Географическая карта мира в 3д проекции. Иллюзии мозга

Визуализация данных самого разного рода, имеющих некое географическое распределение, в последнее время получает все большее и большее распространение. Тут, на Хабре, статьи с картами встречаются чуть ли не каждую неделю. Карты в статьях очень разные, но роднит их одно: как правило, в них используются всего две картографические проекции, при том - не самые удачные из существующих. Мне бы хотелось дать несколько наглядных примеров проекций, которые выглядят более эстетично и лучше приспособлены для разных видов визуализации. В этой статье будут рассмотрены общемировые проекции и проекции большей части Земли, так как визуализация чего-либо на карте мира, пожалуй, является наиболее распространенной из подобных задач.

Легкое введение

Поскольку статья ориентирована на вопросы визуализации данных, я не буду касаться глубоко теории проекций (датумов, конформности, равноугольности и тому подобного), кроме общих принципов их построения. Также, я буду говорить тут о «проекциях», формально подразумевая «систему координат», coordinate reference system, потому что для карт таких масштабов не имеет смысла отдельно рассматривать проекцию и датум. Математики здесь тоже практически не будет, кроме простой геометрии. Желающие ознакомиться с математическими принципами, могут это сделать по статьям на Wolfram MathWorld . Так что изучающим программирование в области геоинформационных систем или их опытным пользователям, эта статья, возможно, будет не очень полезна.

Перед началом, объясню пару вещей. Все примеры будут даваться с использованием набора данных государственных границ с вот этого сайта и набора данных Blue Marble Next Generation с сайта NASA . Последний включает в себя синтезированные безоблачные снимки земной поверхности за каждый из двенадцати месяцев 2004-го года, что позволит внести некоторое разнообразие в иллюстрации.

Я очень люблю открытый софт, но использовать GDAL в данном случае мне показалось неэффективно - некоторых не очень ходовых, но полезных проекций в его реализации на данный момент либо нет, либо я плохо смотрел исходники, а потому иллюстрации я готовил в коммерческой программе GlobalMapper, которой пользуюсь уже много лет, и которая славится поддержкой внушительного списка систем координат.

Названия проекций и некоторые термины я буду давать и англоязычные, потому что если кому-то захочется поискать материалы по этой теме, русскоязычных источников в сети найдется несколько меньше (объем статей в Википедии на русском меньше в несколько раз). Для большинства проекций я постараюсь дать не только названия, но и коды EPSG и/или WKID, а также название проекции в библиотеке PROJ.4 , широко используемой в открытом софте (например, в пакете R) для поддержки систем координат.

Некоторые проекции, возможно, окажутся кому-то знакомыми по картинке с xkcd , но все из них тут рассмотрены не будут.

Проблема

Начнем с того, что же это за самые распространенные проекции, и что с ними не так.

Первая проекция - так называемая «Географическая» , она же – Geographic projection, Latitude/Longitude, Plate carrée EPSG:4326 WKID:54001 PROJ.4:longlat . Строго говоря, она даже не совсем является проекцией, потому что получается путем интерпретации полярных угловых координат, как линейных прямоугольных, без всяких вычислений. Эту проекцию используют, потому что она способна отобразить всю поверхность Земли целиком и потому, что она самая простая математически, а данные очень часто распространяются не спроецированными, то есть именно в географических координатах (градусах широты и долготы).

Что же получается? Получается прямоугольник, где точки полюсов обращены в линии (верхнюю и нижнюю границы). Чем дальше от экватора, тем сильнее любой объект на карте оказывается сплюснут по вертикали и растянут по горизонтали. Как я уже сказал, это худо-бедно годится для отображения глобальных наборов данных, но полярные территории (Канада, Норвегия, Швеция, север России, Финляндия, Гренландия, Антарктида, Исландия) оказываются искажены. Проекции, которые позволяют избежать этого, существуют, и о них пойдет речь дальше. Единственная причина использовать эту проекцию - ее предельная простота программной реализации - нужно просто отобразить систему координат от -180º до 180º по X и от -90º до 90º по Y на плоскость, считая угловые единицы линейными.

Другая весьма популярная проекция - «проекция Меркатора» , Mercator projection PROJ.4:merc . Она также используется для визуализации данных, покрывающих весь мир, но ее популярность продиктована не только простотой - ее варианты являются стандартом де-факто для глобальных картографических сервисов, таких как Google Maps, Bing Maps, Here. С ней глубоко связаны картографические библиотеки OpenLayers, Leaflet, API упомянутых выше сервисов. В варианте Google и OpenStreetMap она носит название Web Mercator и имеет код EPSG/WKID:3857 , иногда на нее также ссылаются, как на EPSG:900913 . Принцип ее построения не сильно сложнее Географической – это проекция на цилиндр, чья ось совпадает с географической осью Земли, проецирование происходит линиями, выходящими из центра планеты, от чего ошибка растяжения приполярных областей по горизонтали оказывается скомпенсирована пропорциональным растяжением по вертикали. Проблема с этим только в том, что карта получится слишком большой по вертикали, если попытаться отобразить и север Гренландии. Потому обычно отбрасывают 16° полярных областей (в равной пропорции или больше - с юга).

На чей-то взгляд выглядит чуть лучше, чем Географическая, но одну проблему мы уже упомянули, а вторая - чем ближе объект к полюсам, тем он кажется больше, хотя его форма уже не так искажена. Потому, если предмет визуализации - плотность маркеров на единицу территории или расстояния, такой способ отображения будет вводить в заблуждение. При грамотном выборе способа визуализации, конечно, это можно скомпенсировать, а для каких-то случаев это вообще не проблема: например, если величина какого-то показателя в целой стране соотнесена с цветом этой страны на карте, эффект растяжения площадей не сказывается. Эта проекция сохраняет только форму объектов, потому очертания континентов и стран выглядят довольно узнаваемо. И, как я уже сказал, она - ваш первый и самый простой вариант при создании интерактивных веб-карт.

Варианты решения

Что же делать с глобальными данными, если нам по какой-то причине понадобилась проекция, лучше сохраняющая такие свойства объектов, как форма, площадь, расстояния и углы? Законы геометрии не дают нам сохранить все эти свойства сразу, развернув круглую поверхность Земли на плоскость. Однако, для визуализации данных более всего важна эстетика и восприятие, а не сохранение свойств, как для навигационных или измерительных задач. Потому становится возможным подобрать такую проекцию, искажения в которой были бы равномерно распределены по свойствам. И таких проекций существует довольно много. Существуют три самых известных, обладающих сходными свойствами: Winkel Tripel WKID:54042 PROJ.4:wintri , «проекция Робинсона» Robinson projection WKID:54030 PROJ.4:robin , «проекция Каврайского» (Kavrayskiy projection). Первая и последняя имеют визуально минимальные искажения, а неспециалисту, не видя градусной сетки, вообще весьма сложно различить их, потому я приведу иллюстрацию для Winkel Tripel, как той, которая лично мне нравится больше всего.

Вот так описание этой проекции выглядит в формате ESRI WKT:
PROJCS["Robinson",
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS84",

],
PRIMEM["Greenwich",0],

],
PROJECTION["Robinson"],
PARAMETER["central_meridian",0],


UNIT["Meter",1]
]

Как легко видеть, хотя искажение контуров и некоторое увеличение площади стран к полюсам здесь также наблюдаются, но это нельзя даже сравнивать с растяжением Географической проекции и пропорциональным увеличением проекции Меркатора.

Тут стоит сделать небольшое отступление и обратить внимание на то, что вид этой проекции по умолчанию страдает одним недостатком, который касается и других общемировых проекций. Дело в том, что если за центральный меридиан - линию, соединяющую северный и южный полюс через центр карты (longitude of origin) - принять нулевой меридиан, то карта будет разрезана по 180-му. Но при этом треть Чукотки окажется на левом краю карты, а две трети - на правом. Чтобы сделать карту красивее, разрез должен проходить где-то в районе 169-го западного меридиана восточнее острова Ратманова, для чего за центральный должен быть принят 11-й. Вот иллюстрация того, что получается:

А вот измененное для этого случая описание в ESRI WKT:
PROJCS["Robinson",
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS84",
SPHEROID["WGS84",6378137,298.257223563]
],
PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]
],
PROJECTION["Robinson"],
PARAMETER["central_meridian",11],
PARAMETER["false_easting",0],
PARAMETER["false_northing",0],
UNIT["Meter",1]
]

В формате определения системы координат для PROJ.4 долгота центра проекции задается параметром +lon_0=.

11-й меридиан - «магическое» число: практически все мировые проекции, имеющие равномерный масштаб вдоль экватора, могут быть разрезаны по Берингову проливу, если за центральный принять именно его, а не нулевой.

Замечу, что задумываясь о выборе проекции, стоит принимать во внимание все существующие реальные требования к визуализации. Например, если данные касаются климата, то может иметь смысл либо нанести на карту линии широты, либо использовать проекцию, где они горизонтальны, а не загибаются к краям карты (то есть, отказаться от Тройной Винкеля в пользу, например, Робинсона). В данном случае, это позволит легче и точнее оценить относительную близость разных мест к полюсам и экватору. Еще один весомый плюс проекции Робинсона - то, что она поддерживается множеством софта, в том числе открытого, тогда как про некоторые другие этого сказать нельзя.

Иногда, когда требуется максимально сохранить какое-то свойство, например - соотношение площадей объектов (стран) - эстетическая сторона страдает. Но поскольку это все же может для чего-то понадобиться, я приведу один пример такой проекции - «проекцию Моллвейде» , Mollweide projection WKID:54009 PROJ.4:moll .

Как видно, она довольно сильно напоминает проекцию Робинсона, но с той разницей, что полюса все же стянуты в точки, от чего форма приполярных областей выглядит сильно искаженной. Но пропорции площадей стран, как и требовалось, сохраняются куда лучше.

Самым молодым конкурентом этих проекций является проекция Natural Earth PROJ.4:natearth - она представляет из себя гибрид проекций Каврайского и Робинсона, а ее параметры были подобраны группой американских, швейцарских и словенских специалистов в 2007 году, тогда как возраст большинства картографических проекций - не менее полувека.

Для перепроецирования данных в нее существует некоторое количество инструментов, которые были написаны специально для этого, но ее поддержка еще далека от повсеместной.

Немного экзотики и специальных случаев

Конечно, все многообразие проекций на этом не заканчивается. Их изобретено немало. Некоторые просто выглядят странно (скажем, проекция Бонне изображает Землю в виде фигуры, напоминающей разрезанное яблоко или стилизованное сердце), некоторые - предназначены для особых ситуаций. Например, готов поспорить, что очень многие видели на картинках карту мира, которая похожа на корку мандарина, которую сняли и расплющили. Это, наверняка, была Interrupted Goode Homolosine projection WKID:54052 .

Вид ее вполне достоин названия. Ее назначение - отображать размер объектов (и в некоторой степени - форму) близко к естественным пропорциям. Ее главная проблема, кроме названия и странного вида, состоит в том, что путем подбора центрального меридиана невозможно добиться того, чтобы ни один крупный кусок суши не был разрезан. Обязательно пострадает что-то из списка: Гренландия, Исландия, Чукотка, Аляска. Лично на мой взгляд, проще привести отдельно изображения стран, чем использовать такую карту, если вы не хотите стилизовать свою работу под середину XX века.

Существуют проекции, которые по своей природе никак не отнести к общемировым, но мне бы хотелось рассмотреть их здесь, потому что они способны показать земной шар, то есть как-бы вид планеты из космоса. Одна из них - Vertical Near-Side Perspective projection WKID:54049 . Ее особое свойство - показывать земную поверхность в такой перспективе, как она выглядит с определенной высоты. Высота над эллипсоидом (идеализированной фигурой, моделирующей Землю) задается для этой проекции в явном виде.

На иллюстрации эта проекция имеет широту и долготу центра, равные широте и долготе Москвы, а высоту - 5000000 метров. Чем больше это расстояние, тем сильнее изображение Земли становится похоже на ее изображение в проекции, которую мы рассмотрим последней.

Проекция, которая показывает вид на Землю в параллельной перспективе, то есть как-бы с бесконечного расстояния, называется Orthographic projection WKID:43041 PROJ.4:ortho . В каком-то смысле, она знакома всем, кто когда-либо пользовался Google Earth. Я говорю, что в каком-то смысле, потому что «направление взгляда» в этой проекции всегда перпендикулярно поверхности Земли, тогда как в Google Earth его можно наклонять как угодно.

Для нее, как и для предыдущей проекции, можно задать центральные широту и долготу, чтобы ориентировать Землю желаемым образом. Например, можно показать полушарие с центром в какой-то точке, о которой идет речь - скажем, иллюстрируя транспортные потоки континентального масштаба, исходящие от одного предприятия. Сделав две карты с противоположными значениями координат, можно получить карту всего мира (правда, на краях искажения будут очень велики). Генерация последовательности карт с плавным изменением центральной точки даст кадры для анимации вращающейся планеты без всякой трехмерной графики.

Если статья окажется интересной, постараюсь написать продолжение о проекциях, используемых для отображения отдельных стран или регионов, ориентированную, как и эта статья, на базовые свойства этих проекций для задачи визуализации данных, инфографики и тому подобного.

Здравствуй, дорогой Читатель! Этой статьей мы продолжим тему плоской земли и приведем еще один факт доказывающий правоту этой теории. Не спеши плеваться в монитор, если ты скептик данной темы, а просто изучи предложенный материал и проверь его самостоятельно.

Конечно же бóльшему количеству населения не дано проверить какая на самом деле должна быть карта мира в котором мы живем. Но любопытному уму всегда хочется верить, что наш мир не такой каким мы привыкли его видеть. И живут на этой большой земле не только люди.

Но во всей этой путанице мы рано или поздно разберемся!))

Итак, на повестке дня у нас . Так ее нам представляют с детства:

нажмите для увеличения

В интернете и на картах-атласах мы можем найти информацию расстояний от суши до суши; размеры каждого континента вплоть до одного метра.

Все понятно и удобно. А самое главное — привычно , т.к. с детства мы видим такую карту и с детства мы учили географию именно по этой карте мира.

  • Россия самая большая по территории;
  • Австралия раза в 3 или 4 меньше России;
  • Африка визуально по ширине в 2 раза меньше России…, и т.д.

Официальные карты интернета

А теперь открываем Яндекс Карты и уменьшаем до показа всей карты мира.
Или просто пройдите по ссылке >

Находим инструмент Линейка:

Как пользоваться :

  1. выбрали инструмент Линейка
  2. кликнули левой кнопкой мыши на один край континента
  3. потом кликнули правой кнопкой мыши на другой край континента.

После таких простых манипуляций появится дуга с цифрой обозначающей расстояние.

Замеряем расстояние России от одного края до другого:

нажмите для увеличения

Как видите, Яндекс показывает 6540 км (ваше значение может немного отличаться).

Теперь меряем Австралию :

Россия — 6540км, а Австралия почти 4000 км. Судя по километражу, на территории России даже двух Австралий не поместится.

Не может быть! Воспользуемся фотошопом и наложим один континет на другой, чтобы убедится, что визуально нас зрение не обманывает и в России должно поместиться как минимум 3 Австралии:

нажмите для увеличения

Ой…, даже 4 помещается… Значит, если судить по полученным данным в км, то по ширине Россия лишь в 1,5 раза больше Австралии. А показывают визуально совсем по другому. Открывайте скорее яндекс и замеряйте всё самостоятельно, если не верите.

Меряем Северную Америку? Меряем!

Ширина по яндексу — 6240 км! Вот это новости Северная Америка по ширине как Россия почти! Как такое может быть?

Плоская Земля

Ладно… Ну а при чем тут Плоская Земля?! — спросят многие из Вас.

Статья о Плоской Земле с фактами
и доказательствами:

Все просто. Находим карту мира плоской земли на просторах интернета:

Что вы видите? Не напоминает ли вам это соотношение континентов, размеры которые нам показал яндекс? Совпадение или случайность?

Но это еще не все…

Сравнение

Вот официальная эмблема ООН:

Ничего не замечаете?

  • Во первых — на ней как раз все континенты по отношению друг к другу того размера, который показывает нам линейка яндекса;
  • Во вторых — она очень напоминает карту плоской земли. Не находите?

Вопрос к скептикам — Как так?)

Это совпадение или нам действительно с детства не то толкают? А главное — зачем они это делают? И почему Россия искусственно увеличена, как будто напугать кого-то захотели своей массой)) Или прикрыть? Ведь на фоне огромной России Австралия теряется визуально. Может на ее территории что-то скрывают? И хотят, чтобы люди смотрели куда угодно, но не на малюсенькую Австралию? Хм…. Остается только гадать…

Призыв к действию

В космос мы подняться не можем, к сожалению, но у нас есть интернет, мозги и глаза. Закройте все учебники, мы не знаем где в них правда, а где ложь. Станьте первооткрывателями, не оглядываясь на историю.

Начните делать практические опыты. Например сесть в машину и проехать самостоятельно дальнее расстояние от одного города до другого и сравнить это с официальной картой на яндексе.

Давайте искать несостыковки в нашем странном Мире вместе.

Поучаствуйте в опросе


Дорогие Друзья, оставляйте свои комментарии и практические наблюдения ниже к этой статье.

Скрывает не только реальные размеры, но и континенты;) Об одном из них мы обязательно расскажем на страницах сайта Тайны Мироздания , в скором времени.

Визуализация данных самого разного рода, имеющих некое географическое распределение, в последнее время получает все большее и большее распространение. Тут, на Хабре, статьи с картами встречаются чуть ли не каждую неделю. Карты в статьях очень разные, но роднит их одно: как правило, в них используются всего две картографические проекции, при том - не самые удачные из существующих. Мне бы хотелось дать несколько наглядных примеров проекций, которые выглядят более эстетично и лучше приспособлены для разных видов визуализации. В этой статье будут рассмотрены общемировые проекции и проекции большей части Земли, так как визуализация чего-либо на карте мира, пожалуй, является наиболее распространенной из подобных задач.

Легкое введение

Поскольку статья ориентирована на вопросы визуализации данных, я не буду касаться глубоко теории проекций (датумов, конформности, равноугольности и тому подобного), кроме общих принципов их построения. Также, я буду говорить тут о «проекциях», формально подразумевая «систему координат», coordinate reference system, потому что для карт таких масштабов не имеет смысла отдельно рассматривать проекцию и датум. Математики здесь тоже практически не будет, кроме простой геометрии. Желающие ознакомиться с математическими принципами, могут это сделать по статьям на Wolfram MathWorld . Так что изучающим программирование в области геоинформационных систем или их опытным пользователям, эта статья, возможно, будет не очень полезна.

Перед началом, объясню пару вещей. Все примеры будут даваться с использованием набора данных государственных границ с вот этого сайта и набора данных Blue Marble Next Generation с сайта NASA . Последний включает в себя синтезированные безоблачные снимки земной поверхности за каждый из двенадцати месяцев 2004-го года, что позволит внести некоторое разнообразие в иллюстрации.

Я очень люблю открытый софт, но использовать GDAL в данном случае мне показалось неэффективно - некоторых не очень ходовых, но полезных проекций в его реализации на данный момент либо нет, либо я плохо смотрел исходники, а потому иллюстрации я готовил в коммерческой программе GlobalMapper, которой пользуюсь уже много лет, и которая славится поддержкой внушительного списка систем координат.

Названия проекций и некоторые термины я буду давать и англоязычные, потому что если кому-то захочется поискать материалы по этой теме, русскоязычных источников в сети найдется несколько меньше (объем статей в Википедии на русском меньше в несколько раз). Для большинства проекций я постараюсь дать не только названия, но и коды EPSG и/или WKID, а также название проекции в библиотеке PROJ.4 , широко используемой в открытом софте (например, в пакете R) для поддержки систем координат.

Некоторые проекции, возможно, окажутся кому-то знакомыми по картинке с xkcd , но все из них тут рассмотрены не будут.

Проблема

Начнем с того, что же это за самые распространенные проекции, и что с ними не так.

Первая проекция - так называемая «Географическая» , она же – Geographic projection, Latitude/Longitude, Plate carrée EPSG:4326 WKID:54001 PROJ.4:longlat . Строго говоря, она даже не совсем является проекцией, потому что получается путем интерпретации полярных угловых координат, как линейных прямоугольных, без всяких вычислений. Эту проекцию используют, потому что она способна отобразить всю поверхность Земли целиком и потому, что она самая простая математически, а данные очень часто распространяются не спроецированными, то есть именно в географических координатах (градусах широты и долготы).

Что же получается? Получается прямоугольник, где точки полюсов обращены в линии (верхнюю и нижнюю границы). Чем дальше от экватора, тем сильнее любой объект на карте оказывается сплюснут по вертикали и растянут по горизонтали. Как я уже сказал, это худо-бедно годится для отображения глобальных наборов данных, но полярные территории (Канада, Норвегия, Швеция, север России, Финляндия, Гренландия, Антарктида, Исландия) оказываются искажены. Проекции, которые позволяют избежать этого, существуют, и о них пойдет речь дальше. Единственная причина использовать эту проекцию - ее предельная простота программной реализации - нужно просто отобразить систему координат от -180º до 180º по X и от -90º до 90º по Y на плоскость, считая угловые единицы линейными.

Другая весьма популярная проекция - «проекция Меркатора» , Mercator projection PROJ.4:merc . Она также используется для визуализации данных, покрывающих весь мир, но ее популярность продиктована не только простотой - ее варианты являются стандартом де-факто для глобальных картографических сервисов, таких как Google Maps, Bing Maps, Here. С ней глубоко связаны картографические библиотеки OpenLayers, Leaflet, API упомянутых выше сервисов. В варианте Google и OpenStreetMap она носит название Web Mercator и имеет код EPSG/WKID:3857 , иногда на нее также ссылаются, как на EPSG:900913 . Принцип ее построения не сильно сложнее Географической – это проекция на цилиндр, чья ось совпадает с географической осью Земли, проецирование происходит линиями, выходящими из центра планеты, от чего ошибка растяжения приполярных областей по горизонтали оказывается скомпенсирована пропорциональным растяжением по вертикали. Проблема с этим только в том, что карта получится слишком большой по вертикали, если попытаться отобразить и север Гренландии. Потому обычно отбрасывают 16° полярных областей (в равной пропорции или больше - с юга).

На чей-то взгляд выглядит чуть лучше, чем Географическая, но одну проблему мы уже упомянули, а вторая - чем ближе объект к полюсам, тем он кажется больше, хотя его форма уже не так искажена. Потому, если предмет визуализации - плотность маркеров на единицу территории или расстояния, такой способ отображения будет вводить в заблуждение. При грамотном выборе способа визуализации, конечно, это можно скомпенсировать, а для каких-то случаев это вообще не проблема: например, если величина какого-то показателя в целой стране соотнесена с цветом этой страны на карте, эффект растяжения площадей не сказывается. Эта проекция сохраняет только форму объектов, потому очертания континентов и стран выглядят довольно узнаваемо. И, как я уже сказал, она - ваш первый и самый простой вариант при создании интерактивных веб-карт.

Варианты решения

Что же делать с глобальными данными, если нам по какой-то причине понадобилась проекция, лучше сохраняющая такие свойства объектов, как форма, площадь, расстояния и углы? Законы геометрии не дают нам сохранить все эти свойства сразу, развернув круглую поверхность Земли на плоскость. Однако, для визуализации данных более всего важна эстетика и восприятие, а не сохранение свойств, как для навигационных или измерительных задач. Потому становится возможным подобрать такую проекцию, искажения в которой были бы равномерно распределены по свойствам. И таких проекций существует довольно много. Существуют три самых известных, обладающих сходными свойствами: Winkel Tripel WKID:54042 PROJ.4:wintri , «проекция Робинсона» Robinson projection WKID:54030 PROJ.4:robin , «проекция Каврайского» (Kavrayskiy projection). Первая и последняя имеют визуально минимальные искажения, а неспециалисту, не видя градусной сетки, вообще весьма сложно различить их, потому я приведу иллюстрацию для Winkel Tripel, как той, которая лично мне нравится больше всего.

Вот так описание этой проекции выглядит в формате ESRI WKT:
PROJCS["Robinson",
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS84",

],
PRIMEM["Greenwich",0],

],
PROJECTION["Robinson"],
PARAMETER["central_meridian",0],


UNIT["Meter",1]
]

Как легко видеть, хотя искажение контуров и некоторое увеличение площади стран к полюсам здесь также наблюдаются, но это нельзя даже сравнивать с растяжением Географической проекции и пропорциональным увеличением проекции Меркатора.

Тут стоит сделать небольшое отступление и обратить внимание на то, что вид этой проекции по умолчанию страдает одним недостатком, который касается и других общемировых проекций. Дело в том, что если за центральный меридиан - линию, соединяющую северный и южный полюс через центр карты (longitude of origin) - принять нулевой меридиан, то карта будет разрезана по 180-му. Но при этом треть Чукотки окажется на левом краю карты, а две трети - на правом. Чтобы сделать карту красивее, разрез должен проходить где-то в районе 169-го западного меридиана восточнее острова Ратманова, для чего за центральный должен быть принят 11-й. Вот иллюстрация того, что получается:

А вот измененное для этого случая описание в ESRI WKT:
PROJCS["Robinson",
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS84",
SPHEROID["WGS84",6378137,298.257223563]
],
PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]
],
PROJECTION["Robinson"],
PARAMETER["central_meridian",11],
PARAMETER["false_easting",0],
PARAMETER["false_northing",0],
UNIT["Meter",1]
]

В формате определения системы координат для PROJ.4 долгота центра проекции задается параметром +lon_0=.

11-й меридиан - «магическое» число: практически все мировые проекции, имеющие равномерный масштаб вдоль экватора, могут быть разрезаны по Берингову проливу, если за центральный принять именно его, а не нулевой.

Замечу, что задумываясь о выборе проекции, стоит принимать во внимание все существующие реальные требования к визуализации. Например, если данные касаются климата, то может иметь смысл либо нанести на карту линии широты, либо использовать проекцию, где они горизонтальны, а не загибаются к краям карты (то есть, отказаться от Тройной Винкеля в пользу, например, Робинсона). В данном случае, это позволит легче и точнее оценить относительную близость разных мест к полюсам и экватору. Еще один весомый плюс проекции Робинсона - то, что она поддерживается множеством софта, в том числе открытого, тогда как про некоторые другие этого сказать нельзя.

Иногда, когда требуется максимально сохранить какое-то свойство, например - соотношение площадей объектов (стран) - эстетическая сторона страдает. Но поскольку это все же может для чего-то понадобиться, я приведу один пример такой проекции - «проекцию Моллвейде» , Mollweide projection WKID:54009 PROJ.4:moll .

Как видно, она довольно сильно напоминает проекцию Робинсона, но с той разницей, что полюса все же стянуты в точки, от чего форма приполярных областей выглядит сильно искаженной. Но пропорции площадей стран, как и требовалось, сохраняются куда лучше.

Самым молодым конкурентом этих проекций является проекция Natural Earth PROJ.4:natearth - она представляет из себя гибрид проекций Каврайского и Робинсона, а ее параметры были подобраны группой американских, швейцарских и словенских специалистов в 2007 году, тогда как возраст большинства картографических проекций - не менее полувека.

Для перепроецирования данных в нее существует некоторое количество инструментов, которые были написаны специально для этого, но ее поддержка еще далека от повсеместной.

Немного экзотики и специальных случаев

Конечно, все многообразие проекций на этом не заканчивается. Их изобретено немало. Некоторые просто выглядят странно (скажем, проекция Бонне изображает Землю в виде фигуры, напоминающей разрезанное яблоко или стилизованное сердце), некоторые - предназначены для особых ситуаций. Например, готов поспорить, что очень многие видели на картинках карту мира, которая похожа на корку мандарина, которую сняли и расплющили. Это, наверняка, была Interrupted Goode Homolosine projection WKID:54052 .

Вид ее вполне достоин названия. Ее назначение - отображать размер объектов (и в некоторой степени - форму) близко к естественным пропорциям. Ее главная проблема, кроме названия и странного вида, состоит в том, что путем подбора центрального меридиана невозможно добиться того, чтобы ни один крупный кусок суши не был разрезан. Обязательно пострадает что-то из списка: Гренландия, Исландия, Чукотка, Аляска. Лично на мой взгляд, проще привести отдельно изображения стран, чем использовать такую карту, если вы не хотите стилизовать свою работу под середину XX века.

Существуют проекции, которые по своей природе никак не отнести к общемировым, но мне бы хотелось рассмотреть их здесь, потому что они способны показать земной шар, то есть как-бы вид планеты из космоса. Одна из них - Vertical Near-Side Perspective projection WKID:54049 . Ее особое свойство - показывать земную поверхность в такой перспективе, как она выглядит с определенной высоты. Высота над эллипсоидом (идеализированной фигурой, моделирующей Землю) задается для этой проекции в явном виде.

На иллюстрации эта проекция имеет широту и долготу центра, равные широте и долготе Москвы, а высоту - 5000000 метров. Чем больше это расстояние, тем сильнее изображение Земли становится похоже на ее изображение в проекции, которую мы рассмотрим последней.

Проекция, которая показывает вид на Землю в параллельной перспективе, то есть как-бы с бесконечного расстояния, называется Orthographic projection WKID:43041 PROJ.4:ortho . В каком-то смысле, она знакома всем, кто когда-либо пользовался Google Earth. Я говорю, что в каком-то смысле, потому что «направление взгляда» в этой проекции всегда перпендикулярно поверхности Земли, тогда как в Google Earth его можно наклонять как угодно.

Для нее, как и для предыдущей проекции, можно задать центральные широту и долготу, чтобы ориентировать Землю желаемым образом. Например, можно показать полушарие с центром в какой-то точке, о которой идет речь - скажем, иллюстрируя транспортные потоки континентального масштаба, исходящие от одного предприятия. Сделав две карты с противоположными значениями координат, можно получить карту всего мира (правда, на краях искажения будут очень велики). Генерация последовательности карт с плавным изменением центральной точки даст кадры для анимации вращающейся планеты без всякой трехмерной графики.

Если статья окажется интересной, постараюсь написать продолжение о проекциях, используемых для отображения отдельных стран или регионов, ориентированную, как и эта статья, на базовые свойства этих проекций для задачи визуализации данных, инфографики и тому подобного.

Искажения площадей в проекции Меркатора

На самом деле Африка по площади больше, чем США, Китай, Индия и почти вся Европа, вместе взятые . Но из общепринятых проекций географических карт складывается иллюзия, что это не так. Так называемая проекция Меркатора , которая используется для многих карт, сильнее всего искажает площади ближе к полюсам. Небольшая Гренландия (площадь меньше Конго) кажется гигантской территорией. Антарктида тоже. Площадь России значительно преувеличена относительно южных стран. Или взять Украину, площадь которой на самом деле равняется площади Мадагаскара.

Все карты мира врут нам уже много столетий. Более того, в разных странах - России, Европе, США, Китае, Австралии, Чили, Южной Африке - карты мира очень сильно отличаются .

Искажения на картографических картах - вполне естественное явление, потому что картографам нужно сделать развёртку эллипсоида Земли на плоскости. Это в принципе невозможно сделать без искажений. Вопрос только в то, что именно можно искажать, а что нельзя.

Искажения бывают четырёх видов:

  • искажения длин;
  • искажения углов;
  • искажения площадей;
  • искажения форм.
Общепринятая проекция Меркатора была изобретена фламандским географом и картографом Герардом Меркатором в 1569 году и до сих пор используется как стандартная картографическая проекция в морской навигации, потому что она практически сводит к нулю искажение углов. Позволяет определить правильный азимут и направление движения. Это критически важно в мореходстве - пойти в нужном направлении. Траектория движения корабля, идущего под одним и тем же румбом к меридиану, изображается прямой линией на карте в проекции Меркатора.


Истинный размер Африки в сравнении с разными странами. Автор карты : Кай Краузе

Почему большинство людей не осознают истинный масштаб гигантской Африки или более скромные размеры России, Канады или Гренландии? Потому что по какой-то причине проекция Меркатора используется не только в морской навигации, но и во многих других географических картах. По этим картам учат в школах, такие карты показывают по телевизору. Отсюда и характерное когнитивное искажение у многих обывателей.

Главное, что нам совсем необязательно пользоваться в повседневной жизни проекцией Меркатора. Мы же не морские навигаторы и не планируем авиационных налётов на соседние страны, куда нужно лететь по прямой. Мы простые мирные люди. Зачем нам совершенное точное направление по прямой линии между географическими точками? Если пофантазировать, то в обычной жизни это может быть удобно только при планировании больших путешествий на автомобиле на несколько тысяч километров. В остальных случаях мало кто перемещается на собственном транспорте. В основном, люди пользуются самолётами и поездами, так что даже у путешественников не нужды прокладывать маршрут самостоятельно.

Почему же тогда проекция Меркатора используется в школьных картах, на телевидении и т.д.? Это не совсем понятно. Возможно, для современного обывателя всё-таки более важно понимать сравнительные размеры стран мира, а не определять прямые направления по маршрутам.

Как мы уже заметили, в проекции Меркатора реальные площади показаны только возле экватора, и все остальные площади на земном шаре очень сильно искажаются. Эти искажения - цена, которую мы платим за знание точных направлений при навигации.

Как же нам составить более точную и справедливую карту мира с наименьшими искажениями площадей? В 2009 году эту проблему попытались решить дизайнеры из компании AuthaGraph . Их работа заключается в применении геометрических идей моделирования к практическим задачам. Одна из этих задач - проектирование более наглядной карты мира. Тогда они и составили карту AuthaGraph World Map , которая наиболее справедливо отображает площади географических стран и территорий.

Здесь используется разновидность так называемой изометрической проекции , при которой в отображении трёхмерного объекта на плоскость коэффициент искажения (отношение длины спроецированного на плоскость отрезка, параллельного координатной оси, к действительной длине отрезка) по всем трём осям один и тот же.

Проекция составлена в несколько этапов. Сначала эллиптическая поверхность земного шара разделена на 96 равных треугольников. Они спроецированы на 96 регионов модифицированного тетраэдра. Затем тетраэдр «сплющен» до правильной формы и обрезан, чтобы его можно было развернуть в прямоугольную форму, то есть в стандартную прямоугольную плоскую карту привычной формы.


Этапы составления проекции AuthaGraph World Map

Конечно, можно было сразу спроецировать сферу на тетраэдр обычным оптическим способом, но при этом возникают сильные искажения, которые бросаются в глаза. Идея предварительного разбиения на 96 регионов была в том, чтобы минимизировать такие искажения и сохранить пропорции территорий друг относительно друга.

Но нет предела совершенству. На основе оригинальной карты AuthaGraph японский дизайнер Хадзимэ Нарукава (Hajime Narukawa) создал новый вариант , который великолепно смотрится и при этом так же сохраняет пропорции стран и континентов друг относительно друга, а также соотношение земной массы и Мирового океана.


Карта Хадзимэ Нарукавы на основе AuthaGraph World Map

Эту более справедливую и пропорциональную карту можно использовать и в школьных учебниках, и в средствах массовой информации, поскольку она более точно показывает на плоскости проекцию земного шара и даёт лучшее представление о том, как выглядит наша Земля. Её преимущество ещё и в том, что на ней все континенты показаны без разрыва карты, включая Антарктиду (ну и конечно Япония находится в центре, как на многих японских картах: это вполне нормально, на российских картах тоже вертикальная ось мира проходит через Москву). И ещё несколько таких карт сшиваются в единое пространство, так что можно наглядно представить взаимное расположение континентов. Здесь понятно, например, какая точка европейской России ближе всего к Аляске.

Все существующие географические карты - это искажения. Самую точную картину мира показывает только глобус. Но если мы вынуждены использовать плоские поверхности, то хотя бы постараемся минимизировать количество искажений.

При переходе от физической поверхности Земли к ее отображению на плоскости (на карте) выполняют две операции: проектирование земной поверхности с ее сложным рельефом на поверхность земного эллипсоида, размеры которого установлены посредством геодезических и астрономических измерений, и изображение поверхности эллипсоида на плоскости посредством одной из картографических проекций.
Картографическая проекция - определенный способ отображения поверхности эллипсоида на плоскости.
Отображение земной поверхности на плоскости производится различными способами. Самый простой из них - перспективный . Суть его заключается в проектировании изображения с поверхности модели Земли (глобуса, эллипсоида) на поверхность цилиндра или конуса с последующим разворотом в плоскость (цилиндрические, конические) или непосредственным проектированием сферического изображения на плоскость (азимутальные).
Одним из простых способов понимания того, как картографические проекции изменяют пространственные свойства, является визуализация проекции света сквозь Землю на поверхность, которая называется проекционной поверхностью.
Представьте себе, что поверхность Земли прозрачна, и на ней нанесена картографическая сетка. Оберните кусок бумаги вокруг Земли. Источник света в центре Земли отбросит тени от сетки координат на кусок бумаги. Вы можете теперь развернуть бумагу и положить ее на плоскость. Форма координатной сетки на плоской поверхности бумаги очень отличается от ее формы на поверхности Земли (рис. 5.1).

Рис. 5.1. Картографическая сетка географической системы координат, спроектированная на цилиндрическую поверхность

Проекция карты исказила картографическую сетку; объекты, расположенные у полюса, вытянуты.
Построение перспективным способом не требует использования законов математики. Обратите внимание на то, что в современной картографии картографические сетки строят аналитическим (математическим) способом. Его суть заключается в расчете положения узловых точек (точек пересечения меридианов и параллелей) картографической сетки. Расчет выполняется на основе решения системы уравнений, которые связывают географическую широту и географическую долготу узловых точек (φ, λ ) с их прямоугольными координатами (х, у ) на плоскости. Эта зависимость может быть выражена двумя уравнениями вида:

х = f 1 (φ, λ); (5.1)
у = f 2 (φ, λ), (5.2)

называемыми уравнениями картографических проекций. Они позволяют вычислять прямоугольные координаты х, у изображаемой точки по географическим координатам φ и λ . Число возможных функциональных зависимостей и, следовательно, проекций неограниченно. Необходимо лишь, чтобы каждая точка φ , λ эллипсоида изображалась на плоскости однозначно соответствующей точкой х, у и чтобы изображение было непрерывным.

5.2. ИСКАЖЕНИЯ

Разложить сфероид на плоскость нисколько не легче, чем расплющить кусок арбузной кожуры. При переходе на плоскость, как правило, искажаются углы, площади, формы и длины линий, поэтому для конкретных целей можно создать проекции, которые значительно уменьшат какой-либо один вид искажений, например, площадей. Картографическим искажением называют нарушение геометрических свойств участков земной поверхности и расположенных на них объектов при их изображении на плоскости .
Искажения всех видов тесно связаны между собой. Они находятся в такой зависимости, что уменьшение одного вида искажения сразу же влечет увеличение другого. При уменьшении искажений площадей увеличиваются искажения углов и т.д. Рис. 5.2 демонстрирует, как трехмерные объекты сжимаются для того, чтобы их можно было поместить на плоскую поверхность.

Рис. 5.2. Проектирование сферической поверхности на поверхность проекции

На различных картах искажения могут быть различных размеров: на крупномасштабных они практически неощутимы, но на мелкомасштабных они бывают очень велики.
В середине XIX века французским ученым Николя Аугустом Тиссо была дана общая теория искажений. В своей работе он предложил использовать специальные эллипсы искажений, которые представляют собой бесконечно малые эллипсы в любой точке карты, являющиеся отображением бесконечно малых окружностей в соответствующей точке на поверхности земного эллипсоида или шара. Эллипс становится окружностью в точке нулевых искажений. Изменение формы эллипса отражает степень искажения углов и расстояний, а размера - степень искажения площадей.

Рис. 5.3. Эллипс на карте (а ) и соответствующий ему круг на глобусе (б )

Эллипс искажений на карте может занимать различное положение относительно меридиана, проходящего через его центр. Ориентировка эллипса искажений на карте обычно определяется азимутом его большой полуоси . Угол между северным направлением меридиана, проходящего через центр эллипса искажений, и его ближайшей большой полуосью называется углом ориентировки эллипса искажений. На рис. 5.3, а этот угол обозначен буквой А 0 , а соответствующий ему угол на глобусе α 0 (рис. 5.3, б ).
Азимуты любого направления на карте и на глобусе всегда отсчитываются от северного направления меридиана по ходу часовой стрелки и могут иметь значения от 0 до 360°.
Любое произвольное направление (ОК ) на карте или на глобусе (О 0 К 0 ) может быть определено или азимутом данного направления (А - на карте, α - на глобусе) или углом между ближайшей к северному направлению меридиана большой полуосью и данным направлением (v - на карте, u - на глобусе).

5.2.1. Искажения длин

Искажение длин - базовое искажение. Остальные искажения из него логически вытекают. Искажение длин означает непостоянство масштаба плоского изображения, что проявляется в изменении масштаба от точки к точке, и даже в одной и той же точке в зависимости от направления.
Это означает, что на карте присутствует 2 вида масштаба:

  • главный масштаб (М);
  • частный масштаб .

Главным масштабом карты называют степень общего уменьшения земного шара до определенных размеров глобуса, с которого земная поверхность переносится на плоскость. Он позволяет судить об уменьшении длин отрезков при перенесении их с земного шара на глобус. Главный масштаб записывается под южной рамкой карты, но это не значит, что отрезок измеренный в любом месте карты будет соответствовать расстоянию на земной поверхности.
Масштаб в данной точке карты по данному направлению называют частным . Он определяется как отношение бесконечно малого отрезка на карте dl К к соответствующему ему отрезку на поверхности эллипсоида dl З . Отношение частного масштаба к главному, обозначаемое через μ , характеризует искажение длин

(5.3)

Для оценки отклонения частного масштаба от главного пользуются понятием увеличения масштаба (С ), определяемого отношением

(5.4)

Из формулы (5.4) следует, что:

  • при С = 1 частный масштаб равен главному масштабу (µ = M ), т. е. искажения длин в данной точке карты по дан ному направлению отсутствуют;
  • при С > 1 частный масштаб крупнее главного (µ > M );
  • при С < 1 частный масштаб мельче главного (µ < М ).

Например, если при главном масштабе карты 1: 1 000 000 увеличение масштаба С равно 1,2, то µ = 1,2/1 000 000 = 1/833 333, т. е. одному сантиметру на карте соответствует примерно 8,3 км на местности. Частный масштаб крупнее главного (величина дроби больше).
При изображении поверхности глобуса на плоскости частные масштабы численно будут больше или меньше главного масштаба. Если принять главный масштаб равным единице (М = 1), то частные масштабы численно будут больше или меньше единицы. В этом случае под частным масштабом, численно равным увеличению масштаба, следует понимать отношение бесконечно малого отрезка в данной точке карты по данному направлению к соответствующему бесконечно малому отрезку на глобусе:

(5.5)

Отклонение частного масштаба (µ ) от единицы определяет искажение длины в данной точке карты по данному направлению (V ):

V = µ - 1 (5.6)

Часто искажение длины выражают в процентах к единице, т. е. к главному масштабу, и называют относительным искажением длины :

q = 100(µ - 1) = V×100 (5.7)

Например, при µ = 1,2 искажение длины V = +0,2 или относительное искажение длины V = +20%. Это означает, что отрезок длиной 1 см , взятый на глобусе, изобразится на карте отрезком длиной 1,2 см .
Судить о наличии на карте искажения длин удобно путем сравнения величины отрезков меридианов между соседними параллелями. Если они повсеместно равны, то искажения длин по меридианам нет, если такого равенства нет (рис. 5.5 отрезки АВ и CD ), то искажение длин линий имеется.


Рис. 5.4. Часть карты восточного полушария с показом картографических искажений

Если карта отображает такую большую территорию, что на ней показаны и экватор 0º и параллель 60° широты, то нетрудно по ней установить, имеется ли искажение длин вдоль параллелей. Для этого достаточно сравнить длину отрезков экватора и параллели с широтой 60° между соседними меридианами. Известно, что параллель 60° широты в два раза короче экватора. Если таково же соотношение указанных отрезков на карте, то искажения длин по параллелям нет; в противном случае оно имеется.
Наибольший показатель искажения длин у данной точки (большая полуось эллипса искажений) обозначают латинской буквой а , а самый меньший (малая полуось эллипса искажений) - b . Взаимно перпендикулярные направления, по которым действуют наибольший и наименьший показатели искажения длин, называют главными направлениями .
Для оценки различных искажений на картах из всех частных масштабов наибольшее значение имеют частные масштабы по двум направлениям: по меридианам и по параллелям. Частный масштаб по меридиану принято обозначать буквой m , а частный масштаб по параллели - буквой n.
В пределах мелкомасштабных карт сравнительно небольших территорий (например, Украины) отклонения масштабов длин от указанного на карте масштаба невелики. Ошибки при измерении длин в этом случае не превышают 2 - 2,5% от измеряемой длины, и ими в работе со школьными картами можно пренебречь. К некоторым картам для приближенных измерений прилагается измерительная масштабная линейка, сопровождаемая пояснительным текстом.
На морских картах , построенных в проекции Меркатора и на которых локсодромия изображается прямой линией, не дается специального линейного масштаба. Его роль выполняют восточная и западная рамки карты, представляющие собой меридианы, разбитые на деления через 1′ по широте.
В морской навигации расстояния принято оценивать в морских милях. Морская миля - это средняя длина дуги меридиана в 1′ по широте. Она заключает в себе 1852 м . Таким образом, рамки морской карты фактически разбиты на отрезки равные одной морской миле. Определив по прямой расстояние между двумя точками на карте в минутах меридиана, получают действительное расстояние в морских милях по локсодромии.


Рис 5.5. Измерение расстояний по морской карте.

5.2.2. Искажения углов

Искажения углов логически вытекают из искажения длин. За характеристику искажений углов на карте принимают разность углов между направлениями на карте и соответствующими направлениями на поверхности эллипсоида.
За показатель искажения углов между линиями картографической сетки принимают величину отклонения их от 90° и обозначают его греческой буквой ε (эпсилон).
ε = Ө - 90°, (5.8)
где в Ө (тэта) - измеренный на карте угол между меридианом и параллелью.

На рисунке 5.4 обозначено, что угол Ө равен 115°, следовательно, ε = 25°.
В точке, где угол пересечения меридиана и параллели остается на карте прямым, углы между другими направлениями могут быть измененными на карте, поскольку в каждой данной точке величина искажения углов может изменяться с переменой направления.
За общий показатель искажения углов ω (омега) принимают наибольшее искажение угла в данной точке, равное разности его величины на карте и на поверхности земного эллипсоида (шара). При известны х показателях а и b величину ω определяют по формуле:

(5.9)

5.2.3. Искажения площадей

Искажения площадей логически вытекают из искажения длин. За характеристику искажения площадей принимают отклонение площади эллипса искажений от исходной площади на эллипсоиде .
Простой способ выявления искаженности этого вида состоит в сравнении площадей клеток картографической сетки, ограниченных одноименными параллелями: при равенстве площадей клеток искажения нет. Это имеет место, в частности, на карте полушария (рис. 4,4), на которой заштрихованные клетки различаются по форме, но имеют одинаковую площадь.
Показатель искажения площадей (р ) вычисляют как произведение наибольшего и наименьшего показателей искажения длин в данном месте карты
p = а×b (5.10)
Главные направления в данной точке карты могут совпадать с линиями картографической сетки, но могут с ними не совпадать. Тогда показатели а и b по известным m и n вычисляют по формулам:

(5.11)
(5.12)

Входящий в уравнения показатель искажения р узнают в этом случае по произведению:

p = m×n×cos ε , (5.13)

Где ε (эпсилон) - величина отклонения угла пересечения картографической сетки от 9 0°.

5.2.4. Искажения форм

Искажение форм состоит в том, что форма участка или занятой объектом территории на карте отлична от их формы на уровенной поверхности Земли. Наличие искажения этого вида на карте можно установить путем сопоставления формы клеток картографической сетки, расположенных на одной широте: если они одинаковы, то искажения нет. На рисунке 5.4 две заштрихованные клетки различием формы свидетельствуют о наличии искажения данного вида. Можно также выявить искаженность формы определенного объекта (материка, острова, моря) по соотношению его ширины и длины на анализируемой карте и на глобусе.
Показатель искажения форм (k) зависит от различия наибольшего (а ) и наименьшего (b ) показателей искажения длин в данном месте карты и выражается формулой:

(5.14)

При исследовании и при выборе картографической проекции используют изоколы - линии равных искажений. Они могут наноситься на карту в виде пунктирных линий с целью показа величин искажений.


Рис. 5.6. Изоколы наибольших искажений углов

5.3. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ ПО ХАРАКТЕРУ ИСКАЖЕНИЙ

Для различных целей создаются различные по характеру искажений проекции. Характер искажений проекции определяется отсутствием в ней определенных искажений (углов, длин, площадей). В зависимости от этого все картографические проекции по характеру искажений подразделяются на четыре группы:
— равноугольные (конформные);
— равнопромежуточные (эквидистантные);
—равновеликие (эквивалентные);
— произвольные.

5.3.1. Равноугольные проекции

Равноугольными называются такие проекции, в которых направления и углы изображаются без искажений. Углы, измеренные на картах равноугольных проекций, равны соответствующим углам на земной поверхности. Бесконечно малая окружность в этих проекциях всегда остается окружностью.
В равноугольных проекциях масштабы длин в любой точке по всем направлениям одинаковы, поэтому у них нет искажения формы бесконечно малых фигур и нет искажения углов (рис. 5.7, Б). Это общее свойство равноугольных проекций выражает формула ω = 0°. Но формы реальных (конечных) географических объектов, занимающих целые участки на карте, искажаются (рис. 5.8, а). У равноугольных проекций наблюдаются особенно большие искажения площадей (что отчетливо демонстрируют эллипсы искажений).

Рис. 5.7. Вид эллипсов искажений в проекциях равновеликих —- А, равноугольных — Б , произвольных — В , в том числе, равнопромежуточных по меридиану — Г и равнопромежуточных по параллели — Д. На схемах показано искажение угла 45°.

Эти проекции используются для определения направлений и прокладки маршрутов по заданному азимуту, поэтому их всегда используют на топографических и навигационных картах. Недостатком равноугольных проекций является то, что в них сильно искажаются площади (рис. 5.7, а).


Рис. 5.8. Искажения в цилиндрической проекции:
а - равноугольной; б - равнопромежуточной; в - равновеликой

5.6.2. Равнопромежуточные проекции

Равнопромежуточными проекциями называют проекции, у которых масштаб длин одного из главных направлений сохраняется (остается неизменным) (рис. 5.7, Г. рис. 5.7, Д.) Применяются главным образом для создания мелкомасштабных справочных карт и карт звездного неба.


5.6.3. Равновеликие проекции

Равновеликими называются проекции, в которых нет искажений площадей, т. е. площадь фигуры, измеренной на карте, равна площади этой же фигуры на поверхности Земли. В равновеликих картографических проекциях масштаб площади повсюду имеет одну и ту же величину. Это свойство равновеликих проекций можно выразить формулой:

P = a× b = Const = 1 (5.15)

Неизбежным следствием равновеликости этих проекций является сильное искажение у них углов и форм, что хорошо поясняют эллипсы искажений (рис. 5.7, A).

5.6.4. Произвольные проекции

К произвольным относятся проекции, в которых имеются искажения длин, углов и площадей. Необходимость использования произвольных проекций объясняется тем, что при решении некоторых задач возникает необходимость в измерении углов, длин и площадей на одной карте. Но ни одна проекция не может быть одновременно и равноугольной, и равнопромежуточной, и равновеликой. Ранее уже говорилось, что с уменьшением изображаемого участка поверхности Земли на плоскости уменьшаются и искажения изображения. При изображении небольших участков земной поверхности в произвольной проекции величины искажений углов, длин и площадей незначительны, и при решении многих задач их можно не учитывать.

5.4. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ ПО ВИДУ НОРМАЛЬНОЙ КАРТОГРАФИЧЕСКОЙ СЕТКИ

В картографической практике распространена классификация проекций по виду вспомогательной геометрической поверхности, которая может быть использована при их построении. С этой точки зрения выделяют проекции: цилиндрические , когда вспомогательной поверхностью служит боковая поверхность цилиндра; конические , когда вспомогательной плоскостью является боковая поверхность конуса; азимутальные , когда вспомогательная поверхность - плоскость (картинная плоскость).
Поверхности, на которые проектируют земной шар, могут быть к нему касательными или секущими его. Они могут быть и по-разному ориентированы.
Проекции, при построении которых оси цилиндра и конуса совмещались с полярной осью земного шара, а картинная плоскость, на которую проектировалось изображение, размещалась касательно в точке полюса, называются нормальными.
Геометрическое построение названных проекций отличается большой наглядностью.


5.4.1. Цилиндрические проекции

Для простоты рассуждения вместо эллипсоида воспользуемся шаром. Заключим шар в цилиндр, касательный по экватору (рис. 5.9, а).


Рис. 5.9. Построение картографической сетки в равновеликой цилиндрической проекции

Продолжим плоскости меридианов ПА, ПБ, ПВ, ... и примем пересечения этих плоскостей с боковой поверхностью цилиндра за изображение на ней меридианов. Если разрезать боковую поверхность цилиндра по образующей аАа 1 и развернуть ее на плоскость, то меридианы изобразятся параллельными равноотстоящими прямыми линиями аАа 1 , бБб 1 , вВв 1 ..., перпендикулярными экватору АБВ.
Изображение параллелей может быть получено различными способами. Один из них - продолжение плоскостей параллелей до пересечения с поверхностью цилиндра, что даст в развертке второе семейство параллельных прямых линий, перпендикулярных меридианам.
Полученная цилиндрическая проекция (рис. 5.9, б) будет равновеликой , так как боковая поверхность шарового пояса АГЕД, равная 2πRh (где h - расстояние между плоскостями АГ и ЕД), соответствует площади изображения этого пояса в развертке. Главный масштаб сохраняется вдоль экватора; частные масштабы по параллели увеличиваются, а по меридианам уменьшаются по мере удаления от экватора.
Другой способ определения положения параллелей основан на сохранении длин меридианов, т. е. на сохранении главного масштаба вдоль всех меридианов. В этом случае цилиндрическая проекция будет равнопромежуточной по меридианам (рис. 5.8, б).
Для равноугольной цилиндрической проекции необходимо в любой точке постоянство масштаба по всем направлениям, что требует увеличения масштаба вдоль меридианов по мере удаления от экватора в соответствии с увеличением масштабов вдоль параллелей на соответствующих широтах (см. рис. 5.8, а).
Нередко вместо касательного цилиндра используют цилиндр, секущий сферу по двум параллелям (рис. 5.10), вдоль которых при развертке сохраняется главный масштаб. В этом случае частные масштабы вдоль всех параллелей между параллелями сечения будут меньше, а на остальных параллелях - больше главного масштаба.


Рис. 5.10. Цилиндр, секущий шар по двум параллелям

5.4.2. Конические проекции

Для построения конической проекции заключим шар в конус, касающийся шара по параллели АБВГ (рис. 5.11, а).


Рис. 5.11. Построение картографической сетки в равнопромежуточной конической проекции

Аналогично предыдущему построению продолжим плоскости меридианов ПА, ПБ, ПВ, ... и примем их пересечения с боковой поверхностью конуса за изображение на ней меридианов. После развертки боковой поверхности конуса на плоскости (рис. 5.11, б) меридианы изобразятся радиальными прямыми ТА, ТБ, ТВ,..., исходящими из точки Т. Обратите внимание на то, что углы между ними (схождение меридианов) будут пропорциональны (но не равны) разностям долгот. Вдоль параллели касания АБВ (дуги окружности радиусом ТА) сохраняется главный масштаб.
Положение других параллелей, изображающихся дугами концентрических окружностей, можно определить из определенных условий, одно из которых - сохранение главного масштаба вдоль меридианов (АЕ = Ае) - приводит к конической равнопромежуточной проекции.

5.4.3. Азимутальные проекции

Для построения азимутальной проекции воспользуемся плоскостью, касательной к шару в точке полюса П (рис. 5.12). Пересечения плоскостей меридианов с касательной плоскостью дают изображение меридианов Па, Пе, Пв,... в виде прямых, углы между которыми равны разностям долгот. Параллели, являющиеся концентрическими окружностями, могут быть определены различным путем, например, проведены радиусами, равными выпрямленным дугам меридианов от полюса до соответствующей параллели ПА = Па. Такая проекция будет равнопромежуточной по меридианам и сохраняет вдоль них главный масштаб.


Рис. 5.12. Построение картографической сетки в азимутальной проекции

Частным случаем азимутальных проекций являются перспективные проекции, построенные по законам геометрической перспективы. В этих проекциях каждая точка поверхности глобуса переносится на картинную плоскость по лучам, выходящим из одной точки С , называемой точкой зрения. В зависимости от положения точки зрения относительно центра глобуса проекции подразделяются на:

  • центральные - точка зрения совпадает с центром глобуса;
  • стереографические - точка зрения располагается на поверхности глобуса в точке, диаметрально противоположной точке касания картинной плоскости к поверхности глобуса;
  • внешние - точка зрения вынесена за пределы глобуса;
  • ортографические - точка зрения вынесена в бесконечность, т. е. проектирование осуществляется параллельными лучами.


Рис. 5.13. Виды перспективных проекций: а - центральная;
б - стереографическая; в - внешняя; г - ортографическая.

5.4.4. Условные проекции

Условные проекции - проекции, для которых нельзя подобрать простых геометрических аналогов. Их строят, исходя из каких-либо заданных условий, например желательного вида географической сетки, того или иного распределения искажений на карте, заданного вида сетки и др. В частности, к условным принадлежат псевдоцилиндрические, псевдоконические, псевдоазимутальные и другие проекции, полученные путем преобразования одной или нескольких исходных проекций.
У псевдоцилиндрических проекций экватор и параллели - прямые, параллельные друг другу линии (что роднит их с цилиндрическими проекциями), а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана (рис. 5.14)


Рис. 5.14. Вид картографической сетки в псевдоцилиндрической проекции.

У псевдоконических проекций параллели - дуги концентрических окружностей, а меридианы - кривые, симметричные относительно среднего прямолинейного меридиана (рис. 5.15);


Рис. 5.15. Картографическая сетка в одной из псевдоконических проекций

Построение сетки в поликонической проекции можно представить путем проектирования участков градусной сетки глобуса на поверхность нескольких касательных конусов и последующей развертки в плоскость образовавшихся на поверхности конусов полос. Общий принцип такого проектирования показан на рисунке 5.16.

Рис. 5.16. Принцип построения поликонической проекции:
а - положение конусов; б - полосы; в - развертка

Буквами S на рисунке обозначены вершины конусов. На каждый конус проектируют широтный участок поверхности глобуса, примыкающий к параллели касания соответствующего конуса.
Для внешнего облика картографических сеток в поликонической проекции характерно, что меридианы имеют форму кривых линий (кроме среднего — прямого), а параллели — дуги эксцентрических окружностей.
В поликонических проекциях, используемых для построения мировых карт, приэкваториальный участок проектируют на касательный цилиндр, поэтому на полученной сетке экватор имеет форму прямой линии, перпендикулярной среднему меридиану.
После развертки конусов получают изображение этих участков в виде полос на плоскости; полосы соприкасаются по среднему меридиану карты. Окончательный вид сетка получает после ликвидации разрывов между полосами путем растяжений (рис. 5.17).


Рис. 5.17. Картографическая сетка в одной из поликонических

Многогранные проекции - проекции, получаемые путем проектирования на поверхность многогранника (рис. 5.18), касательного или секущего шар (эллипсоид). Чаще всего каждая грань представляет собой равнобочную трапецию, хотя возможны и иные варианты (например, шестиугольники, квадраты, ромбы). Разновидностью многогранных являются многополосные проекции, причем полосы могут «нарезаться» и по меридианам, и по параллелям. Такие проекции выгодны тем, что искажения в пределах каждой грани или полосы совсем невелики, поэтому их всегда используют для многолистных карт. Топографические и обзорно-топографические создают исключительно в многогранной проекции, и рамка каждого листа представляет собой трапецию, составленную линиями меридианов и параллелей. За это приходится "расплачиваться" - блок листов карт нельзя совместить по общим рамкам без разрывов.


Рис. 5.18. Схема многогранной проекции и расположение листов карт

Необходимо отметить, что в наши дни для получения картографических проекций не пользуются вспомогательными поверхностями. Никто не помещает шар в цилиндр и не надевает на него конус. Это всего лишь геометрические аналогии, позволяющие понять геометрическую суть проекции. Изыскание проекций выполняют аналитически. Компьютерное моделирование позволяет достаточно быстро рассчитать любую проекцию с заданными параметрами, а автоматические графопостроители легко вычерчивают соответствующую сетку меридианов и параллелей, а при необходимости - и карту изокол.
Существуют специальные атласы проекций, позволяющие подобрать нужную проекцию для любой территории. В последнее время созданы электронные атласы проекций, с помощью которых легко отыскать подходящую сетку, сразу оценить ее свойства, а при необходимости провести в интерактивном режиме те или иные модификации или преобразования.

5.5. КЛАССИФИКАЦИЯ ПРОЕКЦИЙ В ЗАВИСИМОСТИ ОТ ОРИЕНТИРОВАНИЯ ВСПОМОГАТЕЛЬНОЙ КАРТОГРАФИЧЕСКОЙ ПОВЕРХНОСТИ

Нормальные проекции - плоскость проектирования касается земного шара в точке полюса или ось цилиндра (конуса) совпадает с осью вращения Земли (рис. 5.19).


Рис. 5.19. Нормальные (прямые) проекции

Поперечные проекции - плоскость проектирования касается экватора в какой-либо точке или ось цилиндра (конуса) совпадает с плоскостью экватора (рис. 5.20).




Рис. 5.20. Поперечные проекции

Косые проекции - плоскость проектирования касается земного шара в любой заданной точке (рис. 5.21).


Рис. 5.21. Косые проекции

Из косых и поперечных проекций наиболее часто используют косые и поперечные цилиндрические, азимутальные (перспективные) и псевдоазимутальные проекции. Поперечные азимутальные применяют для карт полушарий, косые - для территорий, имеющих округлую форму. Карты материков часто составляют в поперечных и косых азимутальных проекциях. Поперечно-цилиндрическая проекция Гаусса - Крюгера применяется для государственных топографических карт.

5.6. ВЫБОР ПРОЕКЦИЙ

На выбор проекций влияет много факторов, которые можно сгруппировать следующим образом:

  • географические особенности картографируемой территории, ее положение на Земном шаре, размеры и конфигурация;
  • назначение, масштаб и тематика карты, предполагаемый круг потребителей;
  • условия и способы использования карты, задачи, которые будут решаться по карте, требования к точности результатов измерений;
  • особенности самой проекции - величины искажений длин, площадей, углов и их распределение по территории, форма меридианов и параллелей, их симметричность, изображение полюсов, кривизна линий кратчайшего расстояния.

Первые три группы факторов задаются изначально, четвертая - зависит от них. Если составляется карта, предназначенная для навигации, обязательно должна быть использована равноугольная цилиндрическая проекция Меркатора. Если картографируется Антарктида, то почти наверняка будет принята нормальная (полярная) азимутальная проекция и т.д.
Значимость названных факторов может быть различной: в одном случае на первое место ставят наглядность (например, для настенной школьной карты), в другом - особенности использования карты (навигация), в третьем - положение территории на земном шаре (полярная область). Возможны любые комбинации, а следовательно - и разные варианты проекций. Тем более что выбор очень велик. Но все же можно указать некоторые предпочтительные и наиболее традиционные проекции.
Карты мира обычно составляют в цилиндрических, псевдоцилиндрических и поликонических проекциях. Для уменьшения искажений часто используют секущие цилиндры, а псевдоцилиндрические проекции иногда дают с разрывами на океанах.
Карты полушарий всегда строят в азимутальных проекциях. Для западного и восточного полушарий естественно брать поперечные (экваториальные), для северного и южного полушарий - нормальные (полярные), а в других случаях (например, для материкового и океанического полушарий) — косые азимутальные проекции.
Карты материков Европы, Азии, Северной Америки, Южной Америки, Австралии с Океанией чаще всего строят в равновеликих косых азимутальных проекциях, для Африки берут поперечные, а для Антарктиды - нормальные азимутальные.
Карты отдельных стран , административных областей, провинций, штатов выполняют в косых равноугольных и равновеликих конических или азимутальных проекциях, но многое зависит от конфигурации территории и ее положения на земном шаре. Для небольших по площади районов задача выбора проекции теряет актуальность, можно использовать разные равноугольные проекции, имея в виду, что искажения площадей на малых территориях почти неощутимы.
Топографические карты Украины создают в поперечно-цилиндрической проекции Гаусса, а США и многие другие западные страны - в универсальной поперечно-цилиндрической проекции Меркатора (сокращенно UТМ). Обе проекции близки по своим свойствам; по существу та и другая являются многополостными.
Морские и аэронавигационные карты всегда даются исключительно в цилиндрической проекции Меркатора, а тематические карты морей и океанов создают в самых разнообразных, иногда довольно сложных проекциях. Например, для совместного показа Атлантического и Северного Ледовитого океанов применяют особые проекции с овальными изоколами, а для изображения всего Мирового океана - равновеликие проекции с разрывами на материках.
В любом случае при выборе проекции, в особенности для тематических карт, следует иметь в виду, что обычно искажения на карте минимальны в центре и быстро возрастают к краям. Кроме того, чем мельче масштаб карты и обширнее пространственный охват, тем большее внимание приходится уделять «математическим» факторам выбора проекции, и наоборот - для малых территорий и крупных масштабов более существенными становятся «географические» факторы.

5.7. РАСПОЗНАВАНИЕ ПРОЕКЦИЙ

Распознать проекцию, в которой составлена карта, - значит установить ее название, определить принадлежность к тому или иному виду, классу. Это нужно для того, чтобы иметь представление о свойствах проекции, характере, распределении и величине искажений - словом, для того, чтобы знать, как пользоваться картой, чего от нее можно ожидать.
Некоторые нормальные проекции сразу распознаются по виду меридианов и параллелей. Например, легко узнаваемы нормальные цилиндрические, псевдоцилиндрические, конические, азимутальные проекции. Но даже опытный картограф не сразу распознает многие произвольные проекции, потребуются специальные измерения по карте, чтобы выявить их равноугольность, равновеликость или равнопромежуточность по одному из направлений. Для этого существуют особые приемы: сперва устанавливают форму рамки (прямоугольник, окружность, эллипс), определяют, как изображены полюсы, затем измеряют расстояния между соседними параллелями вдоль по меридиану, площади соседних клеток сетки, углы пересечения меридианов и параллелей, характер их кривизны и т.п.
Существуют специальные таблицы-определители проекций для карт мира, полушарий, материков и океанов. Проведя необходимые измерения по сетке, можно отыскать в такой таблице название проекции. Это даст представление о ее свойствах, позволит оценить возможности количественных определений по данной карте, выбрать соответствующую карту с изоколами для внесения поправок.

Видео
Виды проекций по характеру искажений

Вопросы для самоконтроля:

  1. Какие элементы составляют математическую основу карты?
  2. Что называют масштабом географической карты?
  3. Что называют главным масштабом карты?
  4. Что называют частным масштабом карты?
  5. Чем обусловлено отклонение частного масштаба от главного на географической карте?
  6. Как измерить расстояние между точками на морской карте?
  7. Что представляет собой эллипс искажений и для каких целей он используется?
  8. Как можно определить по эллипсу искажений наибольший и наименьший масштабы?
  9. Какие существует методы переноса поверхности земного эллипсоида на плоскость, в чем их сущность?
  10. Что называют картографической проекцией?
  11. Как классифицируют проекции по характеру искажений?
  12. Какие проекции называют равноугольными, как изобразить эллипс искажений на этих проекциях?
  13. Какие проекции называют равнопромежуточными, как изобразить эллипс искажений на этих проекциях?
  14. Какие проекции называют равновеликими, как изобразить эллипс искажений на этих проекциях?
  15. Какие проекции называют произвольными?