Найти переменные в теории игр. Матричные игры: примеры решения задач

Возникшая в сороковых годах XX века математическая теория игр чаще всего применяется именно в экономике. Но как с помощью концепции игр смоделировать поведение людей в обществе? Зачем экономисты изучают, в какой угол чаще бьют пенальти футболисты, и как выиграть в «Камень, ножницы, бумагу» в своей лекции рассказал старший преподаватель кафедры микроэкономического анализа ВШЭ Данил Федоровых.

Джон Нэш и блондинка в баре

Игра - это любая ситуация, в которой прибыль агента зависит не только от его собственных действий, но и от поведения остальных участников. Если вы раскладываете дома пасьянс, с точки зрения экономиста и теории игр, это не игра. Она подразумевает обязательное наличие столкновения интересов.

В фильме «Игры разума» о Джоне Нэше, нобелевском лауреате по экономике, есть сцена с блондинкой в баре. В ней показана идея, за которую ученый и получил премию, - это идея равновесия по Нэшу, которое он сам называл управляющей динамикой.

Игра - любая ситуация, в которой выигрыши агентов зависят друг от друга.

Стратегия - описание действий игрока во всех возможных ситуациях.

Исход - комбинация выбранных стратегий.

Итак, с точки зрения теории, игроками в этой ситуации являются только мужчины, то есть те, кто принимает решение. Их предпочтения просты: блондинка лучше брюнетки, а брюнетка лучше, чем ничего. Действовать можно двумя способами: пойти к блондинке или к «своей» брюнетке. Игра состоит из единственного хода, решения принимаются одновременно (то есть нельзя посмотреть, куда пошли остальные, и после походить самому). Если какая-то девушка отвергает мужчину, игра заканчивается: невозможно вернуться к ней или выбрать другую.

Каков вероятный финал этой игровой ситуации? То есть какова ее устойчивая конфигурация, из которой все поймут, что сделали лучший выбор? Во-первых, как правильно замечает Нэш, если все пойдут к блондинке, ничем хорошим это не кончится. Поэтому дальше ученый предполагает, что всем нужно пойти к брюнеткам. Но тогда, если известно, что все пойдут к брюнеткам, ему следует идти к блондинке, ведь она лучше.

В этом и заключается настоящее равновесие - исход, в котором один идет к блондинке, а остальные - к брюнеткам. Может показаться, что это несправедливо. Но в ситуации равновесия никто не может пожалеть о своем выборе: те, кто пойдут к брюнеткам, понимают, что от блондинки они все равно ничего б не получили. Таким образом, равновесие по Нэшу - это конфигурация, при которой никто по отдельности не хочет менять выбранную всеми стратегию. То есть, рефлексируя в конце игры, каждый участник понимает, что даже зная, как походят другие, он сделал бы то же самое. По-другому можно назвать это исходом, где каждый участник оптимальным образом отвечает на действия остальных.

«Камень, ножницы, бумага»

Рассмотрим другие игры на предмет равновесия. Например, в «Камне, ножницах, бумаге» нет равновесия по Нэшу: во всех ее вероятных исходах нет варианта, в котором оба участника были бы довольны своим выбором. Тем не менее, существует Чемпионат мира и World Rock Paper Scissors Society, собирающее игровую статистику. Очевидно, что вы можете повысить свои шансы на победу, если будете что-то знать об обычном поведении людей в этой игре.

Чистая стратегия в игре - это такая стратегия, при которой человек всегда играет одинаково, выбирая одни и те же ходы.

По данным World RPS Society, камень является самым часто выбираемым ходом (37,8%). Бумагу ставят 32,6%, ножницы - 29,6%. Теперь вы знаете, что нужно выбирать бумагу. Однако, если вы играете с тем, кто тоже это знает, вам уже не надо выбирать бумагу, потому что от вас ожидается то же самое. Есть знаменитый случай: в 2005 году два аукционных дома Sotheby“s и Christie”s решали, кому достанется очень крупный лот - коллекция Пикассо и Ван Гога со стартовой ценой в 20 миллионов долларов. Собственник предложил им сыграть в «Камень, ножницы, бумагу», и представители домов отправили ему свои варианты по электронной почте. Sotheby“s, как они позже рассказали, особо не задумываясь, выбрали бумагу. Выиграл Christie”s. Принимая решение, они обратились к эксперту - 11-летней дочери одного из топ-менеджеров. Она сказала: «Камень кажется самым сильным, поэтому большинство людей его выбирают. Но если мы играем не с совсем глупым новичком, он камень не выбросит, будет ожидать, что это сделаем мы, и сам выбросит бумагу. Но мы будем думать на ход вперед, и выбросим ножницы».

Таким образом, вы можете думать на ход вперед, но это не обязательно приведет вас к победе, ведь вы можете не знать о компетенции вашего соперника. Поэтому иногда вместо чистых стратегий правильнее выбирать смешанные, то есть принимать решения случайно. Так, в «Камне, ножницах, бумаге» равновесие, которое мы до этого не нашли, находится как раз в смешанных стратегиях: выбирать каждый из трех вариантов хода с вероятностью в одну третью. Если вы будете выбирать камень чаще, соперник скорректирует свой выбор. Зная это, вы скорректируете свой, и равновесия не выйдет. Но никто из вас не начнет менять поведение, если каждый просто будет выбирать камень, ножницы или бумагу с одинаковой вероятностью. Все потому что в смешанных стратегиях по предыдущим действиям невозможно предугадать ваш следующий ход.

Смешанные стратегии и спорт

Более серьезных примеров смешанных стратегий очень много. Например, куда подавать в теннисе или бить/принимать пенальти в футболе. Если вы ничего не знаете о вашем сопернике или просто постоянно играете против разных, лучшей стратегией будет поступать более-менее случайно. Профессор Лондонской школы экономики Игнасио Паласиос-Уэрта в 2003 году опубликовал в American Economic Review работу, суть которой заключалась в поиске равновесия по Нэшу в смешанных стратегиях. Предметом исследования Паласиос-Уэрта выбрал футбол и в связи с этим просмотрел более 1400 ударов пенальти. Разумеется, в спорте все устроено хитрее, чем в «Камне, ножницах, бумаге»: там учитывается сильная нога спортсмена, попадания в разные углы при ударе со всей силы и тому подобное. Равновесие по Нэшу здесь заключается в расчете вариантов, то есть, к примеру, определении углов ворот, в которые надо бить, чтобы выиграть с большей вероятностью, зная свои слабые и сильные стороны. Статистика по каждому футболисту и найденное в ней равновесие в смешанных стратегиях, показало, что футболисты поступают примерно так, как предсказывают экономисты. Вряд ли стоит утверждать, что люди, которые бьют пенальти, читали учебники по теории игр и занимались довольно непростой математикой. Скорее всего, есть разные способы научиться оптимально себя вести: можно быть гениальным футболистом, и чувствовать, что делать, а можно - экономистом, и искать равновесие в смешанных стратегиях.

В 2008 году профессор Игнасио Паласиос-Уэрта познакомился с Авраамом Грантом, тренером «Челси», который играл тогда в финале Лиги чемпионов в Москве. Ученый написал записку тренеру с рекомендациями по серии пенальти, которые касались поведения вратаря соперника - Эдвина ван дер Сара из «Манчестер Юнайтед». Например, по статистике, он почти всегда отбивал удары на среднем уровне и чаще бросался в естественную для пробивающего пенальти сторону. Как мы определили выше, правильнее все-таки рандомизировать свое поведение с учетом знаний о сопернике. Когда счет по пенальти был уже 6:5, Николя Анелька, нападающий «Челси», должен был забивать. Показывая перед ударом в правый угол, ван дер Сар будто спросил у Анелька, не собирается ли он бить туда.

Суть в том, что все предыдущие удары «Челси» были нанесены именно в правый от пробивающего угол. Мы не знаем точно почему, может быть, из-за консультации экономиста бить в неестественную для них сторону, ведь по статистике к этому менее готов ван дер Сар. Большинство футболистов «Челси» были правшами: ударяя в неестественный для себя правый угол, все они, кроме Терри, забивали. Видимо, стратегия была в том, чтобы Анелька пробил туда же. Но ван дер Сар, похоже, это понял. Он поступил гениально: показал в левый угол дескать «туда собрался бить?», от чего Анелька, наверное, пришел в ужас, ведь его разгадали. В последний момент он принял решение действовать по-другому, ударил в естественную для себя сторону, что и было нужно ван дер Сару, который взял этот удар и обеспечил «Манчестеру» победу. Эта ситуация учит случайному выбору, ведь в ином случае ваше решение может быть просчитано, и вы проиграете.

«Дилемма заключенного»

Наверное, самая известная игра, с которой начинаются университетские курсы о теории игр, - это «Дилемма заключенного». По легенде двух подозреваемых в серьезном преступлении поймали и заперли в разные камеры. Есть доказательство, что они хранили оружие, и это позволяет посадить их на какой-то небольшой срок. Однако доказательств, что они совершили это страшное преступление, нет. Каждому по отдельности следователь рассказывает об условиях игры. Если оба преступника сознаются, оба же сядут на три года. Если сознается один, а подельник будет молчать, сознавшийся выйдет сразу, а второго посадят на пять лет. Если, наоборот, первый не сознается, а второй его сдаст, первый сядет на пять лет, а второй выйдет сразу. Если же не сознается никто, оба сядут на год за хранение оружия.

Равновесие по Нэшу здесь заключается в первой комбинации, когда оба подозреваемых не молчат и оба садятся на три года. Рассуждения каждого таковы: «если я буду говорить, я сяду на три года, если молчать - на пять лет. Если второй будет молчать, мне тоже лучше говорить: не сесть лучше, чем сесть на год». Это доминирующая стратегия: говорить выгодно, независимо от того, что делает другой. Однако в ней есть проблема - наличие варианта получше, ведь сесть на три года хуже, чем сесть на год (если рассматривать историю только с точки зрения участников и не учитывать вопросы морали). Но сесть на год невозможно, ведь, как мы поняли выше, молчать обоим преступникам невыгодно.

Улучшение по Парето

Есть известная метафора про невидимую руку рынка, принадлежащая Адаму Смиту. Он говорил, что если мясник будет сам для себя стараться заработать деньги, от этого будет лучше всем: он сделает вкусное мясо, которое купит булочник на деньги от продажи булок, которые он, в свою очередь, тоже должен будет делать вкусными, чтобы они продавались. Но оказывается, эта невидимая рука не всегда работает, и таких ситуаций, когда каждый действует за себя, а всем плохо, очень много.

Поэтому иногда экономисты и специалисты по теории игр думают не об оптимальном поведении каждого игрока, то есть не о равновесии по Нэшу, а об исходе, при котором будет лучше всему обществу (в «Дилемме» общество состоит из двух преступников). С этой точки зрения, исход эффективен, когда в нем нет улучшения по Парето, то есть невозможно сделать кому-то лучше, не сделав при этом хуже другим. Если люди просто меняются товарами и услугами, это Парето-улучшение: они делают это добровольно, и вряд ли кому-то от этого плохо. Но иногда, если просто дать людям взаимодействовать и даже не вмешиваться, то, к чему они придут, не будет оптимальным по Парето. Это и происходит в «Дилемме заключенного». В ней, если мы даем каждому действовать так, как им выгодно, оказывается, что всем от этого плохо. Всем было бы лучше, если бы каждый действовал не оптимально для себя, то есть молчал.

Трагедия общины

«Дилемма заключенного» - это игрушечная стилизованная история. Вряд ли вы ожидаете оказаться в подобной ситуации, но похожие эффекты есть везде вокруг нас. Рассмотрим «Дилемму» с большим количеством игроков, ее иногда называют трагедией общины. Например, на дорогах - пробки, и я решаю, как ехать на работу: на машине или на автобусе. Это же делают остальные. Если я поеду на машине, и все решат сделать то же самое, будет пробка, но мы доедем с комфортом. Если я поеду на автобусе, пробка-то все равно будет, но ехать я буду некомфортно и не особо быстрее, поэтому такой исход еще хуже. Если же в среднем все ездят на автобусе, то я, сделав то же самое, довольно быстро доеду без пробки. Но если при таких условиях поехать на машине, я тоже доеду быстро, но еще и с комфортом. Итак, наличие пробки не зависит от моих действий. Равновесие по Нэшу здесь - в ситуации, когда все выбирают ехать на машине. Что бы не делали остальные, мне лучше выбрать машину, потому что будет там пробка или нет, неизвестно, но я в любом случае доеду с комфортом. Это доминирующая стратегия, поэтому в итоге все едут на машине, и мы имеем то, что имеем. Задача государства - сделать поездку на автобусе лучшим вариантом хотя бы для некоторых, поэтому появляются платные въезды в центр, парковки и так далее.

Другая классическая история - рациональное незнание избирателя. Представьте, что вы не знаете исход выборов заранее. Вы можете изучить программу всех кандидатов, послушать дебаты и после проголосовать за самого лучшего. Вторая стратегия - прийти на участок и проголосовать как попало или за того, кого чаще показывали по телевизору. Какое поведение оптимально, если от моего голоса никогда не зависит, кто выиграет (а в 140-миллионной стране один голос никогда ничего не решит)? Конечно, я хочу, чтобы в стране был хороший президент, но я же знаю, что никто больше не будет изучать программы кандидатов внимательно. Поэтому не тратить на это время - доминирующая стратегия поведения.

Когда вас призывают прийти на субботник, ни от кого в отдельности не будет зависеть, станет двор чистым или нет: если я выйду один, я не смогу убрать все, или, если выйдут все, то не выйду я, потому что все и без меня уберут. Другой пример - перевозка грузов в Китае, о котором я узнал в замечательной книге Стивена Ландсбурга «Экономист на диване». 100-150 лет назад в Китае был распространен способ перевозки грузов: все складывалось в большой кузов, который тащили семь человек. Заказчики платили, если груз доставлялся вовремя. Представьте, что вы - один из этих шести. Вы можете прилагать усилия, и тянуть изо всех сил, и если все будут так делать, груз доедет вовремя. Если кто-нибудь один так делать не будет, все тоже доедут вовремя. Каждый думает: «Если все остальные тянут как следует, зачем это делать мне, а если все остальные тянут не со всей силы, то я ничего не смогу изменить». В итоге, со временем доставки все было очень плохо, и сами грузчики нашли выход: они стали нанимать седьмого и платить ему деньги за то, чтобы он стегал лентяев плетью. Само наличие такого человека заставляло всех работать изо всех сил, потому что иначе все попадали в плохое равновесие, из которого никому в отдельности с выгодой не выйти.

Такой же пример можно наблюдать в природе. Дерево, растущее в саду, отличается от того, что растет в лесу, своей кроной. В первом случае она окружает весь ствол, во втором - находится только вверху. В лесу это является равновесием по Нэшу. Если бы все деревья договорились и выросли одинаково, они бы поровну распределили количество фотонов, и всем было бы лучше. Но никому в отдельности так делать невыгодно. Поэтому каждое дерево хочет вырасти немного выше окружающих.

Сommitment device

Во многих ситуациях одному из участников игры может понадобиться инструмент, который убедит остальных, что тот не блефует. Он называется commitment device. Например, закон некоторых стран запрещает платить выкуп похитителям людей, чтобы снизить мотивацию преступников. Однако это законодательство часто не работает. Если вашего родственника захватили, и у вас есть возможность спасти его, обойдя закон, вы это сделаете. Представим ситуацию, что закон можно обойти, но родственники оказались бедными и выкуп им платить нечем. У преступника в этой ситуации два пути: отпустить или убить жертву. Убивать он не любит, но тюрьму он не любит больше. Отпущенный пострадавший, в свою очередь, может либо дать показания, чтобы похититель был наказан, либо молчать. Самый лучший исход для преступника: отпустить жертву, которая его не сдаст. Жертва же хочет быть отпущенной и дать показания.

Равновесие здесь в том, что террорист не хочет быть пойманным, а значит, жертва погибает. Но это не равновесие по Парето, потому что существует вариант, при котором всем лучше - жертва на свободе хранит молчание. Но для этого надо сделать так, чтобы молчать ей было выгодно. Где-то я прочитал вариант, когда она может попросить террориста устроить эротическую фотосессию. Если преступника посадят, его подельники выложат фотографии в интернет. Теперь, если похититель останется на свободе - это плохо, но фотографии в открытом доступе - еще хуже, поэтому получается равновесие. Для жертвы это способ остаться в живых.

Другие примеры игр:

Модель Бертрана

Раз уж мы говорим об экономике, рассмотрим экономический пример. В модели Бертрана два магазина продают один и тот же товар, покупая его у производителя по одной цене. Если цены в магазинах одинаковы, то примерно одинакова и их прибыль, ведь тогда покупатели выбирают магазин случайно. Единственное равновесие по Нэшу здесь - продавать товар по себестоимости. Но магазины хотят зарабатывать. Поэтому если один поставит цену 10 рублей, второй снизит ее на копейку, увеличив тем самым свою выручку вдвое, так как к нему уйдут все покупатели. Поэтому участникам рынка выгодно снижать цены, распределяя тем самым прибыль между собой.

Разъезд на узкой дороге

Рассмотрим примеры выбора между двумя возможными равновесиями. Представьте, что Петя и Маша едут навстречу друг другу по узкой дороге. Дорога настолько узкая, что им обоим нужно съехать на обочину. Если они решат повернуть налево или направо от себя, они просто разъедутся. Если же один повернет направо, а другой налево от себя, или наоборот, случится авария. Как выбрать, куда съехать? Чтобы помогать искать равновесие в подобных играх, существуют, например, правила дорожного движения. В России каждому нужно повернуть направо.

В забаве Chiken, когда два человека едут на большой скорости навстречу друг другу, тоже есть два равновесия. Если оба сворачивают на обочину, возникает ситуация, которая называется Chiken out, если оба не сворачивают, то погибают в страшной аварии. Если я знаю, что мой соперник едет прямо, мне выгодно съехать, чтобы выжить. Если я знаю, что мой соперник съедет, то мне выгодно ехать прямо, чтобы после получить 100 долларов. Сложно предсказать, что случится на самом деле, однако, у каждого из игроков есть свой метод выиграть. Представьте, что я закрепил руль так, что его нельзя повернуть, и показал это своему сопернику. Зная, что у меня нет выбора, соперник отскочит.

QWERTY-эффект

Иногда бывает очень сложно перейти из одного равновесия в другое, даже если оно означает пользу для всех. Раскладка QWERTY была создана, чтобы замедлить скорость печати. Поскольку если бы все печатали слишком быстро, головки печатной машинки, которые бьют по бумаге, цеплялись бы друг за друга. Поэтому Кристофер Шоулз разместил часто стоящие рядом буквы на максимально далеком расстоянии. Если вы зайдете в настройки клавиатуры на своем компьютере, вы сможете выбрать там раскладку Dvorak и печатать гораздо быстрее, так как сейчас нет проблемы аналоговых печатных машин. Дворак рассчитывал, что мир перейдет на его клавиатуру, но мы по-прежнему живем с QWERTY. Конечно, если бы мы перешли на раскладку Дворака, будущее поколение было бы нам благодарно. Все мы приложили бы усилия и переучились, в результате вышло бы равновесие, в котором все печатают быстро. Сейчас мы тоже в равновесии - в плохом. Но никому не выгодно быть единственным, кто переучится, потому что за любым компьютером, кроме личного, работать будет неудобно.

Теория игр как раздел исследования операций – это теория математических моделей принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы. Теория игр исследует оптимальные стратегии в ситуациях игрового характера. К ним относятся ситуации, связанные с выбором наивыгоднейших производственных решений системы научных и хозяйственных экспериментов, организацией статистического контроля, хозяйственных взаимоотношений между предприятиями промышленности и других отраслей. Формализуя конфликтные ситуации математически, их можно представить как игру двух, трех и т.д. игроков, каждый из которых преследует цель максимизации своей выгоды, своего выигрыша за счет другого.

Раздел "Теория игр" представлен тремя онлайн-калькуляторами :

  1. Оптимальные стратегии игроков . В таких задачах задана платежная матрица. Требуется найти чистые или смешанные стратегии игроков и, цену игры . Для решения необходимо указать размерность матрицы и метод решения. В сервисе реализованы следующие методы решения игры двух игроков:
    1. Минимакс . Если необходимо найти чистую стратегию игроков или ответить на вопрос о седловой точке игры, выберите этот метод решения.
    2. Симплекс-метод . Используется для решения игры в смешанных стратегиях методами линейного программирования.
    3. Графический метод . Используется для решения игры в смешанных стратегиях. Если есть седловая точка, решение прекращается. Пример: По заданной платежной матрице найти оптимальные смешанные стратегии игроков и цену игры, используя графический метод решения игры.
    4. Итерационный метод Брауна-Робинсона . Итеративный метод применяется тогда, когда не применим графический метод и когда практически не приминимы алгебраический и матричный методы. Этот метод дает приближенное значение цены игры, причем истинное значение можно получить с любой нужной степенью точности. Этот метод недостаточен для нахождения оптимальных стратегий, но он позволяет отслеживать динамику пошаговой игры и определить цену игры для каждого из игроков на каждом шаге.
    Например, задание может звучать как "указать оптимальные стратегии игроков для игры, заданной платежной матрицей" .
    Во всех методах применяется проверка на доминирующие строки и столбцы.
  2. Биматричная игра . Обычно в такой игре задают две матрицы одинакового размера выигрышей первого и второго игроков. Строки этих матриц соответствуют стратегиям первого игрока, а столбцы матриц – стратегиям второго игрока. При этом в первой матрице представлены выигрыши первого игрока, а во второй матрице – выигрыши второго.
  3. Игры с природой . Используется, когда необходимо выбрать управленческое решение по критериям Максимакса, Байеса, Лапласа, Вальда , Сэвиджа , Гурвица .
    Для критерия Байеса необходимо также будет ввести вероятности наступления событий. Если они не заданы, оставьте значения по умолчанию (будут равнозначные события).
    Для критерия Гурвица укажите уровень оптимизма λ . Если в условиях данный параметр не задан можно использовать значения 0, 0.5 и 1 .

Во многих задачах требуется находить решение средствами ЭВМ. Одним из инструментов служат вышеприведенные сервисы и функции

Лекция 11: Теория игр и принятие решений

Предмет и задачи теории игр

Классическими задачами системного анализа являются игровые задачи принятия решений в условиях риска и неопределенности.

Неопределенными могут быть как цели операции, условия выполнения операции, так и сознательные действия противников или других лиц, от которых зависит успех операции.

Разработаны специальные математические методы, предназначенные для обоснования решений в условиях риска и неопределенности. В некоторых, наиболее простых случаях эти методы дают возможность фактически найти и выбрать оптимальное решение. В более сложных случаях эти методы доставляют вспомогательный материал, позволяющий глубже разобраться в сложной ситуации и оценить каждое из возможных решений с различных точек зрения, и принять решений с учетом его возможных последствий. Одним из важных условий принятия решений в этом случае является минимизация риска.

При решении ряда практических задач исследования операций (в области экологии, обеспечения безопасности жизнедеятельности и т. д.) приходится анализировать ситуации, в которых сталкиваются две (или более) враждующие стороны, преследующие различные цели, причем результат любого мероприятия каждой из сторон зависит от того, какой образ действий выберет противник. Такие ситуации мы можно отнести к конфликтным ситуациям .

Теория игр является математической теорией конфликтных ситуаций, при помощи которой можно выработать рекомендации по рациональному образу действий участников конфликта. Чтобы сделать возможным математический анализ ситуации без учета второстепенных факторов, строят упрощенную, схематизированную модель ситуации, которая называется игрой . игра ведется по вполне определенным правилам, под которыми понимается система условий, регламентирующая возможные варианты действий игроков; объем информации каждой стороны о поведении другой; результат игры, к которому приводит каждая данная совокупность ходов.

Результат игры (выигрыш или проигрыш) вообще не всегда имеет количественное выражение, но обычно можно, хотя бы условно, выразить его числовым значением.

Ход — выбор одного из предусмотренных правилами игры действий и его осуществление. Ходы делятся на личные и случайные. Личным ходом называется сознательный выбор игроком одного из возможных вариантов действий и его осуществление. Случайным ходом называется выбор из ряда возможностей, осуществляемый не решением игрока, а каким-либомеханизмом случайного выбора (бросание монеты, выбор карты из перетасованной колоды и т. п.). Для каждого случайного хода правила игры определяют распределение вероятностей возможных исходов. Игра может состоять только их личных или только из случайных ходов, или из их комбинации. Следующим основным понятием теории игр является понятие стратегии. Стратегия — это априори принятая игроком система решений (вида «если — то»), которых он придерживается во время ведения игры, которая может быть представлена в виде алгоритма и выполняться автоматически.

Целью теории игр является выработка рекомендаций для разумного поведения игроков в конфликтной ситуации, т. е. определение «оптимальной стратегии» для каждого из них. Стратегия, оптимальная по одному показателю, необязательно будет оптимальной по другим. Сознавая эти ограничения и поэтому не придерживаясь слепо рекомендаций, полученных игровыми методами, можно все же разумно использовать математический аппарат теории игр для выработки, если не в точности оптимальной, то, во всяком случае «приемлемой» стратегии.

Игры можно классифицировать: по количеству игроков, количеству стратегий, характеру взаимодействия игроков, характеру выигрыша, количеству ходов, состоянию информации и т.д. .

В зависимости от количества игроков различают игры двух и n игроков. Первые из них наиболее изучены. Игры трех и более игроков менее исследованы из-за возникающих принципиальных трудностей и технических возможностей получения решения.

В зависимости от числа возможных стратегий игры делятся на «конечные » и «бесконечные ».

Игра называется конечной, если у каждого игрока имеется только конечное число стратегий, и бесконечной, если хотя бы у одного из игроков имеется бесконечное число стратегий.

По характеру взаимодействия игры делятся на бескоалиционные: игроки не имеют права вступать в соглашения, образовывать коалиции; коалиционные (кооперативные) — могут вступать в коалиции.

В кооперативных играх коалиции заранее определены.

По характеру выигрышей игры делятся на: игры с нулевой суммой (общий капитал всех игроков не меняется, а перераспределяется между игроками; сумма выигрышей всех игроков равна нулю) и игры с ненулевой суммой.

По виду функций выигрыша игры делятся на: матричные, биматричные, непрерывные, выпуклые и др.

Матричная игра — это конечная игра двух игроков с нулевой суммой, в которой задается выигрыш игрока 1 в виде матрицы (строка матрицы соответствует номеру применяемой стратегии игрока 1, столбец — номеру применяемой стратегии игрока на пересечении строки и столбца матрицы находится выигрыш игрока 1, соответствующий применяемым стратегиям).

Для матричных игр доказано, что любая из них имеет решение и оно может быть легко найдено путем сведения игры к задаче линейного программирования.

Биматричная игра — это конечная игра двух игроков с ненулевой суммой, в которой выигрыши каждого игрока задаются матрицами отдельно для соответствующего игрока (в каждой матрице строка соответствует стратегии игрока 1, столбец — стратегии игрока 2, на пересечении строки и столбца в первой матрице находится выигрыш игрока 1, во второй матрице — выигрыш игрока)

Непрерывной считается игра, в которой функция выигрышей каждого игрока является непрерывной. Доказано, что игры этого класса имеют решения, однако не разработано практически приемлемых методов их нахождения.

Если функция выигрышей является выпуклой, то такая игра называется выпуклой . Для них разработаны приемлемые методы решения, состоящие в отыскании чистой оптимальной стратегии (определенного числа) для одного игрока и вероятностей применения чистых оптимальных стратегий другого игрока. Такая задача решается сравнительно легко.

Запись матричной игры в виде платежной матрицы

Рассмотрим конечную игру, в которой первый игрок А имеет m стратегий, а второй игрок B-n стратегий. Такая игра называется игрой m×n. Обозначим стратегии A 1 , А 2 , ..., А m ; и В 1 , В 2 , ..., В n . Предположим, что каждая сторона выбрала определенную стратегию: A i или B j . Если игра состоит только из личных ходов, то выбор стратегий однозначно определяет исход игры — выигрыш одной из сторон a ij . Если игра содержит кроме личных случайные ходы, то выигрыш при паре стратегий A i и B является случайной величиной, зависящей от исходов всех случайных ходов. В этом случае естественной оценкой ожидаемого выигрыша является математическое ожидание случайного выигрыша, которое также обозначается за a ij .

Предположим, что нам известны значения a ij при каждой паре стратегий. Эти значения можно записать в виде прямоугольной таблицы (матрицы), строки которой соответствуют стратегиям A i , а столбцы — стратегиям B j .

Тогда, в общем виде матричная игра может быть записана следующей платежной матрицей:

B 1 B 2 ... B n
A 1 a 11 a 12 ... a 1n
A 2 a 21 a 22 ... a 2n
... ... ... ... ...
A m a m1 a m2 ... a mn

Таблица — Общий вид платежной матрицы матричной игры

где A i — названия стратегий игрока 1, B j — названия стратегий игрока 2, a ij — значения выигрышей игрока 1 при выборе им i–й стратегии, а игроком 2 — j-й стратегии. Поскольку данная игра является игрой с нулевой суммой, значение выигрыша для игрока 2 является величиной, противоположенной по знаку значению выигрыша игрока 1.

Понятие о нижней и верхней цене игры. Решение игры в чистых стратегиях

Каждый из игроков стремится максимизировать свой выигрыш с учетом поведения противодействующего ему игрока. Поэтому для игрока 1 необходимо определить минимальные значения выигрышей в каждой из стратегий, а затем найти максимум из этих значений, то есть определить величину

V н = max i min j a ij

или найти минимальные значения по каждой из строк платежной матрицы, а затем определить максимальное из этих значений. Величина V н называется максимином матрицы или нижней ценой игры . Та стратегия игрока, которая соответствует максимину V н называется максиминной стратегией.

Очевидно, если мы будем придерживаться максиминной стратегии, то нам при любом поведении противника гарантирован выигрыш, не меньший V н. Поэтому величина V н — это тот гарантированный минимум, который мы можем себе обеспечить, придерживаясь своей наиболее осторожной стратегии.

Величина выигрыша игрока 1 равна, по определению матричной игры, величине проигрыша игрока Поэтому для игрока 2 необходимо определить значение

V в = min j max i a ij

Или найти максимальные значения по каждому из столбцов платежной матрицы, а затем определить минимальное из этих значений. Величина V в называется минимаксом матрицы, верхней ценой игры или минимаксным выигрышем. Соответствующая выигрышу стратегия противника называется его минимаксной стратегией. Придерживаясь своей наиболее осторожной минимаксной стратегии, противник гарантирован, что в любом случае он проиграет не больше V в.

В случае, если значения V н и V в не совпадают, при сохранении правил игры (коэффициентов a ij) в длительной перспективе, выбор стратегий каждым из игроков оказывается неустойчивым. Устойчивость он приобретает лишь при равенстве V н = V в = V. В этом случае говорят, что игра имеет решение в чистых стратегиях , а стратегии, в которых достигается V — оптимальными чистыми стратегиями . Величина V называется чистой ценой игры .

Например, в матрице:

B 1 B 2 B 3 B 4 Min j
A 1 17 16 15 14 14
A 2 11 18 12 13 11
A 3 18 11 13 12 11
Max i 18 18 15 14

Таблица — Платежная матрица, в которой существует решение в чистых стратегиях

существует решение в чистых стратегиях. При этом для игрока 1 оптимальной чистой стратегией будет стратегия A 1 , а для игрока 2 — стратегия B 4 .

В матрице решения в чистых стратегиях не существует, так как нижняя цена игры достигается в стратегии A 1 и ее значение равно 12, в то время как верхняя цена игры достигается в стратегии B 4 и ее значение равно 13.

B 1 B 2 B 3 B 4 Min j
A 1 17 16 15 12 12
A 2 11 18 12 13 11
A 3 18 11 13 12 11
Max i 18 18 15 13

Таблица — Платежная матрица, в которой не существует решения в чистых стратегиях

Уменьшение порядка платежной матрицы

Порядок платежной матрицы (количество строк и столбцов) может быть уменьшен за счет исключения доминируемых и дублирующих стратегий.

Стратегия K* называется доминируемой стратегией K**, если при любом варианте поведения противодействующего игрока выполняется соотношение

A k* < A k** ,

где A k* и A k** — значения выигрышей при выборе игроком, соответственно, стратегий K* и K**.

В случае, если выполняется соотношение

стратегия K* называется дублирующей по отношению к стратегии K**.

Например, в матрице с доминируемыми и дублирующими стратегиями стратегия A 1 является доминируемой по отношению к стратегии A 2 , стратегия B 6 является доминируемой по отношению к стратегиям B 3 , B 4 и B 5 , а стратегия B 5 является дублирующей по отношению к стратегии B 4 .

B 1 B 2 B 3 B 4 B 5 B 6
A 1 1 2 3 4 4 7
A 2 7 6 5 4 4 8
A 3 1 8 2 3 3 6
A 4 8 1 3 2 2 5

Таблица — Платежная матрица с доминируемыми и дублирующими стратегиями

Данные стратегии не будут выбраны игроками, так как являются заведомо проигрышными и удаление этих стратегий из платежной матрицы не повлияет на определение нижней и верхней цены игры, описанной данной матрицей.

Множество недоминируемых стратегий, полученных после уменьшения размерности платежной матрицы, называется еще множеством Парето.

Примеры игр

1. Игра «Цыпленок»

Игра «Цыпленок» заключается в том, что игроки вступают во взаимодействие, которое ведет в нанесению серьезного вреда каждому из них, пока один из игроков не выйдет из игры. Пример использования этой игры — взаимодействие автотранспортный средств, например, ситуации, когда два автомобиля идут навстречу друг другу, и тот, который первым сворачивает в сторону, считается «слабаком» или «цыпленком». Смысл игры заключается в создании напряжения, которое бы привело к устранению игрока. Подобная ситуация часто встречается в среде подростков или агрессивно настроенных молодых людей, хотя иногда несет в себе меньший риск. Еще одно из применений этой игры — ситуация, в которой две политические партии вступают в контакт, при котором они не могут ничего выиграть, и только гордость заставляет их сохранять противостояние. Партии медлят с уступками до тех пор, пока не дойдут до финальной точки. Возникающее психологическое напряжение может привести одного из игроков к неправильной стратегии поведения: если никто из игроков не уступает, то столкновение и фатальная развязка неизбежны.

Платежная матрица игры выглядит следующей:

Уступить Не уступать
Уступить 0, 0 -1, +1
Не уступать +1, -1 -100, -100

2. Игра «коршун и голубь»

Игра «коршун и голубь» является биологическим примером игры. В этой версии двое игроков, обладающих неограниченными ресурсами, выбирают одну из двух стратегий поведения. Первая («голубь») заключается в том, что игрок демонстрирует свою силу, запугивая противника, а вторая («коршун») — в том, что игрок физически атакует противника. Если оба из игроков выбирают стратегию «коршуна», они сражаются, наносф друг другу увечья. Если один из игроков выбирает стратегию «коршуна», а второй «голубя» — то первый побеждает второго. В случае, если оба игрока — «голуби», то соперники приходит к компромиссу, получая выигрыш, который оказывается меньше, чем выигрыш «коршуна», побеждающего «голубя», как это следует из платежной матрицы этой игры.

Здесь V — цена соглашения, C — цена конфликта, причем V

В игре «коршун и голубь» есть три точки равновесия по Нэшу:

  1. первый игрок выбирает «коршуна», а второй «голубя».
  2. первый игрок выбирает «голубя», а второй «коршуна».
  3. оба игрока выбирают смешанную стратегию, в которой «коршун» выбирается с вероятностью p, а «голубь» — с вероятностью 1-p.

3. Дилемма заключенного

«Дилемма заключенного» — одна из наиболее распространенных конфликтных ситуаций, рассматриваемая в теории игр.

Классическая «дилемма заключенного» звучит следующим образом: двое подозреваемых, A и B, находятся в разных камерах. Следователь, навещая их поодиночке, предлагает сделку следующего содержания: если один из них будет свидетельствовать против другого, а второй будет молчать, то первый заключенный будет освобожден, а второго осудят на 10 лет. Если оба будут молчать, то отсидят по 6 месяцев. Если оба предадут друг друга, то каждый получит по 2 года. Каждый из заключенных должен принять решение: предать подельника или молчать, не зная о том, какое решение принял другой. Дилемма: какое решение примут заключенные?

Платежная матрица игры:

В данном случае, результат базируется на решении каждого из заключенных. Положение игроков осложняется тем, что они не знают о том, какое решение принял другой, и тем, что они не доверяют друг другу.

Наилучшей стратегией игроков будет кооперация, при которой оба молчат, и получают максимальный выигрыш (меньший срок), каждое другое решение будет менее выигрышным.

Проанализируем «дилемму заключенного», перейдя для наглядности к платежной матрице канонического вида:

Кооперация Отказ от кооперации
Кооперация 3, 3 0, 5
Отказ от кооперации 5, 0 1, 1

Согласно этой матрице, цена взаимного отказа от кооперации (S) составляет по 1 баллу для каждого из игроков, цена за кооперацию (R) — по 3 балла, а цена соблазна предать другого (T) составляет 5 баллов. Можем записать следующее неравенство: T > R > S. При повторении игры несколько раз, выбор кооперации превосходит соблазн предать и получить максимальный выигрыш: 2 R > T + S.

Равновесие по Нэшу.

Равновесие по Нэшу — это ситуация, когда ни у одного игрока нет стимулов изменять свою стратегию при данной стратегии другого игрока (другой фирмы), позволяющая игрокам достичь компромиссного решения.

Определение равновесия по Нэшу и его существование определяется следующим образом.

Пусть (S, f) — это игра, в которой S — множество стратегий, f — множество выигрышей. Когда каждый из игроков i ∈ {1, ..., n} выбирает стратегию x i &isin S, где x = (x 1 , ..., x n), тогда игрок i получает выигрыш f i (x). Выигрыш зависит от стратегии, выбранной всеми игроками. Стратегия x* ∈ S является равновесием по Нэшу, если никакое отклонение от нее каким-то одним игроком не приносит ему прибыль, то есть, для всех i выполняется следующее неравенство:

f i (x*) ≥ f i (x i , x* -i)

Например, игра «дилемма заключенного» имеет одно равновесие по Нэшу — ситуацию, когда оба заключенных предают друг друга.

Проще всего определить равновесие по Нэшу можно по платежной матрице, особенно в случаях, когда в игре участвуют два игрока, имеющие в арсенале более двух стратегий. Так как в этом случае формальный анализ будет достаточно сложным, применяется мнемоническое правило, которое заключается в следующем: ячейка платежной матрицы представляет собой равновесие по Нэшу, если первое число, стоящее в ней, является максимальным среди всех значений, представленных в столбцах, а второе число, стоящее в ячейке — максимальное число среди всех строк.

Например, применим это правило для матрицы 3x3:

A B C
A 0, 0 25, 40 5, 10
B 40, 25 0, 0 5, 15
C 10, 5 15, 5 10, 10

Точки равновесия по Нэшу: (B,A), (A,B) и (C,C). Indeed, for cell (B,A), так как 40 — максимальное значение в первом столбце, 25 максимальное значение во втором ряду. Для ячейки (A,B) 25 — это максимальное значение во втором столбце, 40 — максимальное значение во втором ряду. То же самое и для ячейки (C,C).

Рассмотрим пример игры в загрязнения (окружающей среды). Здесь объектом нашего внимания станет такой вид побочных эффектов производства, как загрязнение. Если бы фирмы никогда и никого не спрашивали о том, как им поступить, любая из них скорее предпочла бы создавать загрязнения, чем устанавливать дорогостоящие очистители. Если же какая-нибудь фирма решилась бы уменьшить вредные выбросы, то издержки, а, следовательно, и цены на ее продукцию, возросли бы, а спрос бы упал. Вполне возможно, эта фирма просто обанкротилась бы. Живущие в жестоком мире естественного отбора, фирмы скорее предпочтут оставаться в условиях равновесия по Нэшу (ячейка D), при котором не нужно расходовать средства на очистные сооружения и технологии. Ни одной фирме не удастся повысить прибыль, уменьшая загрязнение.

Фирма 1
Фирма 2 Низкий уровень загрязнения Высокий уровень загрязнения
Низкий уровень загрязнения А
100,100
В
-30,120
Высокий уровень загрязнения С
120,-30
D
100,100

Таблица — Платежная матрица игры в загрязнение окружающей среды.

Вступив в экономическую игру, каждая неконтролируемая государством и максимизирующая прибыль сталелитейная фирма будет производить загрязнения воды и воздуха. Если какая-либо фирма попытается очищать свои выбросы, то тем самым она будет вынуждена повысить цены и потерпеть убытки. Некооперативное поведение установит равновесие по Нэшу в условиях высоких выбросов. Правительство может предпринять меры с тем, чтобы равновесие переместилось в ячейку А. В этом положении загрязнение будет незначительным, прибыли же останутся теми же.

Игры загрязнения - один из случаев того, как механизм действия «невидимой руки» не срабатывает. Это ситуация, когда равновесие по Нэшу неэффективно. Иногда подобные неконтролируемые игры становятся угрожающими, и здесь может вмешаться правительство. Установив систему штрафов и квот на выбросы, правительство может побудить фирмы выбрать исход А, соответствующий низкому уровню загрязнения. Фирмы зарабатывают ровно столько же, сколько и прежде, при больших выбросах, мир же становится несколько чище.

Пример решения матричной игры в чистых стратегиях

Рассмотрим пример решения матричной игры в чистых стратегиях, в условиях реальной экономики, в ситуации борьбы двух предприятий за рынок продукции региона.

Задача.

Два предприятия производят продукцию и поставляют ее на рынок региона. Они являются единственными поставщиками продукции в регион, поэтому полностью определяют рынок данной продукции в регионе.

Каждое из предприятий имеет возможность производить продукцию с применением одной из трех различных технологий. В зависимости от экологичности технологического процесса и качества продукции, произведенной по каждой технологии, предприятия могут установить цену единицы продукции на уровне 10, 6 и 2 денежных единиц соответственно. При этом предприятия имеют различные затраты на производство единицы продукции.

Таблица — Затраты на единицу продукции, произведенной на предприятиях региона (д.е.).

В результате маркетингового исследования рынка продукции региона была определена функция спроса на продукцию:

Y = 6 - 0.5⋅X,

где Y — количество продукции, которое приобретет население региона (тыс. ед.), а X — средняя цена продукции предприятий, д.е.

Данные о спросе на продукцию в зависимости от цен реализации приведены в таблице:

Цена реализации 1 ед. продукции, д.е.

Средняя цена реализации 1 ед. продукции, д.е.

Спрос на продукцию, тыс. ед.

Предприятие 1 Предприятие 2
10 10 10 1
10 6 8 2
10 2 6 3
6 10 8 2
6 6 6 3
6 2 4 4
2 10 6 3
2 6 4 4
2 2 2 5

Таблица — Спрос на продукцию в регионе, тыс. ед.

Значения Долей продукции предприятия 1, приобретенной населением, зависят от соотношения цен на продукцию предприятия 1 и предприятия В результате маркетингового исследования эта зависимость установлена и значения вычислены:

Таблица — Доля продукции предприятия 1, приобретаемой населением в зависимости от соотношения цен на продукцию

По условию задачи на рынке региона действует только 2 предприятия. Поэтому долю продукции второго предприятия, приобретенной населением, в зависимости от соотношения цен на продукцию можно определить как единица минус доля первого предприятия.

Стратегиями предприятий в данной задаче являются их решения относительно технологий производства продукции. Эти решения определяют себестоимость и цену реализации единицы продукции. В задаче необходимо определить:

  1. Существует ли в данной задаче ситуация равновесия при выборе технологий производства продукции обоими предприятиями?
  2. Существуют ли технологии, которые предприятия заведомо не будут выбирать вследствие невыгодности?
  3. Сколько продукции будет реализовано в ситуации равновесия? Какое предприятие окажется в выигрышном положении?

Решение задачи

  1. Определим экономический смысл коэффициентов выигрышей в платежной матрице задачи. Каждое предприятие стремится к максимизации прибыли от производства продукции. Но кроме того, в данном случае предприятия ведут борьбу за рынок продукции в регионе. При этом выигрыш одного предприятия означает проигрыш другого. Такая задача может быть сведена к матричной игре с нулевой суммой. При этом коэффициентами выигрышей будут значения разницы прибыли предприятия 1 и предприятия 2 от производства продукции. В случае, если эта разница положительна, выигрывает предприятие 1, а в случае, если она отрицательна — предприятие 2.
  2. Рассчитаем коэффициенты выигрышей платежной матрицы. Для этого необходимо определить значения прибыли предприятия 1 и предприятия 2 от производства продукции.

Прибыль предприятия в данной задаче зависит:

  • от цены и себестоимости продукции;
  • от количества продукции, приобретаемой населением региона;
  • от доли продукции, приобретенной населением у предприятия.

Таким образом, значения разницы прибыли предприятий, соответствующие коэффициентам платежной матрицы, необходимо определить по формуле:

D = p⋅(S⋅R1 - S⋅C1) - (1 - p)⋅(S⋅R2 - S⋅C2),

где D — значение разницы прибыли от производства продукции предприятия 1 и предприятия

p — доля продукции предприятия 1, приобретаемой населением региона;

S — количество продукции, приобретаемой населением региона;

R1 и R2 — цены реализации единицы продукции предприятиями 1 и

C1 и C2 — полная себестоимость единицы продукции, произведенной на предприятиях 1 и

Вычислим один из коэффициентов платежной матрицы.

Пусть, например, предприятие 1 принимает решение о производстве продукции в соответствии с технологией III, а предприятие 2 — в соответствии с технологией II. Тогда цена реализации единицы. продукции для предприятия 1 составит 2 д.е. при себестоимости единицы. продукции 1,5 д.е. Для предприятия 2 цена реализации единицы. продукции составит 6 д.е. при себестоимости 4 д.е..

Количество продукции, которое население региона приобретет при средней цене 4 д.е., равно 4 тыс. ед. (таблица 1). Доля продукции, которую население приобретет у предприятия 1, составит 0,85, а у предприятия 2 — 0,15 (табл. 1.3). Вычислим коэффициент платежной матрицы a 32 по формуле:

a 32 = 0,85⋅(4⋅2 - 4×1,5) - 0,15⋅(4⋅6 - 4⋅4) = 0,5 тыс. ед.

где i=3 — номер технологии первого предприятия, а j=2 — номер технологии второго предприятия.

Аналогично вычислим все коэффициенты платежной матрицы. В платежной матрице стратегии A 1 — A 3 – представляют собой решения о технологиях производства продукции предприятием 1, стратегии B 1 – B 3 — решения о технологиях производства продукции предприятием 2, коэффициенты выигрышей — разницу прибыли предприятия 1 и предприятия

B 1 B 2 B 3 Min j
A 1 0,17 0,62 0,24 0,17
A 2 0,3 -1,5 -0,8 -1
A 3 0,9 0,5 0,4 0,4
Max i 3 0,62 0,4

Таблица — Платежная матрица в игре «Борьба двух предприятий».

В данной матрице нет ни доминируемых, ни дублирующих стратегий. Это значит, что для обоих предприятий нет заведомо невыгодных технологий производства продукции. Определим минимальные элементы строк матрицы. Для предприятия 1 каждый из этих элементов имеет значение минимально гарантированного выигрыша при выборе соответствующей стратегии. Минимальные элементы матрицы по строкам имеют значения: 0,17, -1,5, 0,4.

Определим максимальные элементы столбцов матрицы. Для предприятия 2 каждый из этих элементов также имеет значение минимально гарантированного выигрыша при выборе соответствующей стратегии. Максимальные элементы матрицы по столбцам имеют значения: 3, 0,62, 0,4.

Нижняя цена игры в матрице равна 0,4. Верхняя цена игры также равна 0,4. Таким образом, нижняя и верхняя цена игры в матрице совпадают. Это значит, что имеется технология производства продукции, которая является оптимальной для обоих предприятий в условиях данной задачи. Эта технология III, которая соответствует стратегиям A 3 предприятия 1 и B 3 предприятия Стратегии A 3 и B 3 — чистые оптимальные стратегии в данной задаче.

Значение разницы прибыли предприятия 1 и предприятия 2 при выборе чистой оптимальной стратегии положительно. Это означает, что предприятие 1 выиграет в данной игре. Выигрыш предприятия 1 составит 0,4 тыс. д.е. При этом на рынке будет реализовано 5 тыс. ед. продукции (реализация равна спросу на продукцию, таблица 1).. Оба предприятия установят цену за единицу продукции в 2 д.е. При этом для первого предприятия полная себестоимость единицы продукции составит 1,5 д.е., а для второго — 1 д.е. Предприятие 1 окажется в выигрыше лишь за счет высокой доли продукции, которую приобретет у него население.

Критерии принятия решения

ЛПР определяет наиболее выгодную стратегию в зависимости от целевой установки, которую он реализует в процессе решения задачи. Результат решения задачи ЛПР определяет по одному из критериев принятия решения . Для того, чтобы прийти к однозначному и по возможности наиболее выгодному варианту решению, необходимо ввести оценочную (целевую) функцию. При этом каждой стратегии ЛПР (A i) приписывается некоторый результат W i , характеризующий все последствия этого решения. Из массива результатов принятия решений ЛПР выбирает элемент W, который наилучшим образом отражает мотивацию его поведения.

В зависимости от условий внешней среды и степени информативности ЛПР производится следующая классификация задач принятия решений:

  • в условиях риска;
  • в условиях неопределенности;
  • в условиях конфликта или противодействия (активного противника).

Принятие решений в условиях риска.

1. Критерий ожидаемого значения.

Использование критерия ожидаемого значения обусловлено стремлением максимизировать ожидаемую прибыль (или минимизировать ожидаемые затраты). Использование ожидаемых величин предполагает возможность многократного решения одной и той же задачи, пока не будут получены достаточно точные расчетные формулы. Математически это выглядит так: пусть Х — случайная величина с математическим ожиданием MX и дисперсией DX. Если x 1 , x 2 , ..., x n — значения случайной величины (с.в.) X, то среднее арифметическое их (выборочное среднее) значений x^=(x 1 +x 2 +...+x n)/n имеет дисперсию DX/n. Таким образом, когда n→∞ DX/n→∞ и X→MX.

Другими словами при достаточно большом объеме выборки разница между средним арифметическим и математическим ожиданием стремится к нулю (так называемая предельная теорема теории вероятности). Следовательно, использование критерия ожидаемое значение справедливо только в случае, когда одно и тоже решение приходится применять достаточно большое число раз. Верно и обратное: ориентация на ожидания будет приводить к неверным результатам, для решений, которые приходится принимать небольшое число раз.

Пример 1 . Требуется принять решение о том, когда необходимо проводить профилактический ремонт ПЭВМ, чтобы минимизировать потери из-за неисправности. В случае если ремонт будет производится слишком часто, затраты на обслуживание будут большими при малых потерях из-за случайных поломок.

Так как невозможно предсказать заранее, когда возникнет неисправность, необходимо найти вероятность того, что ПЭВМ выйдет из строя в период времени t. В этом и состоит элемент »риска».

Математически это выглядит так: ПЭВМ ремонтируется индивидуально, если она остановилась из-за поломки. Через T интервалов времени выполняется профилактический ремонт всех n ПЭВМ. Необходимо определить оптимальное значение m, при котором минимизируются общие затраты на ремонт неисправных ПЭВМ и проведение профилактического ремонта в расчете на один интервал времени.

Пусть р t — вероятность выхода из строя одной ПЭВМ в момент t, а n t — случайная величина, равная числу всех вышедших из строя ПЭВМ в тот же момент. Пусть далее С 1 – затраты на ремонт неисправной ПЭВМ и С 2 — затраты на профилактический ремонт одной машины.

Применение критерия ожидаемого значения в данном случае оправдано, если ПЭВМ работают в течение большого периода времени. При этом ожидаемые затраты на один интервал составят

ОЗ = (C 1 ∑M(n t)+C 1 n)/T,

где M(n t) — математическое ожидание числа вышедших из строя ПЭВМ в момент t. Так как n t имеет биномиальное распределение с параметрами (n, p t), то M(n t) = np t . Таким образом

ОЗ = n(C 1 ∑p t +C 2)/T.

Необходимые условия оптимальности T * имеют вид:

ОЗ (T * -1) ≥ ОЗ (T *),

ОЗ (T * +1) ≥ ОЗ (T *).

Следовательно, начиная с малого значения T, вычисляют ОЗ(

T), пока не будут удовлетворены необходимые условия оптимальности.

Пусть С 1 = 100; С 2 = 10; n = 50. Значенияp t имеют вид:

T р t ∑р t ОЗ(Т)
1 0.05 0 50(100⋅0+10)/1=500
2 0.07 0.05 375
3 0.10 0.12 366.7
4 0.13 02 400
5 0.18 0.35 450

T * →3, ОЗ(Т *)→366.7

Следовательно профилактический ремонт необходимо делать через T * =3 интервала времени.

Критерий «ожидаемое значение — дисперсия».

Критерий ожидаемого значения можно модифицировать так, что его можно будет применить и для редко повторяющихся ситуаций.

Если х — с. в. с дисперсией DX, то среднее арифметическое x^ имеет дисперсию DX/n, где n — число слагаемых в x^. Следовательно, если DX уменьшается, и вероятность того, что x^ близко к MX, увеличивается. Следовательно, целесообразно ввести критерий, в котором максимизация ожидаемого значения прибыли сочетается с минимизацией ее дисперсии.

Пример 2 . Применим критерий «ожидаемое значение — дисперсия» для примера 1. Для этого необходимо найти дисперсию затрат за один интервал времени, т.е. дисперсию

з Т =(C 1 ∑n t +C 2 n)/T

Т.к. n t , t = {1, T-1} — с.в., то з Т также с.в. С.в. n t имеет биномиальное распределение с M(n t) = np t и D(n t) = np t (1–p t). Следовательно,

D(з Т) = D((C 1 ∑n t +C 2 n)/T) = (C 1 /T) 2 D(∑n t) =

= (C 1 /T) 2 ∑Dn t = (C 1 /T) 2 ∑np t (1-p t) = (C 1 /T) 2 {∑p t - ∑p t 2 },

где С 2 n = const.

Из примера 1 следует, что

М(з Т) = М(з(Т)).

Следовательно искомым критерием будет минимум выражения

М(з(Т)) + к D(з Т).

Замечание . Константу «к» можно рассматривать как уровень не склонности к риску , т.к. «к» определяет «степень возможности» дисперсии Д(з Т) по отношению к математическому ожиданию. Например, если предприниматель, особенно остро реагирует на большие отрицательные отклонения прибыли вниз от М(з(Т)), то он может выбрать «к» много больше 1. Это придает больший вес дисперсии и приводит к решению, уменьшающему вероятность больших потерь прибыли.

При к=1 получаем задачу

M(з(T))+D(з(T)) = n { (C 1 /T+C 1 2 /T 2)∑p t - C 1 2 /T 2 ∑p t 2 + C 2 /T }

По данным из примера 1 можно составить следующую таблицу

T p t p t 2 ∑p t ∑p t 2 М(з(Т))+D(з(Т))
1 0,05 0,0025 0 0 500.00
2 0,07 0,0049 0,05 0,0025 6312,50
3 0,10 0,0100 0,12 0,0074 6622,22
4 0,13 0,0169 0,2 0,0174 6731,25
5 0,18 0,0324 0,35 0,0343 6764,00

Из таблицы видно, что профилактический ремонт необходимо делать в течение каждого интервала Т * =1.

3. Критерий предельного уровня

Критерий предельного уровня не дает оптимального решения, максимизирующего, например, прибыль или минимизирующего затраты. Скорее он соответствует определению приемлемого способа действий.

Пример 3 . Предположим, что величина спроса x в единицу времени (интенсивность спроса) на некоторый товар задается непрерывной функцией распределения f(x). Если запасы в начальный момент невелики, в дальнейшем возможен дефицит товара. В противном случае к концу рассматриваемого периода запасы нереализованного товара могут оказаться очень большими. В обоих случаях возможны потери.

Т.к. определить потери от дефицита очень трудно, ЛПР может установить необходимый уровень запасов таким образом, чтобы величина ожидаемого дефицита не превышала A 1 единиц, а величина ожидаемых излишков не превышала A 2 единиц. Иными словами, пусть I — искомый уровень запасов. Тогда

ожидаемый дефицит = ∫(x-I)f(x)dx ≤ A 1 ,

ожидаемые излишки = ∫(I-x)f(x)dx ≤ A 2 .

При произвольном выборе A 1 и A 2 указанные условия могут оказаться противоречивыми. В этом случае необходимо ослабить одно из ограничений, чтобы обеспечить допустимость.

Пусть, например,

f(x) = 20/x 2 , 10≤x≤20,

f(x) = 0, x≤10 и x≥20.

∫(x-I)f(x)dx = ∫(x-I)(20/x 2)dx = 20(ln(20/I) + I/20 – 1)

∫(I-x)f(x)dx = ∫(I-x)(20/x 2)dx = 20(ln(10/I) + I/10 – 1)

Применение критерия предельного уровня приводит к неравенствам

ln(I) - I/20 ≥ ln(20) – A 1 /20 – 1 = 1,996 - A 1 /20

ln(I) - I/10 ≥ ln(10) – A 2 /20 – 1 = 1,302 - A 2 /20

Предельные значения A 1 и A 2 должны быть выбраны так, что бы оба неравенства выполнялись хотя бы для одного значения I.

Например, если A 1 = 2 и A 2 = 4, неравенства принимают вид

ln(I) - I/20 ≥ 1,896

ln(I) - I/10 ≥ 1,102

Значение I должно находиться между 10 и 20, т.к. именно в этих пределах изменяется спрос. Из таблицы видно, что оба условия выполняются для I, из интервала (13,17)

I 10 11 12 13 14 15 16 17 18 19 20
ln(I) - I/20 1,8 1,84 1,88 1,91 1,94 1,96 1,97 1,98 1,99 1,99 1,99
ln(I) - I/10 1,3 19 18 16 14 11 1,17 1,13 1,09 1,04 0,99

Любое из этих значений удовлетворяет условиям задачи.

Принятие решений в условиях неопределенности

Будем предполагать, что лицу, принимающему решение не противостоит разумный противник.

Данные, необходимо для принятия решения в условии неопределенности, обычно задаются в форме матрицы, строки которой соответствуют возможным действиям, а столбцы — возможным состояниям системы.

Пусть, например, из некоторого материала требуется изготовить изделие, долговечность которого при допустимых затратах невозможно определить. Нагрузки считаются известными. Требуется решить, какие размеры должно иметь изделие из данного материала.

Варианты решения таковы:

Е 1 — выбор размеров из соображений максимальной долговечности;

Е m — выбор размеров из соображений минимальной долговечности;

E i — промежуточные решения.

Условия требующие рассмотрения таковы:

F 1 — условия, обеспечивающие максимальной долговечность;

F n — условия, обеспечивающие min долговечность;

F i — промежуточные условия.

Под результатом решения e ij = е(E i ; F j) здесь можно понимать оценку, соответствующую варианту E i и условиям F j и характеризующие прибыль, полезность или надежность. Обычно мы будем называть такой результат полезностью решения .

Тогда семейство (матрица) решений ||e ij || имеет вид:

F 1 F 2 ... F n
E 1 e 11 e 12 ... e 1n
E 2 e 21 e 22 ... e 2n
... ... ... ... ...
E m e m1 e m2 ... e mn

Чтобы прийти к однозначному и по возможности наивыгоднейшему варианту решению необходимо ввести оценочную (целевую) функцию. При этом матрица решений ||e ij || сводится к одному столбцу. Каждому варианту E i приписывается, т.о., некоторый результат e ir , характеризующий, в целом, все последствия этого решения. Такой результат мы будем в дальнейшем обозначать тем же символом e ir .

Классические критерии принятия решений

1. Минимаксный критерий.

Правило выбора решения в соответствии с минимаксным критерием (ММ-критерием) можно интерпретировать следующим образом:

матрица решений дополняется еще одним столбцом из наименьших результатов e ir каждой строки. Необходимо выбрать те варианты в строках которых стоят наибольшее значение e ir этого столбца.

Выбранные т.о. варианты полностью исключают риск. Это означает, что принимающий решение не может столкнуться с худшим результатом, чем тот, на который он ориентируется. Это свойство позволяет считать ММ-критерий одним из фундаментальных.

Применение ММ-критерия бывает оправдано, если ситуация, в которой принимается решение следующая:

  1. О возможности появления внешних состояний F j ничего не известно;
  2. Приходится считаться с появлением различных внешних состояний F j ;
  3. Решение реализуется только один раз;
  4. Необходимо исключить какой бы то ни было риск.

2. Критерий Байеса—Лапласа.

Обозначим через q i — вероятность появления внешнего состояния F j .

Соответствующее правило выбора можно интерпретировать следующим образом:

матрица решений дополняется еще одним столбцом содержащим математическое ожидание значений каждой из строк. Выбираются те варианты, в строках которых стоит наибольшее значение e ir этого столбца.

При этом предполагается, что ситуация, в которой принимается решение, характеризуется следующими обстоятельствами:

  1. Вероятности появления состояния F j известны и не зависят от времени.
  2. Решение реализуется (теоретически) бесконечно много раз.
  3. Для малого числа реализаций решения допускается некоторый риск.

При достаточно большом количестве реализаций среднее значение постепенно стабилизируется. Поэтому при полной (бесконечной) реализации какой-либо риск практически исключен.

Т.о. критерий Байеса-Лапласа (B-L-критерий) более оптимистичен, чем минимаксный критерий, однако он предполагает большую информированность и достаточно длительную реализацию.

3. Критерий Сэвиджа.

a ij:= max i (e ij) - e ij

e ir:= max i (a ij) = max j (max i (e ij) - e ij)

Величину a ij можно трактовать как максимальный дополнительный выигрыш, который достигается, если в состоянии F j вместо варианта E i выбирать другой, оптимальный для этого внешнего состояния вариант. Величину a ij можно интерпретировать и как потери (штрафы) возникающие в состоянии F j при замене оптимального для него варианта на вариант E i . В последнем случае e ir представляет собой максимально возможные (по всем внешним состояниям F j , j = {1,n}) потери в случае выбора варианта E i .

Соответствующее критерию Сэвиджа правило выбора теперь трактуется так:

  1. Каждый элемент матрицы решений ||e ij || вычитается из наибольшего результата max(e ij) соответствующего столбца.
  2. Разности a ij образуют матрицу остатков ||e ij ||. Эта матрица пополняется столбцом наибольших разностей e ir . Выбирают те варианты, в строках которых стоит наименьшее для этого столбца значение.

Требования, предъявляемые к ситуации, в которой принимается решение, совпадают с требованием к ММ-критерию.

4. Пример и выводы.

Из требований, предъявляемых к рассмотренным критериям становится ясно, что в следствии их жестких исходных позиций они применимы только для идеализированных практических решений. В случае, когда возможна слишком сильная идеализация, можно применять одновременно поочередно различные критерии. После этого среди нескольких вариантов ЛПР волевым методом выбирает окончательное решение. Такой подход позволяет, во-первых, лучше проникнуть во все внутренние связи проблемы принятия решений и, во-вторых, ослабляет влияние субъективного фактора.

Пример . При работе ЭВМ необходимо периодически приостанавливать обработку информации и проверять ЭВМ на наличие в ней вирусов. Приостановка в обработке информации приводит к определенным экономическим издержкам. В случае же если вирус вовремя обнаружен не будет, возможна потеря и некоторой части информации, что приведет и еще к большим убыткам.

Варианты решения таковы:

Е 1 — полная проверка;

Е 2 — минимальная проверка;

Е 3 — отказ от проверки.

ЭВМ может находиться в следующих состояниях:

F 1 — вирус отсутствует;

F 2 — вирус есть, но он не успел повредить информацию;

F 3 — есть файлы, нуждающиеся в восстановлении.

Результаты, включающие затраты на поиск вируса и его ликвидацию, а также затраты, связанные с восстановлением информации имеют вид:

F 1 F 2 F 3 ММ-критерий критерий B-L
e ir = min j (e ij) max i (e ir) e ir = ∑e ij max i (e ir)
E 1 -20,0 -20 -25,0 -25,0 -25,0 -22,33
E 2 -14,0 -23,0 -31,0 -31,0 -22,67
E 3 0 -24.0 -40.0 -40.0 -21.33 -21.33

Согласно ММ-критерию следует проводить полную проверку. Критерий Байеса-Лапласа, в предположении, что все состояния машины равновероятны.

F 1 F 2 F 3 Критерий Сэвиджа
e ir = min j (a ij) min j (e ir)
E 1 +20,0 0 0 +20,0
E 2 +14,0 +1,0 +6,0 +14,0 +14,0
E 3 0 +2,0 +15,0 +15,0

Пример специально подобран так, что каждый критерий предлагает новое решение. Неопределенность состояния, в котором проверка застает ЭВМ, превращается в неясность, какому критерию следовать.

Поскольку различные критерии связаны с различными условиями, в которых принимается решение, лучшее всего для сравнительной оценки рекомендации тех или иных критериев получить дополнительную информацию о самой ситуации. В частности, если принимаемое решение относится к сотням машин с одинаковыми параметрами, то рекомендуется применять критерий Байеса-Лапласа. Если же число машин не велико, лучше пользоваться критериями минимакса или Севиджа.

Производные критерии.

1. Критерий Гурвица.

Стараясь занять наиболее уравновешенную позицию, Гурвиц предположил оценочную функцию, которая находится где-то между точкой зрения крайнего оптимизма и крайнего пессимизма:

max i (e ir) = { C⋅min j (e ij) + (1-C)⋅max j (e ij) },

где С — весовой множитель.

Правило выбора согласно критерию Гурвица, формируется следующим образом:

матрица решений ||e ij || дополняется столбцом, содержащим среднее взвешенное наименьшего и наибольшего результатов для каждой строки. Выбираются только те варианты, в строках которых стоят наибольшие элементыe e ir этого столбца.

При С=1 критерий Гурвица превращается в ММ-критерий. При С = 0 он превращается в критерий «азартного игрока»

max i (e ir) = max i (max j (e ij)),

т.е. мы становимся на точку зрения азартного игрока, делающего ставку на то, что «выпадет» наивыгоднейший случай.

В технических приложениях сложно выбрать весовой множитель С, т.к. трудно найти количественную характеристику для тех долей оптимизма и пессимизма, которые присутствуют при принятии решения. Поэтому чаще всего С:=1/2.

Критерий Гурвица применяется в случае, когда:

  1. о вероятностях появления состояния F j ничего не известно;
  2. с появлением состояния F j необходимо считаться;
  3. реализуется только малое количество решений;
  4. допускается некоторый риск.

2. Критерий Ходжа–Лемана.

Этот критерий опирается одновременно на ММ-критерий и критерий Баеса-Лапласа. С помощью параметра n выражается степень доверия к используемому распределений вероятностей. Если доверие велико, то доминирует критерий Баеса-Лапласа, в противном случае — ММ-критерий, т.е. мы ищем

max i (e ir) = max i {v⋅∑e ij ⋅q i + (1-v) min j (e ir)}, 0 ≤ n ≤ 1.

Правило выбора, соответствующее критерию Ходжа-Лемана формируется следующим образом:

матрица решений ||e ij || дополняется столбцом, составленным из средних взвешенных (с весом v≡const) математическое ожиданиями и наименьшего результата каждой строки (*). Отбираются те варианты решений в строках которого стоит набольшее значение этого столбца.

При v = 1 критерий Ходжа-Лемана переходит в критерий Байеса-Лапласа, а при v = 0 становится минимаксным.

Выбор v субъективен т. к. Степень достоверности какой-либо функции распределения — дело темное.

Для применения критерия Ходжа-Лемана желательно, чтобы ситуация в которой принимается решение, удовлетворяла свойствам:

  1. вероятности появления состояния F j неизвестны, но некоторые предположения о распределении вероятностей возможны;
  2. принятое решение теоретически допускает бесконечно много реализаций;
  3. при малых числах реализации допускается некоторый риск.

3. Критерий Гермейера.

Этот критерий ориентирован на величину потерь, т.е. на отрицательные значения всех e ij . При этом

max i (e ir) = max i (min j (e ij)q j) .

Т.к. в хозяйственных задачах преимущественно имеют дело с ценами и затратами, условиеe e ij <0 обычно выполняется. В случае же, когда среди величин e ij встречаются и положительные значения, можно перейти к строго отрицательным значениям с помощью преобразования e ij -a при подходящем образом подобранном a>0. При этом оптимальный вариант решения зависит от а.

Правило выбора согласно критерию Гермейера формулируется следующим образом:

матрица решений ||e ij || дополняется еще одним столбцом содержащим в каждой строке наименьшее произведение имеющегося в ней результата на вероятность соответствующего состояния F j . Выбираются те варианты в строках которых находится наибольшее значениеe e ij этого столбца.

В каком-то смысле критерий Гермейера обобщает ММ-критерий: в случае равномерного распределения q j = 1/n, j={1,n}, они становятся идентичными.

Условия его применимости таковы:

  1. с появлением тех или иных состояний, отдельно или в комплексе, необходимо считаться;
  2. допускается некоторый риск;
  3. решение может реализоваться один или несколько раз.

Если функция распределения известна не очень надежно, а числа реализации малы, то, следуя критерию Гермейера, получают, вообще говоря, неоправданно большой риск.

4. Объединенный критерий Байеса-Лапласа и минимакса.

Стремление получить критерии, которые бы лучше приспосабливались к имеющейся ситуации, чем все до сих пор рассмотренные, привело к построению так называемых составных критериев. В качестве примера рассмотрим критерий, полученный путем объединения критериев Байеса-Лапласа и минимакса (BL(MM)-критерий).

Правило выбора для этого критерия формулируется следующим образом:

матрица решений ||e ij || дополняется еще тремя столбцами. В первом из них записываются математические ожидания каждой из строк, во втором — разность между опорным значением

e i 0 j 0 = max i (max j (e ij))

и наименьшим значением

соответствующей строки. В третьем столбце помещаются разности между наибольшим значением

каждой строки и наибольшим значением max j (e i 0 j) той строки, в которой находится значение e i 0 j 0 . Выбираются те варианты, строки которых (при соблюдении приводимых ниже соотношений между элементами второго и третьего столбцов) дают наибольшее математическое ожидание. А именно, соответствующее значение

e i 0 j 0 - max j (e ij)

из второго столбца должно быть или равно некоторому заранее заданному уровню риска E доп. Значение же из третьего столбца должно быть больше значения из второго столбца.

Применение этого критерия обусловлено следующими признаками ситуации, в которой принимается решение:

  1. вероятности появления состояний F j неизвестны, однако имеется некоторая априорная информация в пользу какого-либо определенного распределения;
  2. необходимо считаться с появлением различных состояний как по отдельности, так и в комплексе;
  3. допускается ограниченный риск;
  4. принятое решение реализуется один раз или многократно.

BL(MM)-критерий хорошо приспособлен для построения практических решений прежде всего в области техники и может считаться достаточно надежным. Однако заданные границы риска E доп и, соответственно, оценок риска E i не учитывает ни число применения решения, ни иную подобную информацию. Влияние субъективного фактора хотя и ослаблено, но не исключено полностью.

max j (e ij)-max j (e i 0 j)≥E i

существенно в тех случаях, когда решение реализуется только один или малое число раз. В этих условиях недостаточно ориентироваться на риск, связанный только с невыгодными внешними состояниями и средними значениями. Из-за этого, правда, можно понести некоторые потери в удачных внешних состояниях. При большом числе реализаций это условие перестает быть таким уж важным. Оно даже допускает разумные альтернативы. При этом не известно, однако, четких количественных указаний, в каких случаях это условие следовало бы опускать.

5. Критерий произведений.

max i (e ir):= max i (∏e ij)

Правило выбора в этом случае формулируется так:

Матрица решений ||e ij || дополняется новым столбцом, содержащим произведения всех результатов каждой строки. Выбираются те варианты, в строках которых находятся наибольшие значения этого столбца.

Применение этого критерия обусловлено следующими обстоятельствами:

  1. вероятности появления состояния F j неизвестны;
  2. с появлением каждого из состояний F j по отдельности необходимо считаться;
  3. критерий применим и при малом числе реализаций решения;
  4. некоторый риск допускается.

Критерий произведений приспособлен в первую очередь для случаев, когда все e ij положительны. Если условие положительности нарушается, то следует выполнять некоторый сдвиг e ij +а с некоторой константой а>|min ij (e ij)|. Результат при этом будет, естественно зависеть от а. На практике чаще всего

а:= |min ij (e ij)|+1.

Если же никакая константа не может быть признана имеющей смысл, то критерий произведений не применим.

Пример.

Рассмотрим тот же пример, что и ранее (см. выше).

Построение оптимального решения для матрицы решений о проверках по критерию Гурвица имеет вид (при С=0, в 10 3):

||e ij || С⋅min j (e ij) (1-С)⋅max j (e ij) e ir max i (e ir)
-20,0 -22,0 -25,0 -12,5 -10.0 -22,5
-14,0 -23.0 -31.0 -15,5 -7.0 -22,5
0 -24.0 -40.0 -20.0 0 -20.0 -20.0

В данном примере у решения имеется поворотная точка относительно весового множителя С: до С=0,57 в качестве оптимального выбирается Е 3 , а при больших значениях — Е 1 .

Применение критерия Ходжа-Лемана (q=0,33, v=0, в 10 3):

∑e ij ⋅q j min j (e ij) v⋅∑e ij ⋅q j (1-v)⋅∑e ij ⋅q j e ir max i (e ir)
-22,33 -25,0 -11,17 -12,5 -23,67 -23,67
-22,67 -31,0 -11,34 -15,5 -26,84
-21,33 -40,0 -10,67 -20,0 -30,76

Критерий Ходжа-Лемана рекомендует вариант Е 1 (полная проверка) — так же как и ММ-критерий. Смена рекомендуемого варианта происходит только при v=0,94. Поэтому равномерное распределение состояний рассматриваемой машины должно распознаваться с очень высокой вероятностью, чтобы его можно было выбрать по большему математическому ожиданию. При этом число реализаций решения всегда остается произвольным.

Критерий Гермейера при q j = 0.33 дает следующий результат (в 10 3):

||e ij || ||e ij q j || e ir = min j (e ij q j) max i (e ir)
-20,0 -22,0 -25,0 -6,67 -7,33 -8,33 -8,33 -8,33
-14,0 -23,0 -31,.0 -4,67 -7,67 -10,33 -10,33
0 -24,0 -40,0 0 -8,0 -13,33 -13,33

В качестве оптимального выбирается вариант Е 1 . Сравнение вариантов с помощью величинe e ir показывает, что способ действия критерия Гермейера является даже более гибким, чем у ММ-критерия.

В таблице, приведенной ниже, решение выбирается в соответствии с BL(MM)-критерием при q 1 =q 2 =q 3 =1/2 (данные в 10 3).

||e ij || ∑e ij q j e i 0 j 0 - min j (e ij) max j (e ij) max j (e ij) - max j (e i 0 j)
-20,0 -22,0 -25,0 -23,33 0 -20,0 0
-14,0 -23,0 -31,0 -22,67 +6,0 -14,0 +6,0
0 -24,0 -40,0 -21,33 +15,0 0 +20,0

Вариант Е 3 (отказ от проверки) принимается этим критерием только тогда, когда риск приближается к E возм = 15⋅10 3 . В противном случае оптимальным оказывается Е 1 . Во многих технических и хозяйственных задачах допустимый риск бывает намного ниже, составляя обычно только незначительный процент от общих затрат. В подобных случаях бывает особенно ценно, если неточное значение распределения вероятностей сказывается не очень сильно. Если при этом оказывается невозможным установить допустимый риск E доп заранее, не зависимо от принимаемого решения, то помочь может вычисление ожидаемого риска E возм. Тогда становится возможным подумать, оправдан ли подобный риск. Такое исследование обычно дается легче.

Результаты применения критерия произведения при а = 41⋅10 3 и а = 200⋅10 3 имеют вид:

a ||e ij + a|| e ir = ∏ j e ij max i e ir
41 +21 +19 +16 6384 6384
+27 +18 +10 4860
+41 +17 +1 697
200 +180 +178 +175 5607
+186 +177 +169 5563
+200 +176 +160 5632 5632

Условие e ij > 0 для данной матрицы не выполнимо. Поэтому к элементам матрицы добавляется (по внешнему произволу) сначала а = 41⋅10 3 , а затем а = 200⋅10 3 .

Для а = 41⋅10 3 оптимальным оказывается вариант Е 1 , а для а = 200⋅10 3 — вариант Е 3 , так что зависимость оптимального варианта от а очевидна.

Из популярного американского блога Cracked.

Теория игр занимается тем, что изучает способы сделать лучший ход и в результате получить как можно больший кусок выигрышного пирога, оттяпав часть его у других игроков. Она учит подвергать анализу множество факторов и делать логически взвешенные выводы. Я считаю, её нужно изучать после цифр и до алфавита. Просто потому что слишком многие люди принимают важные решения, основываясь на интуиции, тайных пророчествах, расположении звёзд и других подобных. Я тщательно изучил теорию игр, и теперь хочу рассказать вам о её основах. Возможно, это добавит здравого смысла в вашу жизнь.

1. Дилемма заключенного

Берто и Роберт были арестованы за ограбление банка, не сумев правильно использовать для побега угнанный автомобиль. Полиция не может доказать, что именно они ограбили банк, но поймала их с поличным в украденном автомобиле. Их развели по разным комнатам и каждому предложили сделку: сдать сообщника и отправить его за решетку на 10 лет, а самому выйти на свободу. Но если они оба сдадут друг друга, то каждый получит по 7 лет. Если же никто ничего не скажет, то оба сядут на 2 года только за угон автомобиля.

Получается, что, если Берто молчит, но Роберт сдает его, Берто садится в тюрьму на 10 лет, а Роберт выходит на свободу.

Каждый заключенный - игрок, и выгода каждого может быть представлена в виде «формулы» (что получат они оба, что получит другой). Например, если я ударю тебя, моя выигрышная схема будет выглядеть так (я получаю грубую победу, ты страдаешь от сильной боли). Поскольку у каждого заключенного есть два варианта, мы можем представить результаты в таблице.

Практическое применение: Выявление социопатов

Здесь мы видим основное применение теории игр: выявление социопатов, думающих лишь о себе. Настоящая теория игр - это мощный аналитический инструмент, а дилетантство часто служит красным флагом, с головой выдающим человека, лишенного понятия чести. Люди, делающие расчеты интуитивно, считают, что лучше поступить некрасиво, потому что это приведет к более короткому тюремному сроку независимо от того, как поступит другой игрок. Технически это правильно, но только если вы недальновидный человек, ставящий цифры выше человеческих жизней. Именно поэтому теория игра так популярна в сфере финансов.

Настоящая проблема дилеммы заключенного в том, что она игнорирует данные. Например, в ней не рассматривается возможность вашей встречи с друзьями, родственниками, или даже кредиторами человека, которого вы посадили в тюрьму на 10 лет.

Хуже всего то, что все участники дилеммы заключенного действуют так, как будто никогда не слышали ней.

А лучший ход - хранить молчание, и через два года вместе с хорошим другом пользоваться общими деньгами.

2. Доминирующая стратегия

Это ситуация, при которой ваши действия дают наибольший выигрыш, независимо от действий оппонента. Что бы ни происходило - вы всё сделали правильно. Вот почему многие люди при «дилемме заключенного» считают: предательство приводит к «наилучшему» результату независимо от того, что делает другой человек, а игнорирование действительности, свойственное этому методу, заставляет всё выглядеть супер-просто.

Большинство игр, в которые мы играем, не имеет строго доминирующих стратегий, потому что иначе они были бы просто ужасны. Представьте, что вы всегда делали бы одно и то же. В игре «камень-ножницы-бумага» нет никакой доминирующей стратегии. Но если бы вы играли с человеком, у которого на руках надеты прихватки, и он мог показать только камень или бумагу, у вас была бы доминирующая стратегия: бумага. Ваша бумага обернет его камень или приведет к ничьей, и вы не сможете проиграть, потому что соперник не может показать ножницы. Теперь, когда у вас есть доминирующая стратегия, нужно быть дураком, чтобы попробовать что-нибудь другое.

3. Битва полов

Игры интереснее, когда у них нет строго доминирующей стратегии. Например, битва полов. Анджали и Борислав идут на свидание, но не могут выбрать между балетом и боксом. Анджали любит бокс, потому что ей нравится, когда льется кровь на радость орущей толпе зрителей, считающих себя цивилизованными только потому, что они заплатили за чьи-то разбитые головы.

Борислав хочет смотреть балет, потому что он понимает, что балерины проходят через огромное количество травм и сложнейших тренировок, зная, что одна травма может положить конец всему. Артисты балета - величайшие спортсмены на Земле. Балерина может ударить вас ногой в голову, но никогда этого не сделает, потому что ее нога стоит гораздо дороже вашего лица.

Каждый из них хочет пойти на своё любимое мероприятие, но они не хотят наслаждаться им в одиночестве, таким образом, получаем схему их выигрыша: наибольшее значение - делать то, что им нравится, наименьшее значение - просто быть с другим человеком, и ноль - быть в одиночестве.

Некоторые люди предлагают упрямо балансировать на грани войны: если вы, несмотря ни на что, делаете то, что хотите, другой человек должен подстроиться под ваш выбор или потерять все. Как я уже говорил, упрощённая теория игр отлично выявляет глупцов.

Практическое применение: Избегайте острых углов

Конечно, и у этой стратегии есть свои значительные недостатки. Прежде всего, если вы относитесь к вашим свиданиям как к «битве полов», она не сработает. Расстаньтесь, чтобы каждый из вас мог найти человека, который ему понравится. А вторая проблема заключается в том, что в этой ситуации участники настолько не уверены в себе, что не могут этого сделать.

По-настоящему выигрышная стратегия для каждого - делать то, что они хотят, а после, или на следующий день, когда они будут свободны, пойти вместе в кафе. Или же чередовать бокс и балет, пока в мире развлечений не произойдет революция и не будет изобретен боксерский балет.

4. Равновесие Нэша

Равновесие Нэша - это набор ходов, где никто не хочет сделать что-то по-другому после свершившегося факта. И если мы сможем заставить это работать, теория игр заменит всю философскую, религиозную, и финансовую систему на планете, потому что «желание не прогореть» стало для человечества более мощной движущей силой, чем огонь.

Давайте быстро поделим 100$. Вы и я решаем, сколько из сотни мы требуем и одновременно озвучиваем суммы. Если наша общая сумма меньше ста, каждый получает то, что хотел. Если общее количество больше ста, тот, кто попросил наименьшее количество, получает желаемую сумму, а более жадный человек получает то, что осталось. Если мы просим одинаковую сумму, каждый получает 50 $. Сколько вы попросите? Как вы разделите деньги? Существует единственный выигрышный ход.

Требование 51 $ даст вам максимальную сумму независимо от того, что выберет ваш противник. Если он попросит больше, вы получите 51 $. Если он попросит 50 $ или 51 $, вы получите 50 $. И если он попросит меньше 50 $, вы получите 51 $. В любом случае нет никакого другого варианта, который принесет вам больше денег, чем этот. Равновесие Нэша - ситуация, в которой мы оба выбираем 51 $.

Практическое применение: сначала думайте

В этом вся суть теории игр. Не обязательно выиграть и тем более навредить другим игрокам, но обязательно сделать лучший для себя ход, независимо от того, что подготовят для вас окружающие. И даже лучше, если этот ход будет выгоден и для других игроков. Это своего рода математика, которая могла бы изменить общество.

Интересный вариант этой идеи - распитие спиртного, которое можно назвать Равновесием Нэша с временной зависимостью. Когда вы достаточно много пьете, то не заботитесь о поступках других людей независимо от того, что они делают, но на следующий день вы очень жалеете, что не поступили иначе.

5. Игра в орлянку

В орлянке участвуют Игрок 1 и Игрок 2. Каждый игрок одновременно выбирает орла или решку. Если они угадывают, Игрок 1 получает пенс Игрока 2. Если же нет - Игрок 2 получает монету Игрока 1.

Выигрышная матрица проста…

…оптимальная стратегия: играйте полностью наугад. Это сложнее, чем вы думаете, потому что выбор должен быть абсолютно случайным. Если у вас есть предпочтения орла или решки, противник может использовать его, чтобы забрать ваши деньги.

Конечно, настоящая проблема здесь заключается в том, что было бы намного лучше, если бы они просто бросали один пенс друг в друга. В результате их прибыль была бы такой же, а полученная травма могла бы помочь этим несчастным людям почувствовать что-то, кроме ужасной скуки. Ведь это худшая игра из существующих когда-либо. И это идеальная модель для серии пенальти.

Практическое применение: Пенальти

В футболе, хоккее и многих других играх, дополнительное время - это серия пенальти. И они были бы интереснее, если бы строились на том, сколько раз игроки в полной форме смогут сделать «колесо», потому что это, по крайней мере, было бы показателем их физических способностей и на это было бы забавно посмотреть. Вратари не могут чётко определить движение мяча или шайбы в самом начале их движения, потому что, к огромному сожалению, в наших спортивных состязаниях роботы все еще не участвуют. Вратарь должен выбрать левое или правое направление и надеяться, что его выбор совпадет с выбором противника, бьющего по воротам. В этом есть что-то общее с игрой в монетку.

Однако обратите внимание, что это не идеальный пример сходства с игрой в орла и решку, потому что даже при правильном выборе направления вратарь может не поймать мяч, а нападающий может не попасть по воротам.

Итак, каково же наше заключение согласно теории игр? Игры с мячом должны заканчиваться способом «мультимяча», где каждую минуту игрокам один на один выводится дополнительный мяч/шайба, до получения одной из сторон определенного результата, который был показателем настоящего мастерства игроков, а не эффектным случайным совпадением.

В конце концов, теория игр должна использоваться для того, чтобы сделать игру умнее. А значит лучше.

Дарья Золотых 09.02.2015

Понравился пост?
Поддержи Фактрум, нажми:





Называется игра двух лиц с нулевой суммой, в которой в распоряжении каждого из них имеется конечное множество стратегий. Правила матричной игры определяет платёжная матрица, элементы которой - выигрыши первого игрока, которые являются также проигрышами второго игрока.

Матричная игра является антагонистической игрой. Первый игрок получает максимальный гарантированный (не зависящий от поведения второго игрока) выигрыш, равный цене игры, аналогично, второй игрок добивается минимального гарантированного проигрыша.

Под стратегией понимается совокупность правил (принципов), определяющих выбор варианта действий при каждом личном ходе игрока в зависимости от сложившейся ситуации.

Теперь обо всём по порядку и подробно.

Платёжная матрица, чистые стратегии, цена игры

В матричной игре её правила определяет платёжная матрица .

Рассмотрим игру, в которой имеются два участника: первый игрок и второй игрок. Пусть в распоряжении первого игрока имеется m чистых стратегий, а в распоряжении второго игрока - n чистых стратегий. Поскольку рассматривается игра, естественно, что в этой игре есть выигрыши и есть проигрыши.

В платёжной матрице элементами являются числа, выражающие выигрыши и проигрыши игроков. Выигрыши и проигрыши могут выражаться в пунктах, количестве денег или в других единицах.

Составим платёжную матрицу:

Если первый игрок выбирает i -ю чистую стратегию, а второй игрок - j -ю чистую стратегию, то выигрыш первого игрока составит a ij единиц, а проигрыш второго игрока - также a ij единиц.

Так как a ij + (- a ij ) = 0 , то описанная игра является матричной игрой с нулевой суммой.

Простейшим примером матричной игры может служить бросание монеты. Правила игры следующие. Первый и второй игроки бросают монету и в результате выпадает "орёл" или "решка". Если одновременно выпали "орёл" и "орёл" или "решка" или "решка", то первый игрок выиграет одну единицу, а в других случаях он же проиграет одну единицу (второй игрок выиграет одну единицу). Такие же две стратегии и в распоряжении второго игрока. Соответствующая платёжная матрица будет следующей:

Задача теории игр - определить выбор стратегии первого игрока, которая гарантировала бы ему максимальный средний выигрыш, а также выбор стратегии второго игрока, которая гарантировала бы ему максимальный средний проигрыш.

Как происходит выбор стратегии в матричной игре?

Вновь посмотрим на платёжную матрицу:

Сначала определим величину выигрыша первого игрока, если он использует i -ю чистую стратегию. Если первый игрок использует i -ю чистую стратегию, то логично предположить, что второй игрок будет использовать такую чистую стратегию, благодаря которой выигрыш первого игрока был бы минимальным. В свою очередь первый игрок будет использовать такую чистую стратегию, которая бы обеспечила ему максимальный выигрыш. Исходя из этих условий выигрыш первого игрока, который обозначим как v 1 , называется максиминным выигрышем или нижней ценой игры .

При для этих величин у первого игрока следует поступать следующим образом. Из каждой строки выписать значение минимального элемента и уже из них выбрать максимальный. Таким образом, выигрыш первого игрока будет максимальным из минимальных. Отсюда и название - максиминный выигрыш. Номер строки этого элемента и будет номером чистой стратегии, которую выбирает первый игрок.

Теперь определим величину проигрыша второго игрока, если он использует j -ю стратегию. В этом случае первый игрок использует такую свою чистую стратегию, при которой проигрыш второго игрока был бы максимальным. Второй игрок должен выбрать такую чистую стратегию, при которой его проигрыш был бы минимальным. Проигрыш второго игрока, который обозначим как v 2 , называется минимаксным проигрышем или верхней ценой игры .

При решении задач на цену игры и определение стратегии для определения этих величин у второго игрока следует поступать следующим образом. Из каждого столбца выписать значение максимального элемента и уже из них выбрать минимальный. Таким образом, проигрыш второго игрока будет минимальным из максимальных. Отсюда и название - минимаксный выигрыш. Номер столбца этого элемента и будет номером чистой стратегии, которую выбирает второй игрок. Если второй игрок использует "минимакс", то независимо от выбора стратегии первым игроком, он проиграет не более v 2 единиц.

Пример 1.

.

Наибольший из наименьших элементов строк - 2, это нижняя цена игры, ей соответствует первая строка, следовательно, максиминная стратегия первого игрока первая. Наименьший из наибольших элементов столбцов - 5, это верхняя цена игры, ей соответствует второй столбец, следовательно, минимаксная стратегия второго игрока - вторая.

Теперь, когда мы научились находить нижнюю и верхнюю цену игры, максиминную и минимаксную стратегии, пришло время научиться обозначать эти понятия формально.

Итак, гарантированный выигрыш первого игрока:

Первый игрок должен выбрать чистую стратегию, которая обеспечивала бы ему максимальный из минимальных выигрышей. Этот выигрыш (максимин) обозначается так:

.

Первый игрок использует такую свою чистую стратегию, чтобы проигрыш второго игрока был максимальным. Этот проигрыш обозначается так:

Второй игрок должен выбрать свою чистую стратегию так, чтобы его проигрыш был минимальным. Этот проигрыш (минимакс) обозначается так:

.

Ещё пример из этой же серии.

Пример 2. Дана матричная игра с платёжной матрицей

.

Определить максиминную стратегию первого игрока, минимаксную стратегию второго игрока, нижнюю и верхнюю цену игры.

Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:

Наибольший из наименьших элементов строк - 3, это нижняя цена игры, ей соответствует вторая строка, следовательно, максиминная стратегия первого игрока вторая. Наименьший из наибольших элементов столбцов - 5, это верхняя цена игры, ей соответствует первый столбец, следовательно, минимаксная стратегия второго игрока - первая.

Седловая точка в матричных играх

Если верхняя и нижняя цена игры одинаковая, то считается, что матричная игра имеет седловую точку. Верно и обратное утверждение: если матричная игра имеет седловую точку, то верхняя и нижняя цены матричной игры одинаковы. Соответствующий элемент одновременно является наименьшим в строке и наибольшим в столбце и равен цене игры.

Таким образом, если , то - оптимальная чистая стратегия первого игрока, а - оптимальная чистая стратегия второго игрока. То есть равные между собой нижняя и верхняя цены игры достигаются на одной и той же паре стратегий.

В этом случае матричная игра имеет решение в чистых стратегиях .

Пример 3. Дана матричная игра с платёжной матрицей

.

Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:

Нижняя цена игры совпадает с верхней ценой игры. Таким образом, цена игры равна 5. То есть . Цена игры равна значению седловой точки . Максиминная стратегия первого игрока - вторая чистая стратегия, а минимаксная стратегия второго игрока - третья чистая стратегия. Данная матричная игра имеет решение в чистых стратегиях.

Решить задачу на матричную игру самостоятельно, а затем посмотреть решение

Пример 4. Дана матричная игра с платёжной матрицей

.

Найти нижнюю и верхнюю цену игры. Имеет ли данная матричная игра седловую точку?

Матричные игры с оптимальной смешанной стратегией

В большинстве случаев матричная игра не имеет седловой точки, поэтому соответствующая матричная игра не имеет решений в чистых стратегиях.

Но она имеет решение в оптимальных смешанных стратегиях. Для их нахождения нужно принять, что игра повторяется достаточное число раз, чтобы на основании опыта можно было предположить, какая стратегия является более предпочтительной. Поэтому решение связывается с понятием вероятности и среднего (математического ожидания). В окончательном же решении есть и аналог седловой точки (то есть равенства нижней и верхней цены игры), и аналог соответствующих им стратегий.

Итак, чтобы чтобы первый игрок получил максимальный средний выигрыш и чтобы средний проигрыш второго игрока был минимальным, чистые стратегии следует использовать с определённой вероятностью.

Если первый игрок использует чистые стратегии с вероятностями , то вектор называется смешанной стратегией первого игрока. Иначе говоря, это "смесь" чистых стратегий. При этом сумма этих вероятностей равна единице:

.

Если второй игрок использует чистые стратегии с вероятностями , то вектор называется смешанной стратегией второго игрока. При этом сумма этих вероятностей равна единице:

.

Если первый игрок использует смешанную стратегию p , а второй игрок - смешанную стратегию q , то имеет смысл математическое ожидание выигрыша первого игрока (проигрыша второго игрока). Чтобы его найти, нужно перемножить вектор смешанной стратении первого игрока (который будет матрицей из одной строки), платёжную матрицу и вектор смешанной стратегии второго игрока (который будет матрицей из одного столбца):

.

Пример 5. Дана матричная игра с платёжной матрицей

.

Определить математическое ожидание выигрыша первого игрока (проигрыша второго игрока), если смешанная стратегия первого игрока , а смешанная стратегия второго игрока .

Решение. Согласно формуле математического ожидания выигрыша первого игрока (проигрыша второго игрока) оно равно произведению вектора смешанной стратегии первого игрока, платёжной матрицы и вектора смешанной стратегии второго игрока:

первого игрока называется такая смешанная стратегия , которая обеспечивала бы ему максимальный средний выигрыш , если игра повторяется достаточное число раз.

Оптимальной смешанной стратегией второго игрока называется такая смешанная стратегия , которая обеспечивала бы ему минимальный средний проигрыш , если игра повторяется достаточное число раз.

По аналогии с обозначениями максимина и минимакса в случах чистых стратегий оптимальные смешанные стратегии обозначаются так (и увязываются с математическим ожиданием, то есть средним, выигрыша первого игрока и проигрыша второго игрока):

,

.

В таком случае для функции E существует седловая точка , что означает равенство .

Для того, чтобы найти оптимальные смешанные стратегии и седловую точку, то есть решить матричную игру в смешанных стратегиях , нужно свести матричную игру к задаче линейного программирования, то есть к оптимизационной задаче, и решить соответствующую задачу линейного программирования.

Сведение матричной игры к задаче линейного программирования

Для того, чтобы решить матричную игру в смешанных стратегиях, нужно составить прямую задачу линейного программирования и двойственную ей задачу . В двойственной задаче расширенная матрица, в которой хранятся коэффициенты при переменных в системе ограничений, свободные члены и коэффициенты при переменных в функции цели, транспонируется. При этом минимуму функции цели исходной задачи ставится в соответствие максимум в двойственной задаче.

Функция цели в прямой задаче линейного программирования:

.

Система ограничений в прямой задаче линейного программирования:

Функция цели в двойственной задаче:

.

Система ограничений в двойственной задаче:

Оптимальный план прямой задачи линейного программирования обозначим

,

а оптимальный план двойственной задачи обозначим

Линейные формы для соответствующих оптимальных планов обозначим и ,

а находить их нужно как суммы соответствующих координат оптимальных планов.

В соответствии определениям предыдущего параграфа и координатами оптимальных планов, в силе следующие смешанные стратегии первого и второго игроков:

.

Математики-теоретики доказали, что цена игры следующим образом выражается через линейные формы оптимальных планов:

,

то есть является величиной, обратной суммам координат оптимальных планов.

Нам, практикам, остаётся лишь использовать эту формулу для решения матричных игр в смешанных стратегиях. Как и формулы для нахождения оптимальных смешанных стратегий соответственно первого и второго игроков:

в которых вторые сомножители - векторы. Оптимальные смешанные стратегии также, как мы уже определили в предыдущем параграфе, являются векторами. Поэтому, умножив число (цену игры) на вектор (с координатами оптимальных планов) получим также вектор.

Пример 6. Дана матричная игра с платёжной матрицей

.

Найти цену игры V и оптимальные смешанные стратегии и .

Решение. Составляем соответствующую данной матричной игре задачу линейного программирования:

Получаем решение прямой задачи:

.

Находим линейную форму оптимальных планов как сумму найденных координат.