Нэшу для биматричной игры.

Пример №3 . Имеются 2 фирмы: первая может произвести одно из двух изделий А 1 и А 2 , вторая – одно из двух изделий B 1 , B 2 . Если первая фирма произведет продукцию A i (i = 1, 2), а вторая - B j (j = 1, 2), то прибыль этих фирм (зависящая от того, являются ли эти изделия взаимодополняющими или конкурирующими), определяется таблицей №1:

В 1 В 2
А 1 (5, 6) (3, 2)
А 2 (2, 1) (5, 3)
Считая, что фирмы заключают между собой соглашение, определить справедливое распределение прибыли, используя арбитражное решение Нэша.

Возникшая в сороковых годах XX века математическая теория игр чаще всего применяется именно в экономике. Но как с помощью концепции игр смоделировать поведение людей в обществе? Зачем экономисты изучают, в какой угол чаще бьют пенальти футболисты, и как выиграть в «Камень, ножницы, бумагу» в своей лекции рассказал старший преподаватель кафедры микроэкономического анализа ВШЭ Данил Федоровых.

Джон Нэш и блондинка в баре

Игра - это любая ситуация, в которой прибыль агента зависит не только от его собственных действий, но и от поведения остальных участников. Если вы раскладываете дома пасьянс, с точки зрения экономиста и теории игр, это не игра. Она подразумевает обязательное наличие столкновения интересов.

В фильме «Игры разума» о Джоне Нэше, нобелевском лауреате по экономике, есть сцена с блондинкой в баре. В ней показана идея, за которую ученый и получил премию, - это идея равновесия по Нэшу, которое он сам называл управляющей динамикой.

Игра - любая ситуация, в которой выигрыши агентов зависят друг от друга.

Стратегия - описание действий игрока во всех возможных ситуациях.

Исход - комбинация выбранных стратегий.

Итак, с точки зрения теории, игроками в этой ситуации являются только мужчины, то есть те, кто принимает решение. Их предпочтения просты: блондинка лучше брюнетки, а брюнетка лучше, чем ничего. Действовать можно двумя способами: пойти к блондинке или к «своей» брюнетке. Игра состоит из единственного хода, решения принимаются одновременно (то есть нельзя посмотреть, куда пошли остальные, и после походить самому). Если какая-то девушка отвергает мужчину, игра заканчивается: невозможно вернуться к ней или выбрать другую.

Каков вероятный финал этой игровой ситуации? То есть какова ее устойчивая конфигурация, из которой все поймут, что сделали лучший выбор? Во-первых, как правильно замечает Нэш, если все пойдут к блондинке, ничем хорошим это не кончится. Поэтому дальше ученый предполагает, что всем нужно пойти к брюнеткам. Но тогда, если известно, что все пойдут к брюнеткам, ему следует идти к блондинке, ведь она лучше.

В этом и заключается настоящее равновесие - исход, в котором один идет к блондинке, а остальные - к брюнеткам. Может показаться, что это несправедливо. Но в ситуации равновесия никто не может пожалеть о своем выборе: те, кто пойдут к брюнеткам, понимают, что от блондинки они все равно ничего б не получили. Таким образом, равновесие по Нэшу - это конфигурация, при которой никто по отдельности не хочет менять выбранную всеми стратегию. То есть, рефлексируя в конце игры, каждый участник понимает, что даже зная, как походят другие, он сделал бы то же самое. По-другому можно назвать это исходом, где каждый участник оптимальным образом отвечает на действия остальных.

«Камень, ножницы, бумага»

Рассмотрим другие игры на предмет равновесия. Например, в «Камне, ножницах, бумаге» нет равновесия по Нэшу: во всех ее вероятных исходах нет варианта, в котором оба участника были бы довольны своим выбором. Тем не менее, существует Чемпионат мира и World Rock Paper Scissors Society, собирающее игровую статистику. Очевидно, что вы можете повысить свои шансы на победу, если будете что-то знать об обычном поведении людей в этой игре.

Чистая стратегия в игре - это такая стратегия, при которой человек всегда играет одинаково, выбирая одни и те же ходы.

По данным World RPS Society, камень является самым часто выбираемым ходом (37,8%). Бумагу ставят 32,6%, ножницы - 29,6%. Теперь вы знаете, что нужно выбирать бумагу. Однако, если вы играете с тем, кто тоже это знает, вам уже не надо выбирать бумагу, потому что от вас ожидается то же самое. Есть знаменитый случай: в 2005 году два аукционных дома Sotheby“s и Christie”s решали, кому достанется очень крупный лот - коллекция Пикассо и Ван Гога со стартовой ценой в 20 миллионов долларов. Собственник предложил им сыграть в «Камень, ножницы, бумагу», и представители домов отправили ему свои варианты по электронной почте. Sotheby“s, как они позже рассказали, особо не задумываясь, выбрали бумагу. Выиграл Christie”s. Принимая решение, они обратились к эксперту - 11-летней дочери одного из топ-менеджеров. Она сказала: «Камень кажется самым сильным, поэтому большинство людей его выбирают. Но если мы играем не с совсем глупым новичком, он камень не выбросит, будет ожидать, что это сделаем мы, и сам выбросит бумагу. Но мы будем думать на ход вперед, и выбросим ножницы».

Таким образом, вы можете думать на ход вперед, но это не обязательно приведет вас к победе, ведь вы можете не знать о компетенции вашего соперника. Поэтому иногда вместо чистых стратегий правильнее выбирать смешанные, то есть принимать решения случайно. Так, в «Камне, ножницах, бумаге» равновесие, которое мы до этого не нашли, находится как раз в смешанных стратегиях: выбирать каждый из трех вариантов хода с вероятностью в одну третью. Если вы будете выбирать камень чаще, соперник скорректирует свой выбор. Зная это, вы скорректируете свой, и равновесия не выйдет. Но никто из вас не начнет менять поведение, если каждый просто будет выбирать камень, ножницы или бумагу с одинаковой вероятностью. Все потому что в смешанных стратегиях по предыдущим действиям невозможно предугадать ваш следующий ход.

Смешанные стратегии и спорт

Более серьезных примеров смешанных стратегий очень много. Например, куда подавать в теннисе или бить/принимать пенальти в футболе. Если вы ничего не знаете о вашем сопернике или просто постоянно играете против разных, лучшей стратегией будет поступать более-менее случайно. Профессор Лондонской школы экономики Игнасио Паласиос-Уэрта в 2003 году опубликовал в American Economic Review работу, суть которой заключалась в поиске равновесия по Нэшу в смешанных стратегиях. Предметом исследования Паласиос-Уэрта выбрал футбол и в связи с этим просмотрел более 1400 ударов пенальти. Разумеется, в спорте все устроено хитрее, чем в «Камне, ножницах, бумаге»: там учитывается сильная нога спортсмена, попадания в разные углы при ударе со всей силы и тому подобное. Равновесие по Нэшу здесь заключается в расчете вариантов, то есть, к примеру, определении углов ворот, в которые надо бить, чтобы выиграть с большей вероятностью, зная свои слабые и сильные стороны. Статистика по каждому футболисту и найденное в ней равновесие в смешанных стратегиях, показало, что футболисты поступают примерно так, как предсказывают экономисты. Вряд ли стоит утверждать, что люди, которые бьют пенальти, читали учебники по теории игр и занимались довольно непростой математикой. Скорее всего, есть разные способы научиться оптимально себя вести: можно быть гениальным футболистом, и чувствовать, что делать, а можно - экономистом, и искать равновесие в смешанных стратегиях.

В 2008 году профессор Игнасио Паласиос-Уэрта познакомился с Авраамом Грантом, тренером «Челси», который играл тогда в финале Лиги чемпионов в Москве. Ученый написал записку тренеру с рекомендациями по серии пенальти, которые касались поведения вратаря соперника - Эдвина ван дер Сара из «Манчестер Юнайтед». Например, по статистике, он почти всегда отбивал удары на среднем уровне и чаще бросался в естественную для пробивающего пенальти сторону. Как мы определили выше, правильнее все-таки рандомизировать свое поведение с учетом знаний о сопернике. Когда счет по пенальти был уже 6:5, Николя Анелька, нападающий «Челси», должен был забивать. Показывая перед ударом в правый угол, ван дер Сар будто спросил у Анелька, не собирается ли он бить туда.

Суть в том, что все предыдущие удары «Челси» были нанесены именно в правый от пробивающего угол. Мы не знаем точно почему, может быть, из-за консультации экономиста бить в неестественную для них сторону, ведь по статистике к этому менее готов ван дер Сар. Большинство футболистов «Челси» были правшами: ударяя в неестественный для себя правый угол, все они, кроме Терри, забивали. Видимо, стратегия была в том, чтобы Анелька пробил туда же. Но ван дер Сар, похоже, это понял. Он поступил гениально: показал в левый угол дескать «туда собрался бить?», от чего Анелька, наверное, пришел в ужас, ведь его разгадали. В последний момент он принял решение действовать по-другому, ударил в естественную для себя сторону, что и было нужно ван дер Сару, который взял этот удар и обеспечил «Манчестеру» победу. Эта ситуация учит случайному выбору, ведь в ином случае ваше решение может быть просчитано, и вы проиграете.

«Дилемма заключенного»

Наверное, самая известная игра, с которой начинаются университетские курсы о теории игр, - это «Дилемма заключенного». По легенде двух подозреваемых в серьезном преступлении поймали и заперли в разные камеры. Есть доказательство, что они хранили оружие, и это позволяет посадить их на какой-то небольшой срок. Однако доказательств, что они совершили это страшное преступление, нет. Каждому по отдельности следователь рассказывает об условиях игры. Если оба преступника сознаются, оба же сядут на три года. Если сознается один, а подельник будет молчать, сознавшийся выйдет сразу, а второго посадят на пять лет. Если, наоборот, первый не сознается, а второй его сдаст, первый сядет на пять лет, а второй выйдет сразу. Если же не сознается никто, оба сядут на год за хранение оружия.

Равновесие по Нэшу здесь заключается в первой комбинации, когда оба подозреваемых не молчат и оба садятся на три года. Рассуждения каждого таковы: «если я буду говорить, я сяду на три года, если молчать - на пять лет. Если второй будет молчать, мне тоже лучше говорить: не сесть лучше, чем сесть на год». Это доминирующая стратегия: говорить выгодно, независимо от того, что делает другой. Однако в ней есть проблема - наличие варианта получше, ведь сесть на три года хуже, чем сесть на год (если рассматривать историю только с точки зрения участников и не учитывать вопросы морали). Но сесть на год невозможно, ведь, как мы поняли выше, молчать обоим преступникам невыгодно.

Улучшение по Парето

Есть известная метафора про невидимую руку рынка, принадлежащая Адаму Смиту. Он говорил, что если мясник будет сам для себя стараться заработать деньги, от этого будет лучше всем: он сделает вкусное мясо, которое купит булочник на деньги от продажи булок, которые он, в свою очередь, тоже должен будет делать вкусными, чтобы они продавались. Но оказывается, эта невидимая рука не всегда работает, и таких ситуаций, когда каждый действует за себя, а всем плохо, очень много.

Поэтому иногда экономисты и специалисты по теории игр думают не об оптимальном поведении каждого игрока, то есть не о равновесии по Нэшу, а об исходе, при котором будет лучше всему обществу (в «Дилемме» общество состоит из двух преступников). С этой точки зрения, исход эффективен, когда в нем нет улучшения по Парето, то есть невозможно сделать кому-то лучше, не сделав при этом хуже другим. Если люди просто меняются товарами и услугами, это Парето-улучшение: они делают это добровольно, и вряд ли кому-то от этого плохо. Но иногда, если просто дать людям взаимодействовать и даже не вмешиваться, то, к чему они придут, не будет оптимальным по Парето. Это и происходит в «Дилемме заключенного». В ней, если мы даем каждому действовать так, как им выгодно, оказывается, что всем от этого плохо. Всем было бы лучше, если бы каждый действовал не оптимально для себя, то есть молчал.

Трагедия общины

«Дилемма заключенного» - это игрушечная стилизованная история. Вряд ли вы ожидаете оказаться в подобной ситуации, но похожие эффекты есть везде вокруг нас. Рассмотрим «Дилемму» с большим количеством игроков, ее иногда называют трагедией общины. Например, на дорогах - пробки, и я решаю, как ехать на работу: на машине или на автобусе. Это же делают остальные. Если я поеду на машине, и все решат сделать то же самое, будет пробка, но мы доедем с комфортом. Если я поеду на автобусе, пробка-то все равно будет, но ехать я буду некомфортно и не особо быстрее, поэтому такой исход еще хуже. Если же в среднем все ездят на автобусе, то я, сделав то же самое, довольно быстро доеду без пробки. Но если при таких условиях поехать на машине, я тоже доеду быстро, но еще и с комфортом. Итак, наличие пробки не зависит от моих действий. Равновесие по Нэшу здесь - в ситуации, когда все выбирают ехать на машине. Что бы не делали остальные, мне лучше выбрать машину, потому что будет там пробка или нет, неизвестно, но я в любом случае доеду с комфортом. Это доминирующая стратегия, поэтому в итоге все едут на машине, и мы имеем то, что имеем. Задача государства - сделать поездку на автобусе лучшим вариантом хотя бы для некоторых, поэтому появляются платные въезды в центр, парковки и так далее.

Другая классическая история - рациональное незнание избирателя. Представьте, что вы не знаете исход выборов заранее. Вы можете изучить программу всех кандидатов, послушать дебаты и после проголосовать за самого лучшего. Вторая стратегия - прийти на участок и проголосовать как попало или за того, кого чаще показывали по телевизору. Какое поведение оптимально, если от моего голоса никогда не зависит, кто выиграет (а в 140-миллионной стране один голос никогда ничего не решит)? Конечно, я хочу, чтобы в стране был хороший президент, но я же знаю, что никто больше не будет изучать программы кандидатов внимательно. Поэтому не тратить на это время - доминирующая стратегия поведения.

Когда вас призывают прийти на субботник, ни от кого в отдельности не будет зависеть, станет двор чистым или нет: если я выйду один, я не смогу убрать все, или, если выйдут все, то не выйду я, потому что все и без меня уберут. Другой пример - перевозка грузов в Китае, о котором я узнал в замечательной книге Стивена Ландсбурга «Экономист на диване». 100-150 лет назад в Китае был распространен способ перевозки грузов: все складывалось в большой кузов, который тащили семь человек. Заказчики платили, если груз доставлялся вовремя. Представьте, что вы - один из этих шести. Вы можете прилагать усилия, и тянуть изо всех сил, и если все будут так делать, груз доедет вовремя. Если кто-нибудь один так делать не будет, все тоже доедут вовремя. Каждый думает: «Если все остальные тянут как следует, зачем это делать мне, а если все остальные тянут не со всей силы, то я ничего не смогу изменить». В итоге, со временем доставки все было очень плохо, и сами грузчики нашли выход: они стали нанимать седьмого и платить ему деньги за то, чтобы он стегал лентяев плетью. Само наличие такого человека заставляло всех работать изо всех сил, потому что иначе все попадали в плохое равновесие, из которого никому в отдельности с выгодой не выйти.

Такой же пример можно наблюдать в природе. Дерево, растущее в саду, отличается от того, что растет в лесу, своей кроной. В первом случае она окружает весь ствол, во втором - находится только вверху. В лесу это является равновесием по Нэшу. Если бы все деревья договорились и выросли одинаково, они бы поровну распределили количество фотонов, и всем было бы лучше. Но никому в отдельности так делать невыгодно. Поэтому каждое дерево хочет вырасти немного выше окружающих.

Сommitment device

Во многих ситуациях одному из участников игры может понадобиться инструмент, который убедит остальных, что тот не блефует. Он называется commitment device. Например, закон некоторых стран запрещает платить выкуп похитителям людей, чтобы снизить мотивацию преступников. Однако это законодательство часто не работает. Если вашего родственника захватили, и у вас есть возможность спасти его, обойдя закон, вы это сделаете. Представим ситуацию, что закон можно обойти, но родственники оказались бедными и выкуп им платить нечем. У преступника в этой ситуации два пути: отпустить или убить жертву. Убивать он не любит, но тюрьму он не любит больше. Отпущенный пострадавший, в свою очередь, может либо дать показания, чтобы похититель был наказан, либо молчать. Самый лучший исход для преступника: отпустить жертву, которая его не сдаст. Жертва же хочет быть отпущенной и дать показания.

Равновесие здесь в том, что террорист не хочет быть пойманным, а значит, жертва погибает. Но это не равновесие по Парето, потому что существует вариант, при котором всем лучше - жертва на свободе хранит молчание. Но для этого надо сделать так, чтобы молчать ей было выгодно. Где-то я прочитал вариант, когда она может попросить террориста устроить эротическую фотосессию. Если преступника посадят, его подельники выложат фотографии в интернет. Теперь, если похититель останется на свободе - это плохо, но фотографии в открытом доступе - еще хуже, поэтому получается равновесие. Для жертвы это способ остаться в живых.

Другие примеры игр:

Модель Бертрана

Раз уж мы говорим об экономике, рассмотрим экономический пример. В модели Бертрана два магазина продают один и тот же товар, покупая его у производителя по одной цене. Если цены в магазинах одинаковы, то примерно одинакова и их прибыль, ведь тогда покупатели выбирают магазин случайно. Единственное равновесие по Нэшу здесь - продавать товар по себестоимости. Но магазины хотят зарабатывать. Поэтому если один поставит цену 10 рублей, второй снизит ее на копейку, увеличив тем самым свою выручку вдвое, так как к нему уйдут все покупатели. Поэтому участникам рынка выгодно снижать цены, распределяя тем самым прибыль между собой.

Разъезд на узкой дороге

Рассмотрим примеры выбора между двумя возможными равновесиями. Представьте, что Петя и Маша едут навстречу друг другу по узкой дороге. Дорога настолько узкая, что им обоим нужно съехать на обочину. Если они решат повернуть налево или направо от себя, они просто разъедутся. Если же один повернет направо, а другой налево от себя, или наоборот, случится авария. Как выбрать, куда съехать? Чтобы помогать искать равновесие в подобных играх, существуют, например, правила дорожного движения. В России каждому нужно повернуть направо.

В забаве Chiken, когда два человека едут на большой скорости навстречу друг другу, тоже есть два равновесия. Если оба сворачивают на обочину, возникает ситуация, которая называется Chiken out, если оба не сворачивают, то погибают в страшной аварии. Если я знаю, что мой соперник едет прямо, мне выгодно съехать, чтобы выжить. Если я знаю, что мой соперник съедет, то мне выгодно ехать прямо, чтобы после получить 100 долларов. Сложно предсказать, что случится на самом деле, однако, у каждого из игроков есть свой метод выиграть. Представьте, что я закрепил руль так, что его нельзя повернуть, и показал это своему сопернику. Зная, что у меня нет выбора, соперник отскочит.

QWERTY-эффект

Иногда бывает очень сложно перейти из одного равновесия в другое, даже если оно означает пользу для всех. Раскладка QWERTY была создана, чтобы замедлить скорость печати. Поскольку если бы все печатали слишком быстро, головки печатной машинки, которые бьют по бумаге, цеплялись бы друг за друга. Поэтому Кристофер Шоулз разместил часто стоящие рядом буквы на максимально далеком расстоянии. Если вы зайдете в настройки клавиатуры на своем компьютере, вы сможете выбрать там раскладку Dvorak и печатать гораздо быстрее, так как сейчас нет проблемы аналоговых печатных машин. Дворак рассчитывал, что мир перейдет на его клавиатуру, но мы по-прежнему живем с QWERTY. Конечно, если бы мы перешли на раскладку Дворака, будущее поколение было бы нам благодарно. Все мы приложили бы усилия и переучились, в результате вышло бы равновесие, в котором все печатают быстро. Сейчас мы тоже в равновесии - в плохом. Но никому не выгодно быть единственным, кто переучится, потому что за любым компьютером, кроме личного, работать будет неудобно.

В реальной жизни часто появляются вопросы, почему на одних рынках фирмы сотрудничают, а на других - агрессивно конкурируют; к каким средствам следует прибегать фирме, чтобы не допустить вторжения потенциальных конкурентов; как принимаются решения о цене; когда меняются условия спроса или издержек. Изучая эти проблемы, ученые используют теорию игр.
Первыми исследователями в области теории игр были американский математик Дж.-Ф. Нейман и австро-американский экономист О. Моргенштерн («Теория игр и экономическое поведение», 1944). Они распространили математические категории на экономическую жизнь общества, вводя понятия оптимальных стратегий, максимизации ожидаемой полезности, доминирование в игре (на рынке), коалиционные соглашения. Эти ученые оказали стимулирующее влияние на развитие социальных наук в целом, математической статистики, экономической мысли, в частности в области практического использования теории вероятности и теории игр в экономике.
Ученые стремились сформулировать основополагающие критерии рационального поведения участника рынка. Они различали два вида игр. Первый - «с нулевой суммой» - предусматривает такой выигрыш который формируется из издержек других игроков, то есть общая сумма выгоды и издержек всегда равна нулю. Другой вид - «игра с плюсовой суммой», когда индивидуальные игроки ведут борьбу за выигрыш, складывающийся из их ставок. Иногда этот выигрыш создается за счет наличия «выходного» (термин из карточной игры в бридж; так называют одного из игроков, который, делая ставки, не принимает участия в игре), совсем пассивного и часто такого, который служит объектом эксплуатации. И в том, и в другом случае игра неминуемо соединена с риском, поскольку каждый из ее участников, как считали Дж.-Ф. Нейман и О. Моргенштерн, «стремится максимально повысить функцию, переменные которой не контролируются». Если все игроки одинаково умелые, то решающим фактором становится случайность. Однако так происходит редко. Почти всегда важнейшую роль в игре играет хитрость, с помощью которой делаются попытки раскрыть замысел противника и завуалировать свои намерения, а потом занять выгодные позиции и вынудить противника действовать в убыток себе. Важная роль отводится и «контрхитрости».
Во время игры много зависит и от рационального поведения игрока, то есть продуманного выбора и оптимальной стратегии. Разработке формализованного (в виде моделей) описания конфликтных ситуаций, в частности «формулы равновесия», то есть устойчивости решений противников в игре, занимался Дж.-Ф. Нэш
Нэш (Nash) Джон-Форбс (род в 1928) - американский экономист, лауреат Нобелевской премии (1994). Родился в г. Блуэфилд (штат Западная Вирджиния, США). Учился в Университете Карнеги-Меллона по специальности инженера-химика, но, увлекшись математикой, перевелся на математический факультет. Получил диплом бакалавра математики и одновременно магистра математики.
Поступил в аспирантуру по математической специализации Принстонского университета, где защитил докторскую диссертацию на тему «Некооперативные игры» (1950). В следующем году ее опубликовали отдельной статьей в журнале «Анналы математики». Когда обучался на старших курсах университета, принимал участие в исследовательской работе фирмы «RAND Corp.», которая финансировала ряд его разведывательных проектов в области теории игр, математической экономики и общей теории рационального поведения в игровых ситуациях.
В 1951-1959 гг. Дж.-Ф. Нэш - преподаватель Массачусетского технологического института. Одновременно ведет научно-исследовательскую деятельность. Ему удалось решить классическую проблему, связанную с дифференциальной геометрией.
Из-за тяжелой болезни он в течение 20 лет не мог работать.
В 70-е годы болезнь отступила. Но продуктивные научные результаты высшей пробы ему не удавались.
Дж.-Ф. Нэш продолжает исследования по математике. В целом он опубликовал 21 научную работу, 16 из них увидели свет до 1959 г.
Он член Национальной академии наук США, Эконометрического общества и Американской академии искусств и наук.
В классической теории игр кооперативные и бескоалиционные игры трактуются по-разному. Дж.-Ф. Нэш первым указал на отличие между ними и определил кооперативные игры как игры, допускающие свободный обмен информацией и принудительные условия между игроками, а бескоалиционные - как такие, которые не допускают свободного обмена информацией и принудительных условий. Некооперативной является такая игра, когда кооперирование между игроками не допускается вообще. В статьях «Точки равновесия в играх с N-числом участников» и «Проблема заключения сделок» (1951) он математически точно вывел правила действий участников (игроков), которые выигрывают в соответствии с выбранной стратегией. Каждый из игроков старается снизить степень риска с помощью самой выгодной стратегии, то есть путем постоянного приспособления к поведению тех, кто тоже хочет достичь наиболее лучших результатов.
Досконально изучив разные игры, создав серию новых математических игр и наблюдая за действиями участников в разных игровых ситуациях, Дж.-Ф. Нэш стремился понять, как функционирует рынок, как компании принимают решения, связанные с риском, почему покупатели действуют так, а не иначе. Ведь в экономике, как и в игре, руководители фирм должны учитывать не только последние, но и предыдущие шаги конкурентов, а также ситуацию на всем экономическом (игровом, например, шахматном) поле и другие факторы.
Известно, что субъекты экономической жизни - активные ее участники, которые на рынке в условиях конкуренции идут на риск, и он должен быть оправдан. Поэтому каждый из них, как и игрок, должен иметь свою стратегию. Именно из этого исходил Дж.-Ф. Нэш, разрабатывая метод, который позже назвали «равновесием Неша».
Равновесие Неша - совокупность стратегий или действий, согласно которым каждый участник реализовывает оптимальную стратегию, предвидя действия соперников.
«Стратегию» как основное понятие теории игр Дж.-Ф. Нэш разъясняет на основе «игры с нулевой суммой» («симметричная игра»), когда каждый участник имеет определенное количество стратегий. Выигрыш каждого игрока зависит от выбранной им стратегии, а также от стратегии его соперников. На этой основе строится матрица для нахождения оптимальной стратегии, которая при многократном повторении игры обеспечивает определенному игроку максимально возможный средний выигрыш (или максимально возможный средний проигрыш). Поскольку этому игроку неизвестно, какую стратегию выберет противник, ему самому целесообразнее выбрать стратегию, рассчитанную на самое неблагоприятное для него поведение противника (принцип «Гарантированного результата»). Действуя осторожно и считая конкурента сильным, этот игрок выберет для каждой своей стратегии минимально возможный выигрыш. И таким образом из всех минимально выигрышных стратегий выберет такую, которая обеспечит ему максимальный из всех минимальных выигрышей («максимин»).
Его противник, наверное, рассуждает так же. Он найдет для себя наибольшие проигрыши во всех стратегиях этого игрока, а потом из этих максимальных проигрышей выберет минимальный («минимакс»). При равенстве максимина минимаксу решения игроков будут устойчивыми, а игра будет иметь равновесие. Устойчивость (равновесие) решений (стратегий) заключается в том, что обоим участникам игры будет невыгодно отходить от выбранных стратегий. Когда же максимин не равен минимаксу, то решения (стратегии) обоих игроков, если они хотя бы в какой-то мере угадали выбор стратегии противника, будут неустойчивыми, неравновесными.
Значит, равновесие Нэша - результат, в котором стратегия каждого из игроков является лучшей среди других стратегий, принятых остальными участниками игры. Это определение основывается на том, что каждый из игроков изменением собственной роли не может достичь наибольшей выгоды (максимизации функции полезности), если другие участники твердо придерживаются собственной линии поведения.
Свою «формулу равновесия» Дж.-Ф. Нэш усилил показателем оптимального объема информации. Он вывел его из анализа ситуаций с полным информированием игрока о своих противниках и с неполным информированием о них. Переведя этот постулат с математического языка на язык экономической жизни, ученый ввел (как важный информационный элемент знания условий «внешней среды») неуправляемые переменные рыночных отношений.
Появление в науке равновесия Дж.-Ф. Нэша открыло многочисленные исследования с целью приближения его к реальной экономической действительности. На усовершенствование равновесия Дж.-Ф. Нэша были направлены исследования многих ученых. Среди них Дж.-Ч. Харшани.
Харшани (Harsanyi) Джон-Чарльз (1920-2000) - американский экономист, лауреат Нобелевской премии (1994). Родился в г. Будапеште (Венгрия), закончил Лютеранскую гимназию.
Получил высшее медицинское образование. В 1947 г., защитив докторскую диссертацию, начал работать преподавателем университетского Института социологии. Из-за антимарксистских взглядов в 1948 г. вышел в отставку, а потом выехал в Австралию. Там работал на заводе, одновременно обучался в Сиднейском университете, где изучал английский язык и экономику. В 1953 г. получил степень магистра.
С 1954 г. он лектор экономики Брисбенского университета. Через два года Дж.-Ч. Харшани был отмечен Фондом Рокфеллера, что давало ему право в течение следующих двух лет писать докторскую диссертацию в Стэнфордском университете.
В 1958 г. Дж.-Ч. Харшани возвращается в Австралию. Однако, почувствовав определенную изолированность, поскольку в этой стране в то время теория игр фактически не была известна, переехал в США, где работал профессором экономики Детройтского университета. В 1964 г. он профессор Экономического центра Волтера Хааса при университете Беркли в штате Калифорния.
Первые научные работы Дж.-Ч. Харшани опубликовал в начале 50-х годов, посвятив их вопросам использования функции полезности Неймана-Моргенштерна в экономике благосостояния и в этике. Дж.-Ч. Харшани является автором многих работ по утилитарной этике, экономики благосостояния, а также в сфере, граничащей между экономикой и моральной философией. В работе «Рациональное поведение и переговорное равновесие в играх и социальных ситуациях» (1977) он обосновывает «общую теорию рационального поведения», охватывающую «теорию индивидуального решения», вопросы деловой этики и теорию игр. Среди его книг «Эссе по этике, социальному поведению и научному объяснению» (1976), «Работы по теории игр» (1982), «Общая теория выбора равновесия в играх» (1988, совместно с Р.-Дж.-Р. Селтеном), которая в 2001 г. издана на русском языке, «Рациональное взаимодействие» и др.
Дж.-Ч. Харшани - почетный доктор Северно-Западного и почетный профессор Калифорнийского университетов (США).
Предметом исследования Дж.-Ч. Харшани были сложные ситуации, которые случаются при наличии асимметричной информации. В игре с полной информацией все игроки знают преимущества других, а в игре с неполной информацией они нуждаются в этих знаниях.
Поскольку толкование равновесия Нэша базировалось на прогнозе, что игроки знают преимущества других, все методы были недоступны для анализа игр с неполной информацией, несмотря на то, что такие игры более полно отражают стратегические взаимосвязи в реальном мире.
Ситуацию радикально изменили исследования Дж.-Ч. Харшани («Игры с неполной информацией, сыгранные байсианскими игроками»). Ученый исходил из того, что каждый игрок является одним из нескольких «типов», а каждый тип отвечает набору возможных преимуществ для игрока и вероятно распределяет почти всех на типы игроков. Значит, каждый игрок в игре с неполной информацией выбирает стратегию одного из таких типов. С согласованным требованием в отношении возможности распределения игроков Дж.-Ч. Харшани показал, что для каждой игры с неполной информацией существует эквивалентная игра с полной информацией. То есть он трансформировал игру с неполной информацией в игру с несовершенной информацией. В таком случае игра может регулироваться стандартными моделями.
Примером игры с неполной информацией может быть ситуация, когда частные фирмы и финансовые рынки точно не знают преимуществ центрального банка в отношении дилеммы между инфляцией и безработицей. Соответственно неизвестна и банковская политика в отношении будущих процентных ставок. Взаимодействие между будущими ожиданиями и политикой центрального банка можно проанализировать с помощью методики, предложенной Дж.-Ч. Харшани. В самом простом виде банк может или ориентироваться на борьбу с инфляцией и, значит, готовиться к осуществлению ограничительной политики с высокими процентными показателями, или будет бороться с безработицей с помощью низких процентных показателей.
Равновесие Нэша доработал и усовершенствовал, в частности относительно игр с неполной информацией, Р.-Дж.-Р. Селтен.
Селтен (Selten) Рейнхард-Джустус-Реджинальд (род в 1930) - немецкий экономист, лауреат Нобелевской премии (1994). Родился в г. Бреслау (ныне г. Вроцлав, Польша). В 1951 г. закончил в г. Мелсунген среднюю школу. Уже здесь заинтересовался математикой, впервые узнал о теории игр. Учился на математическом факультете Университета во Франкфурте-на Майне, окончил его в 1957 г. в течение десяти лет
Р.-Дж.-Р. Селтен работал там ассистентом. Этот период его жизни был насыщен активной экспериментаторской работой. В 1959 г. защитил докторскую диссертацию по математике. На протяжении 1969-1972 гг. он профессор экономики Свободного университета в Западном Берлине. Потом работал в Билефельдском университете, в котором продолжил экспериментальные исследования теории игр.
С 1984 г. Р.-Дж.-Р. Селтен - профессор кафедры экономики Боннского университета имени Фридриха-Вильгельма. Выступив организатором научно-исследовательского года (с 1 октября 1987 года по 30 сентября 1988 года) по теории игр в поведенческих науках, он сумел собрать большую международную группу экономистов, биологов, математиков, политологов, психологов и философов. Их общая работа изложена
в 4-х книгах «Модели равновесия игры» (1991). Р.-Дж.-Р. Селтен - основатель теории некооперативных игр.
В 1995 г. Р.-Дж.-Р. Селтен избран вице-президентом Европейской экономической ассоциации, а в 1997 г. - ее президентом. Он член Американских экономической ассоциации и эконометрического общества, входит в состав многих редколлегий научных журналов, является почетным иностранным членом Американской академии искусств и наук, членом Национальной академии наук США, а также почетным доктором Билефельдского, Бреславского, Грацского университетов, Университета Франкфурта-на-Майне и др.
В статье «Модель олигополии с инерцией спроса» (1965)
Р.-Дж.-Р. Селтен разработал «чистую стратегию» с интуитивным выбором. Последовательно усложняя и уточняя отмеченное «равновесие» дополнительными условиями для предыдущих договоренностей об игре, ученый развивал ее с точки зрения динамики и приближал к условиям реальной жизни. Он на противоположных примерах доказал, что даже точки равновесия могут вызвать иррациональное поведение. По мнению ученого, только специальный класс точек равновесия (он их назвал «истинными», или «совершенными точками равновесия») обеспечивает на самом деле рациональное поведение в бескоалиционной игре.
Понятие «равновесие Нэша» распространяется на теорию динамичных игр. В этом случае каждый участник выбирает стратегию (то есть план действий для каждого периода игры), которая максимизирует его выигрыш при заданных стратегиях других игроков. Основная проблема с динамичным равновесием Неша заключается в том, что в последнем периоде игры игроки могут вести себя иррационально. В тот момент, когда становится ясно, что данный период игры последний, ранее выбранное действие может оказаться иррациональным (не максимизирует выгоду). Усовершенствованное понятие равновесия, предложенное в 1975 г.
Р.-Дж.-Р. Селтеном, позволяет избавиться от непредвиденных предпосылок о стратегиях. Это понятие «совершенного равновесия Нэша», или совершенного равновесия субигры, предусматривает, что стратегии, выбранные игроками, являются равновесными, по Нешу, в каждой субигре (то есть в каждой однопериодной игре основной игры) независимо от того, какие действия были выполнены раньше.
Внедрение равновесия Нэша стало важным шагом в микроэкономике. Его использование способствовало углубленному пониманию развития и функционирования рынков, обоснованию стратегических решений, принимающихся менеджерами разных фирм. Важным является вклад Р.-Дж.-Р. Селтена, который усовершенствовал концепцию равновесия Нэша для анализа стратегического взаимодействия в динамике и использовал это для анализа конкуренции при условии небольшого количества участников. А методология анализа игры с неполной информацией Дж.-Ч. Харшани обеспечила теоретическую основу для исследования экономики информации.
Равновесием Нэша можно пользоваться при изучении процесса ведения политических переговоров и экономического поведения, в частности на олигополистических рынках (форма организации рынка, где существует несколько производителей однородного или дифференцированного товара). Именно Р.-Дж.-Р. Селтен выявил возможности использования моделей в политике. Его сотрудничество с американским ученым-политиком А. Пелмутером позволило разработать так называемый сценарий пакетного метода - систематизированный способ создания простых моделей игры конкретных международных конфликтов, благодаря которым можно осуществлять экспертные проверки эмпирических фактов.
Таким образом, дополненная теория игр дала экономике мощный математический инструментарий, который помог экономистам освободиться от зависимости от формального математического аппарата физики. Равновесие Нэша - это гибкий метод анализа разнообразных конкретных проблем и ситуаций на рынках.
Теория игр в дальнейшем была использована в исследованиях Томаса Шеллинга и Роберта Оманна. Их интересовал вопрос: «Почему некоторые группы людей, организаций и стран преуспевают в сотрудничестве, в то время как другие страдают от постоянных конфликтов?»
Шеллинг (Schelling) Томас Кромби (род. в 1921) - американский экономист, лауреат Нобелевской премии 2005 г. «За расширение понимания проблем конфликта и кооперации с помощью анализа в рамках теории игр». Профессор Мэрилендского университета. Президент Американской экономической ассоциации в 1991 г. Лауреат премии Фрэнка Сейдмана (1977). Основные произведения: «Стратегия конфликта» (The Strategy of Conflict, 1960); «Микромотивы и макровыбор» (Micromotives and Macrobehavior, 1978); «Выбор и последствия» (Choice and Consequence, 1985).
Использовал теорию игр для принятия рациональных решений в условиях недостаточной информации о возможных последствиях, как базу для объединения и исследования общественных наук в своей книге «Стратегия конфликта» (The Strategy of Conflict), опубликованной в 50-е годы прошлого века в условиях гонки вооружений.
В своей книге Шеллинг показывает, например, что способность принять ответные меры может быть иногда более полезной, чем способность выдержать атаку, или что возможное неизвестное возмездие часто более эффективно, нежели известное неотвратимое возмездие.
В книге Шеллинга рассматривались возможности решения стратегических конфликтов и способы избежать войны, однако его выводы могли объяснить и широкий диапазон явлений в сфере экономики и конкурентоспособности предприятий.
Р. Ауманн в свою очередь, посвятил свои исследования изучению теории бесконечных повторяющихся игр или того, каким образом можно поддерживать определенные результаты в отношениях в течение долгого периода времени.
Ауманн (Aumann) Исраэль Роберт Джон (также Оман) (род. в 1930) - израильский математик, профессор Еврейского университета в Иерусалиме, лауреат Нобелевской премии по экономике 2005 года «За расширение понимания проблем конфликта и кооперации с помощью анализа в рамках теории игр».
В 1983 году Оман был награждён премией Харви. В 1994 году профессор Оман был награждён Государственной премией Израиля по экономике вместе с профессором Михаэлем Бруно.
Р. Оман возглавлял Общество теории игр, а в начале 1990-х являлся президентом Израильского союза математиков. Кроме того являлся ответственным редактором «Журнала Европейского математического общества». Ауманн также консультировал Агентство США по контролю за вооружениями и разоружению. Он занимался теорией игр и её приложениями около 40 лет. Основные произведения: «Почти строго конкурентные игры» (Almost Strictly Competitive Games, 1961); «Смешанные и поведенческие стратегии в бесконечно расширенных играх» (Mixed and Behavior Strategies in Infinite Extensive Games, 1964).
Теория игр - это наука о стратегии, она изучает, как различные соперничающие группы - бизнесмены или любые другие сообщества - могут сотрудничать с получением идеального результата.
Оман специализировался в «повторяющихся играх», анализируя развитие конфликта во времени. Исследования Ауманна базировались на идее о том, что сотрудничество во многих ситуациях легче установить в ходе долгосрочных стабильных отношений.
Теория Ауманна объясняет, почему более трудно достичь сотрудничества между большим количеством участников, учитывая насколько часты, продолжительны и надежны контакты между ними и насколько каждый участник может предвидеть действия других.
Исследования направлены на объяснение таких экономических конфликтов, как ценовые и торговые войны, раскрытие механизма переговоров в различных условиях - от требований о повышении заработной платы до заключения международных торговых соглашений.

Проявляет себя в реальности, дабы показать, что это понятие является не просто абстрактным термином, а обобщением реально существующей закономерности. Однако, несмотря на наглядность примера, на основании только его одного может показаться, что мы наткнулись на какой-то вырожденный случай. Поэтому имеет смысл рассмотреть и более общее описание данного правила.

Многие читатели, возможно, знакомы с равновесием Нэша по одному весьма распространённому его частному случаю - так называемой «дилемме заключённого». Его суть примерно в следующем.

В тюрьме находятся два заключённых, которых взяли с поличным по отдельности, но ещё подозревают в более тяжких преступлениях. Если участие докажут, то срок заключённых возрастёт до десяти лет. Сейчас же они отсиживают по году каждый. Следствие предлагает каждому из них пойти на сделку и дать показания против второго. В этом случае первому срок скостят до полугода, а второй сядет на десять. Однако заключённые понимают, что если они оговорят друг друга, то вряд ли их обоих пощадят - скорее добавят каждому ещё лет по пять.

Расклад можно отобразить при помощи следующей таблицы.

Легко видеть, что «зелёные» варианты (1, 2) и (2, 1) являются симметричными, в двух же других положение заключённых будет идентичным. Поэтому можно рассмотреть логику ситуации с точки зрения только одного из заключённых - для второго она будет такой же.

Заключённый, разумеется, хочет наименьшего срока для себя. Но если он будет хранить молчание, то, возможно, его коллега даст против него показания, чем повысит ему срок до десяти лет. Если бы не обещанное снижение срока, то можно было бы тешить себя мыслью «а зачем мне это?», но соблазн снизить срок слишком вели́к. Кроме того, второй заключённый, как понимает первый, будет подозревать его, первого, в том, что он даст показания против второго и повысит тем самым ему срок.

«Обидно будет оказаться крайним и загреметь на десять лет», - думает первый. Но «и второй наверняка думает так же, и так же подозревает меня, - понимает он, - а потому шансов, что коллега меня не заложит, очень мало. Выходит, надо давать показания: если второй каким-то чудом промолчит, то будет полгода, проговорится - пять. Ну хоть не десять, которые я неизбежно получу из-за разоткровенничавшегося со следствием моего подельника!».

«Оранжевый» вариант (1, 1) является удобоваримым для обоих и в каком-то смысле это оптимум в данной ситуации. Однако у каждого есть ещё лучший вариант - соответствующий «зелёный» (1, 2) или (2, 1). В результате чего на деле будет реализован «красный» вариант (2, 2).

Можно сказать, что для каждого из заключённых он не так плох: всего пять лет против десяти в «зелёном» варианте в пользу подельника. Однако представим, что в «красном» варианте обоим дадут по десять. Логика в данном случае чуть-чуть поменяется: «если я его сдам, то хотя бы есть шанс отвертеться от десяти лет, а если промолчу - шансов нет, он меня наверняка заложит по тем же соображениям». Однако тут система подталкивает заключённых выбрать наихудший вариант из возможных. Действуя, что характерно, строго ради своей выгоды.

Рассмотрим теперь ещё одну ситуацию. Есть две фирмы - А и Б. Каждая из них может воспользоваться стратегией - Икс или Игрек. Однако на результаты оказывает влияние не только стратегия, выбранная самой фирмой, но и стратегия второй фирмы тоже. Выигрыш или проигрыш каждой из фирм мы представим в виде следующей таблицы.

Я специально для повышения накала страстей подобрал числа так, чтобы убыточное для обеих фирм состояние лишь незначительно отличалось бы от «соседних» с ним: тем удивительнее, что будет реализовано именно оно. Фирмы, действуя строго в своих интересах, с большой вероятностью захотят получить тысячу рублей вместо ста и тем самым не получат ничего, а наоборот, даже утратят. Переход же одной из фирм на стратегию Икс ещё сильнее ухудшит её положение - другая фирма будет обогащаться, а вторая терять ещё больше, хотя и незначительно больше.

Запишем вышеприведённые матрицы в более общем виде, абстрагировавшись от «фирм», «заключённых», «сроков» и «рублей». Положим, что у нас просто есть два игрока А и Б, играющие в некоторую игру, где на каждом ходе можно совершить один из двух ходов - Икс или Игрек. Выигрышем являются просто некие «баллы», наибольшее число которых каждый игрок и стремится набрать.

А делает ход Икс А делает ход Игрек
Б делает ход Икс А: a 0
Б: b 0
А: a 1 > a 0
Б: b 1 < b 3
Б делает ход Игрек А: a 2 < a 3
Б: b 2 > b 0
А: b 3
Б: a 3

Правила игры, представленные данной матрицей, будут «подталкивать» игроков к реализации «красного» варианта (2, 2), даже если выигрыши игроков в этом случае существенно меньше, чем во всех остальных вариантах. Правда, в зависимости от соотношения выигрышей (которые могут быть в том числе отрицательными - то есть проигрышами), обозначенных буквами «a» и «b» с индексами, частота реализации каждого из вариантов будет разной.

В частности, на выбор может влиять среднее арифметическое выигрышей при выборе каждой из стратегий, а также предположительная вероятность, с которой игрок сделает тот или иной ход (которая, кстати, может быть аппроксимирована частотой ходов, сделанных в предыдущих раундах). Так, в простейшем случае игрок А для оценки хода Икс складывает a 0 и a 2 и делит результат на два, полагая выбор хода со стороны Б равновероятным. То же самое он проделывает для хода Игрек - складывает a 1 с a 3 , после чего делит результат на два - и сравнивает результаты. В более сложном случае игрок считает сумму a 0 *p x + a 2 *p y , где p x и p y - вероятности ходов Икс и Игрек, сделанных игроком Б. Результат сравнивается с a 1 *p x + a 3 *p y .

Можно было бы, конечно, снова поделить результат на два, но поскольку деление на два имеет место быть для обоих вариантов хода, для сравнения величин эта операция необязательна, как, впрочем, и в случае «равновероятных ходов».

Также игрок может ориентироваться на сами величины. Например, если один из ходов означает вероятный проигрыш - особенно крупный, такой, какой игрок не может себе позволить, - игрок, не исключено, будет выбирать другой ход, даже если предположительный выигрыш при другом ходе в среднем ниже, но зато в обоих случаях положительный.

Наконец, надо помнить, что люди часто, скажем так, «помнят о другом игроке». Если второй игрок - конкурент или даже враг, то, возможно, будет иметь место тенденция выбирать такой ход, который навредит другому игроку, даже если первый игрок из-за этого выиграет мало, и даже, не исключено, проиграет. Если второй игрок - друг, то чаще будет выбираться ход, позволяющий чуть-чуть выиграть и ему тоже - в том случае, если «игра» - это не заранее заявленное соревнование, а какой-то процесс из реальной жизни. Возможности мести и поблажек, разумеется, зависят от соотношений в матрице - при некоторых из них скорее забудут, что соперник - твой друг, чем начнут ему слегка подыгрывать.

Иными словами, рассматриваемый нами принцип отображает именно что тенденцию, а не детерминированность. Чем сильнее соотношения значений выигрышей и проигрышей подобны фигурировавшим в «дилемме заключённого», тем чаще и быстрее система будет подводить игроков к «наихудшему» варианту и тем «более наихудшим» будет этот вариант.

Есть как бы «невидимая рука рынка», которая как бы невидимо подталкивает игроков… ну, вы знаете. Точнее, нет, может быть, и не знаете. В классическом варианте «рука рынка» как бы подталкивает куда всем надо, а тут она толкает совсем не туда. Не во всеобщее благо, а в перманентный кризис, которого при иных раскладах можно было бы избежать, что нам иллюстрирует и «дилемма заключённого», и гипотетический пример с конкуренцией фирм, и реальный пример с неизбежным завышением сроков разработки софта, о котором речь шла в предыдущей статье.

Рынок толкает игроков к равновесию Нэша, которое сколь угодно далеко может отстоять от их общего и личного блага.

В данном случае мы рассматривали только двух игроков и игру с двумя ходами, однако возможно и более широкое обобщение, которое как раз и является формулировкой равновесия Нэша:

Если в некоторой игре с произвольными количеством игроков и матрицей выигрышей существует такое состояние, что при выборе не соответствующего ему хода любым из игроков в отдельности его личный выигрыш уменьшится, то это состояние окажется «равновесным» для данной игры.

Кроме того, в ряде случаев ходы игроков будут иметь тенденцию стремиться к этому состоянию, даже если в этой игре есть другие состояния, в рамках которых выигрыш игроков в целом и/или по отдельности выше.

Приводить примеры такого общего случая способом, подобным ранее использованному, ощутимо тяжелее, поскольку добавление каждого игрока будет добавлять ещё одно измерение к матрице выигрышей. Однако об этом - позже.

Теория игр – наука, исследующая математическими методами поведение участников в вероятных ситуациях, связанных с принятием решений. Предметом этой теории являются игровые ситуации с заранее установленными правилами. В ходе игры возможны различные совместные действия – коалиции игроков, конфликты…

Часто отмечают, что в действительности олигополия - это игра характеров - игра, в которой так же, как в шахматах или в покере, каждый игрок должен предугадать действия соперника - его блеф, контрдействия, контрблеф - настолько, насколько это возможно. Поэтому экономисты, занимающиеся теорией олигополии, были восхищены появлением в 1944 году объемистой и высоко математезированной книги под названием “Теории игр и экономическое поведение”.

Стратегия игроков определяется целевой функцией, которая показывает выигрыш или проигрыш участника. Формы этих игр многообразны. Наиболее простая разновидность – игра с двумя участниками. Если в игре участвуют не менее трёх игроков, возможно образование коалиций, что усложняет анализ. С точки зрения платёжной суммы игры делятся на две группы – с нулевой и ненулевой суммами. Игры с нулевой суммой называют так же антагонистическими: выигрыш одних в точности равен проигрышу других, а общая сумма выигрыша равна 0. По характеру предварительной договорённости игры делятся на кооперативные и некооперативные.

Наиболее известный пример некооперативной игры с ненулевой суммой – “дилемма заключённого”.

Итак. С поличным поймали 2х воров, которым предъявлено обвинение в ряде краж. Перед каждым из них встаёт дилемма – признаваться ли в старых (недоказанных) кражах или нет. Если признается только 1 из воров, то признавшийся получает минимальный срок заключения – 1 год, а другой максимальный – 10 лет. Если оба вора одновременно сознаются, то оба получать небольшое снисхождение – 6 лет, если же оба не признаются, то понесут наказание, только за последнюю кражу – 3 года. Заключённые сидят в разных камерах и не могут договориться друг с другом. Перед нам игра с некооперативная с ненулевой (отрицательной) суммой. Характерной чертой этой игры является невыгодность для обоих участников руководствоваться своими частными интересами. “дилемма заключённого” наглядно показывает особенности олигополистического ценообразования.

3.1. Равновесие Нэша

(Названное в честь Джона Форбса Нэша) в теории игр - тип решений игры двух и более игроков, в котором ни один участник не может увеличить выигрыш, изменив своё решение в одностороннем порядке, когда другие участники не меняют решения. Такая совокупность стратегий выбранных участниками и их выигрыши называются равновесием Нэша.

Концепция равновесия Нэша (РН) не совсем точно придумана Нэшем, Антуан Августин Курно показал, как найти то, что мы называем равновесием Нэша в игре Курно. Соответственно, некоторые авторы называют его равновесием Нэша-Курно. Однако Нэш первым показал в своей диссертации Некооперативные игры (1950), что равновесия Нэша должны существовать для всех конечных игр с любым числом игроков. До Нэша это было доказано только для игр с 2 участниками с нулевой суммой Джоном фон Нейманом и Оскаром Моргернштерном (1947).

Формальное определение.

Допустим, - игра n лиц в нормальной форме, где - набор чистых стратегий, а - набор выигрышей. Когда каждый игрок выбирает стратегию в профиле стратегий игрок получает выигрыш . метьте, что выигрыш зависит от всего профиля стратегий: не только от стратегии, выбранной самим игроком , но и от чужих стратегий. Профиль стратегий является равновесием по Нэшу, если изменение своей стратегии не выгодно ни одному игроку, то есть для любого :

Игра может иметь равновесие Нэша в чистых стратегиях или в смешанных (то есть при выборе чистой стратегии стохастически с фиксированной частотой). Нэш доказал, что если разрешить смешанные стратегии, тогда в каждой игре n игроков будет хотя бы одно равновесие Нэша.