В чем состоит главный признак либеральной демократии. Либеральная демократия в россии

ТЕМА: Водяной пар в атмосфере

1. Влажность воздуха. Характеристики влажности воздуха.

2. Изменение характеристик влажности воздуха с высотой и в растительном покрове.

3. Испарение. Скорость испарения.

4. Испаряемость. Коэффициент увлажнения.

5. Испарение с поверхности воды, почвы и растений.

6. Конденсация водяного пара. Сублимация водяного пара.

7. Продукты конденсации и сублимации водяного пара наземной поверхности и в свободной атмосфере.

8. Облака. Классификация облаков.

1. Влажность воздуха

«Влажность воздуха – содержание водяного пара в атмосфере».

Водяной пар непрерывно поступает в атмосферу вследствие испарения с поверхности водоемов, почвы, снега, льда и растительного покрова.

1.Характеристики влажности воздуха

1. Парциальное давление водяного пара [е ] – давление, которое имеет водяной пар, находящийся в воздухе.

Измеряется в [г Па]. 1 г Па = 100 Па = 1 мб (миллибар)

2. Давление насыщенного водяного пара [ Е ] – это парциальное давление водяного пара, находящегося в состоянии насыщения.

(Насыщение пара – состояние, при котором в единице обьема воздуха содержится максимально возможное при данной температуре количество водяного пара).

Чем выше температура воздуха, тем большее количество водяного пара может в нем содержаться. Поэтому Е тем больше, чем выше температура воздуха .

Измеряется в [ гПа ] (гектопаскалях).

3. Абсолютная влажность воздуха [ а ] – количество водяного пара, содержащегося в воздухе. Измеряется в [г/м.куб].

4. Относительная влажность воздуха [f ] – отношение парциального давления водяного пара к давлению насыщенного водяного пара при данной температуре, выраженное в %

(т.е. измеряется в %).

Измеряется в [г Па]

С увеличением f , d уменьшается и при f = 100%, d = 0

  1. Точка росы. [ t d ] – это температура, при которой объём воздуха, охлаждающейся при постоянном давлении, становится насыщенный водяным паром.

f [ °C ] –единицы измерения.

При f = 100%, температура воздуха является точкой росы.

Чем меньше водяного пара содержится в воздухе, тем ниже температура точки росы и наоборот.

2. Изменения характеристик влажности воздуха с высотой и в растительном покрове.

  1. С высотой [е ] быстро уменьшается, т. к. в нижний слой атмосферы водяной пар поступает непрерывно благодаря испарению с земной поверхности, а в более высокие слои пара поступает меньше. [Е ] также резко уменьшается с высотой, за счет понижения температуры воздуха. А [ f ] изменяется неравномерно: вначале возрастает, т. к. с высотой уменьшается температура воздуха, затем начинает понижаться за счет меньшего поступления водяного пара в высокие слои атмосферы, а потом возрастает до 100% в слое облаков (от 0,5 до 10 км) Выше этого слоя водяного пара практически нет.
  2. В растительном покрове влажность воздуха выше, чем над оголенной почвой за счет испарения с поверхности листьев растений (транспирации),а также благодаря снижению скорости ветра между растениями, что уменьшает перенос влаги.

Поэтому [ f ] и [ е ] в растительном покрове выше, чем над оголенной почвой:

Max f (80 – 90%) весь год в тропических и экваториальных лесах, а min (до 5% и менее в пустынях.

3. Испарение

Испарение – переход вещества из жидкого состояния в газообразное. Количественно испарение характеризуется скоростью испарения – это масса воды, испаряющаяся с единицы поверхности, в единицу времени [г/см. кв ]

Скорость испарения можно вычислить по следующей формуле:

W=A (E 1 –e) Р

(закон Дальтона)

где (Е 1 – е) – дефицит насыщения, взятый по температуре испаряющей поверхности

Р – атмосферное давление

А – коэффициент, зависящий от скорости ветра [≈ 0, 0008]

Таким образом, скорость испарения зависит:

1. От температуры испаряющей поверхности (чем выше температура, тем больше скорость).

2. От дефицита насыщения (чем суше воздух, тем больше скорость).

3. От скорости ветра (ветер уносит влажный воздух, заменяя его на сухой и таким образом увеличивает скорость испарения).

4. От атмосферного давления (давление атмосферы затрудняет отрыв молекул воды от испаряющей поверхности, в результате скорость испарения уменьшается)

4. Испаряемость

Испаряемость - теоретически возможное испарение с увлажненной поверхности при данных метеорологических условиях.

Испаряемость может быть равна испарению, но на большей части планеты она выше, чем реальное испарение.

Например: В пустыне испарение примерно в 25 раз меньше испаряемости, т. к. осадков выпадает менее 100 мм/год, а испаряемость более 2.500 мм.

Увлажнение территории можно охарактеризовать с помощью коэффициента увлажнения.

R – количество осадков за год (мм)

I – испаряемость за год (мм)

Если К больше 1, увлажнение территории избыточное (то есть осадков выпадает больше, чем может испариться в данных условиях.

Если К=1 ,увлажнение нормальное.

Если К меньше 1 , но больше 0,3 –недостаточное.

Если ≤ 0,3 – скудное.

Чем меньше К увл, тем засушливее климат.

5. Испарение с поверхности воды, почвы и растений

1. Испарение с водной поверхности – зависит от всех тех же факторов, что и скорость испарения (то есть: от температуры, скорости ветра, сухости воздуха, атмосферного давления). Но дополнительно влияет и соленость воды: над раствором скорость испарения меньше, чем над пресной водой при тех же метеоусловиях.

2. Испарение с поверхности почвы – зависит от тех же факторов (температуры, скорости ветра, атмосферного давления, влажности воздуха), но, кроме того:

-влажности почвы (чем больше влажность, тем больше испарение)

-цвета почвы (у темных лучше испарение, так как они хорошо прогреваются)

-плотности почвы (плотные испаряют лучше, чем рыхлые, так как имеют капилляры)

-рельефа (южные склоны больше нагреваются; над возвышенностями скорость ветра больше, чем в низинах, поэтому испарение сильнее)



-растительный покров – растения затеняют почву, а так же уменьшают скорость ветра, и таким образом, снижают испарение.

«Процесс испарения влаги растениями – транспирация». Происходит через устьица, находящиеся на листьях, а у теневыносливых растений и через кутикулу (слой из кутина и воска)

.Значение транспирации:

1. Охлаждает растения, помогая избежать перегрева.

2. Создает непрерывный ток воды по растению – в результате через корни постоянно поступает вода с растворенными минеральными веществами

Интенсивность транспирации - количество воды, испаряемой растениями

с единицы листовой поверхности в единицу времени.

[ г/см 2 ]

зависит от состояния атмосферы, влажности почвы и способности растения регулировать испарения. Эта способность различна у каждого вида и обеспечивается разнообразными физиологическими и анатомо-морфологическими механизмами (плотная кутикула, опушение способность листьев сворачиваться и т. д.)

Суммарное испарение поля – сумма испарения воды с поверхности почвы и транспирации.

6. Конденсация водяного пара

Конденсация – переход вещества из газообразного состояния в жидкое. Для конденсации водяного пара в атмосфере необходимо 2 условия:

1. Охлаждение воздуха до температуры ниже точки росы

Охлаждение воздуха до точки росы делает его насыщенным, а при дальнейшем понижении температуры воздуха, водяной пар, содержащийся в нем, становится перенасыщенным и излишки пара, превышающие предел насыщения, конденсируются.

2. Наличие ядер конденсации в атмосфере

Ядра конденсации – это аэрозольные частицы, находящиеся в атмосфере, на поверхности которых происходит адсорбция молекул водяного пара и в, результате образуются капли воды.

Без ядер конденсации капли воды образуются только при большом перенасыщении воздуха водяным паром (f более 400%), что в природе практически никогда не происходит.

Ядра конденсации подразделяют на гигроскопические (это обычно кристаллы солей), на их поверхности адсорбция молекул воды происходит уже при f чуть ниже 100%.

И негигроскопические (смачиваемые) – это частицы почвы, сажи и т. д., на них адсорбция происходит при f чуть более 100%

Сублимация – переход водяного пара из газообразного состояния в твердое, минуя жидкую фазу. Она происходит при температуре ниже 0 0 С.

7.А. Продукты конденсации и сублимации водяного пара на земной поверхности

Воздух соприкасается с земной поверхностью. И в зависимости от ее температуры, а также от температуры и влажности воздуха может происходить конденсация или сублимация водяного пара, и образуются следующие продукты:

1. Роса – мелкие капли воды, образующиеся на поверхности почвы, камнях, растениях при температуре выше 0 0 С. Ночью земная поверхность охлаждается вследствие теплового излучения земли, а от земной поверхности охлаждается и нижний слой воздуха. Если температура воздуха опустится ниже точки росы, произойдет конденсация водяного пара – в результате выпадет роса . Утром роса быстро испаряется.

2. Иней – мелкие кристаллы льда, образующиеся на горизонтальных поверхностях (почве, наземных предметах) в результате тех же причин, что и роса, но при температуре ниже 0 0 С (то есть путем сублимации). Образование инея чаще всего происходит осенью и весной.

3. Изморозь: существует 2 вида → зернистая (это рыхлый снеговидный осадок, нарастающий на ветвях деревьев, проводах, заборах и на других вертикальных и горизонтальных поверхностях, при наличии тумана и температуре –2 ; -7 0 С) и кристаллическая - пушистый слой кристаллов льда, образующийся на тех же поверхностях, но при температуре ниже -15 0 С. Изморозь образуется также путем сублимации, но только зимой.

4. Гололед – слой гладкого льда, образующийся на земной поверхности, стволах деревьев, проводах вследствие намерзания на них очень переохлажденных капель дождя или тумана (в атмосфере переохлажденные капли могут находится при температуре даже до –20 0 С, но при соприкосновении с холодной поверхностью они тут же намерзают на нее). Не путать с гололедицей!

7. Б. Продукты конденсации и сублимации водяного пара в свободной атмосфере

Туман – мельчайшие капли воды и кристаллики льда, взвешенные в атмосфере. Причина возникновения – конденсация или сублимация водяного пара в самом нижнем слое воздуха, в результате его охлаждения (капли тумана отличаются от росы малыми размерами).

Существует 3 основных вида туманов ; в зависимости от условий образования выделяют:

1. Радиационный туман (образуется в результате сильного выхолаживания земной поверхности в ясные тихие ночи)

2. Адвективный туман (возникает при движении теплого воздуха над охлажденной поверхностью).

3. Туман испарения (образуется вследствие испарения влаги с поверхности теплой воды. Попадая в холодный воздух, водяной пар конденсируется вновь. Наблюдается над теплыми морскими течениями; например: Гольфстрим в Атлантическом океане, и горячими источниками)

Горизонтальная видимость при тумане менее 1 км, если больше 1 км, но меньше 10км – это дымка.

Облака – продукты конденсации и сублимации водяного пара, взвешенные в свободной атмосфере, на расстоянии 0,5 км и более от земной поверхности.

По составу облака бывают


Водяные ЛедяныеСмешанные

(состоят из (из кристаллов (из переохлажденных

капель воды) льда) капель и снежных

кристаллов)

«Высоту, на которой водяной пар в поднимающемся воздухе становится насыщенным, называют уровень конденсации».

Верхняя граница облаков определяется уровнем конвекции – это высота, на которую может подняться объем воздуха в результате тепловой конвекции

2род. Перисто – кучевые - в виде очень мелких белых хлопьев или ряби.

3род. Перисто - слоистые - в виде тонкой, прозрачной белой пелены.

Б. Семейство облаков среднего яруса (высота нижнего основания от 2 до 6 км)

Более плотные облака, состоят из снежинок и переохлажденных капель воды, поэтому имеют светло- серый цвет. Сквозь них плохо просвечивают или совсем не просвечивают Солнце и Луна. Дают слабые тени. Обычно не дают осадков, и редко зимой.

4 род. Высоко – кучевые – имеют вид крупных хлопьев, округлых масс, расположенных часто рядами или группами

5 род. Высоко – слоистые – в виде однородной сероватой пелены.

В. Семейство облаков нижнего яруса (высота нижнего основания менее 2 км).

Это плотные, не просвечивающие облака, дающие хорошую тень. Состоят из капель воды и имеют темно- серый цвет. Обычно дают осадки.

6 род. Слоистые облака – имеют вид однородного серого покрова, расположенного очень низко. Дают моросящие осадки.

7 род. Слоисто – кучевые облака – представляют собой неоднородный серый слой, в котором четко выделяются отдельные глыбы, пластины облаков. Осадки из таких облаков не достигают земной поверхности.

8 род. Слоисто – дождевые – наиболее темные и низко расположенные облака в виде сплошной пелены. Дают обложные осадки.

Г. Семейство облаков вертикального развития (высота нижнего основания менее 2 км, а вершины достигать могут верхнего яруса). Образуются в результате тепловой конвекции, (то есть восходящих потоков воздуха).

9 род. Кучевые облака – отдельные, плотные, белые массы различных размеров. Никогда не дают осадков (в наших широтах)

10 род. Кучево-дождевые (грозовые) облака – образуются в результате дальнейшего развития кучевых облаков. Имеют вид больших башен, гор. В верхней части состоят из ледяных кристаллов, в средней – смешанные, в нижней – из капель воды. Поэтому основание свинцово-синего цвета, а вершины белые. Дают ливневые осадки, часто с градом и грозовыми ливнями.

В метеорологии степень покрытия неба облаками определяют визуально (на глаз) в баллах от 0 до 10.

10 баллов – покрыто все небо, облаков нет или покрыто менее 1/10 части неба, 1 балл-покрытие 1/10 неба.

Температурой воздуха называется одно из его свойств, выраженное в количестве делений соответствующей шкалы. В основе этого свойства лежит скорость движений молекул атмосферного воздуха. Чем выше скорость, тем выше температура.

Для измерения этого параметра используются различные шкалы, который существует порядка 12 типов. Но наиболее распространены три шкалы:

  1. Цельсия (°C), ставшая частью метрической системы измерения (СИ). За ноль (0 °C) градусов принята температура таяния льда. А температура кипения воды служит отметкой в сто (100 °C) градусов. Одна сотая (1/100) разницы между этими температурами равняется одному (1 °C) градусу Цельсия.
  2. Шкала Фаренгейта (°F) активно используется в США и некоторых других странах. Один (1 °F) градус примерно равен 1/180 разницы температур таяния льда (+32 °F) и кипения воды (+212 °F).
  3. Градусы Кельвина (°K), часто используемые в метеорологии. В этой шкала за ноль принята температура абсолютного нуля, когда движение молекул прекращается (-273,15 °С). Поэтому все значения температур положительные.

Кроме этих шкал существуют и другие, к примеру градусы Рёмера, Ранкина, Делиля или Гука. Однако эти шкалы устарели или имеют специальное назначение, поэтому широкого применения не получили.

Как температура воздуха влияет на погоду

Погода формируется под воздействием множества факторов. Температура воздуха сказывается на высотном изменении давления. То есть, в тёплом воздухе высотные изменения давления менее выраженные, оно падает медленнее. Таким образом, области тёплого воздуха это области с высоким атмосферным давлением и наоборот - холодные области отличаются низким атмосферным давлением.

Исходя из вышеуказанного, температура воздуха косвенно влияет на образование ветра, ведь ветром называется движение воздушных масс между областями с различным давлением. Кроме того, от температуры воздуха зависят и некоторые осадки. При низких температурах дождь выпадает в виде снега.

Температура воздуха окружающей среды, вместе с частотой и количеством атмосферных осадков, выступает в роли одного из факторов, влияющих на относительную влажность воздуха. Чем выше температура, тем больше влажность воздуха. А наличие постоянных и обильных осадков ещё больше увеличивает содержание влаги в воздухе при высоких температурах. Примером подобного явления служат тропические климатические зоны.

Какую температуру воздуха принято считать комфортной

Комфортная температура воздуха для человека, одетого в лёгкую одежду составляет порядка 20 - 22 °С. Такое положение вещей объясняется особенностями теплообмена человеческого организма и окружающей среды. Организм в состоянии покоя теряет тепловую энергию тремя способами:

  1. Радиация или непосредственно тепловое излучение (69% всей теплоотдачи);
  2. Конвекция или замена нагретого воздуха вокруг тела холодным из окружающей среды (порядка 15%);
  3. Испарение воды (19%).

Температура окружающего воздуха больше всего влияет на темп конвекции. Так, чем ниже температура воздух, тем дольше нагревается воздух вокруг тела и тем быстрее нагретый воздух заменяется холодным и наоборот. Именно благодаря замедлению конвекции одежда сохранять тепло.

Погодные факторы, которые вызывают колебания температуры воздуха

Температура воздуха окружающей среды имеет свойство меняться в зависимости от воздействия различных атмосферных факторов. Здесь важно понимать, что нагревание атмосферного воздуха происходит за счёт тепла, выделяемого поверхностью земли.

Таким образом, наибольшее влияние на температуру воздуха оказывает облачность. Плотный слой облаков препятствует нагреву почвы, следовательно, и нагреву воздуха. В ясные дни солнце сильнее прогревает поверхность земли, а та, в свою очередь, прогревает воздух.

Прежде чем говорить о воздействии высоких температур воздуха на организм человека и состояниях, возникающих при этом воздействии необходимо дать определение нормы, то есть теплового комфорта.

Тепловой комфорт — это метеорологические условия, обеспечивающие оптимальный уровень физиологических функций,.в том числе терморегуля-торных при субъективном.ощущении комфорта.

В состоянии теплового комфорта система терморегуляции человека находится в состоянии незначительного напряжения. При этом наблюдаются небольшие периодические колебания температуры кожи (для кожи туловища — 33-35 °С), отсутствует активная деятельность потовых желез (теплоотдача испарением составляет 20-30 % от общих потерь тепла). Наблюдается нормальное соотношение процессов возбуждения и торможения в коре головного мозга, оптимальный уровень всех остальных физиологических функций и высокая работоспособность. Имеется субъективное ощущение теплового комфорта.

Состояние теплового комфорта поддерживается за счет работы системы терморегуляции.

Терморегуляция.

Цель терморегуляции — поддержание постоянной температуры тела при изменяющихся условиях внешней среды. В основе терморегуляции лежат два противоположных процессатеплопродукция и теплоотдача.

Основную роль в регуляции теплообмена играет теплоотдача. Она осуществляется следующими путями:

  • 1. Конвекция — нагревание воздуха, прилегающего к поверхности тела или к поверхности одежды. Одежда нагревается методом теплопередачи или теплоироведения при контакте с телом. Потеря тепла методом теплоотдачи также возможна при непосредственном контакте с предметами окружающей среды, имеющими более низкую температуру, чем тело человека. Отдача тепла методом конвекции возможна только в том случае, если температура окружающего воздуха ниже, чем температура тела. Составляет примерно 20 % от всей теплоотдачи. Высокая влажность воздуха увеличивает потери тепла путем конвекции.
  • 2. Излучение — составляет самую большую часть (56 %). Осуществляется только в том случае, если температура воздуха и окружающих предметов ниже температуры тела.
  • 3. Испарение составляет 24 %. Отличается тем, что протекает при любой температуре окружающей среды. Является единственным методом теплоотдачи в том случае, когда температура окружающей среды выше температуры тела. Чем выше скорость движения воздуха и ниже влажность, тем быстрее идет процесс испарения. Неподвижный воздух и высокая влажность, напротив, сильно затрудняют отдачу тепла путем испарения.

Влияние высокой температуры воздуха на организм

При повышении температуры окружающего воздуха происходит увеличение активности системы терморегуляции, что выражается в усилении процессов теплоотдачи. Это необходимо для того, чтобы сохранить тепловой баланс на фоне увеличившегося притока тепла извне.

При этом необходимо отметить, что отдача тепла путем конвекции и излучения снижается пропорционально росту температуры воздуха, прекращаясь при сравнивании температуры поверхности тела и окружающей среды.

Поэтому естественно, что с увеличением температуры воздуха все больше и больше тепла отдается путем испарения за счет увеличения потоотделения (при умеренном напряжении системы терморе1уляции потеря тепла испарением может составлять 40-45 %, а при сильном напряжении терморегуляции — свыше 50 %).

В том случае если система терморегуляции в условиях нагревающего микроклимата не справляется со своей функцией происходит перегревание (гипертермия), то есть повышение температуры тела по сравнению с нормой. Перегревание чаще всего происходит при высокой температуре окружающей среды в сочетании с высокой влажностью и низкой скоростью движения воздуха, так как при наличии последних двух условий резко снижается отдача тепла путем испарения. Кроме того, перегреванию способствуют такие эндогенные факторы как гипертиреоз, ожирение, вегетососудистая дистония и тд.

При длительном пребывании в условиях нагревающего микроклимата повышается температура тела, учащается пульс, понижается компенсаторная способность сердечно-сосудистой системы, функциональная активность ЖКТ и др.

К группе патологических состояний , возникающих при перегре-

вании (тепловых поражений) относятся: тепловой удар, тепловой обморок, судорожная болезнь, питьевая болезнь, нервные расстройства, тепловое истощение.

Тепловой удар. Возникает вследствие острой недостаточности терморегуляции, чаще у здоровых молодых людей при интенсивной физической работе в условиях высокой температуры окружающей среды. Клинические проявления: резкое увеличение температуры тела (до 42°С и выше), гиперемия кожных покровов и слизистых, сухость слизистых, увеличение частоты дыхания, тахикардия, слабость. Характерно прекращение потоотделения за несколько часов до наступления теплового удара. Кроме того наиболее ранним признаком начинающейся гипертермии является необычное поведение человека (это обусловлено тем, что нервная система очень чувствительна к повышению температуры тела). Тепловой удар опасен своей высокой летальностью.

Тепловой шок — коллапс (острое нарушение гемодинамики)

Солнечный удар. Может наблюдаться при интенсивной солнечной радиации в жаркую погоду. Обусловлен перегреванием непосредственно ЦНС (головного мозга). Профи,шктика — головной убор.

Тепловое истощение. Связано с потерей воды, солей, витаминов, белков.

Судорожная болезнь. Связана с тем, что с потом выводятся минеральные вещества — хлориды натрия и калия и возникают судороги...

Питьевая болезнь. Связана с компенсаторным увеличением потребления воды человеком (из-за обезвоживания). При этом могут возникать дисбакте-риозы, хронические диспепсии, энтероколиты, стойкая альбуминурия.

Нервные расстройства. Нервная система наиболее чувствительна к повышению температуры тела, поэтому перегревание может вести к ее функциональным нарушениям.

Тепловой отек голени- и стопы. Связан с нарушением водно-солевого обмена.

К общим мерам профилактики перечисленных состояний можно отнести следующие:

  • 1. Акклиматизация
  • 2. Поддержание нормального водно-солевого обмена.
  • 3. Рациональный режим труда и отдыха в нагревающем микроклимате

Дословно «демократия» переводится как «власть народа». Однако народом, или «демосом», ещё в Древней Греции называли только свободных и состоятельных граждан - мужчин. Таковых в Афинах было около 90 тыс. человек, одновременно с ними в том же городе проживало примерно 45 тыс. неполноправных (женщины и бедняки), а также более 350(!) тысяч рабов. Изначально либеральная демократия несёт в себе достаточное число противоречий.

История вопроса

Наши предки в доисторические времена решали все важные вопросы сообща. Однако такое положение сохранялось относительно недолго. С течением времен одни семьи сумели аккумулировать материальные блага, другие - нет. Имущественное неравенство известно с начала веков.

Либеральная демократия в приближённом к современному понимании впервые возникла в Афинах, столице Древней Греции. Это событие относится к 4-му веку до нашей эры.

Афины, как и многие поселения того времени, представляли собой город-государство. Свободным гражданином мог быть только мужчина, обладающий определённым количеством имущества. Сообщество этих мужчин решало все важные для города вопросы на народном собрании, которое было высшим органом власти. Все остальные граждане были обязаны эти решения выполнять, их мнение никак не учитывалось.

В наши дни хорошо развита демократия в Канаде и скандинавских странах. Так, в Скандинавии образование и здравоохранение для народа бесплатны, а уровень жизни у всех примерно одинаков. В этих странах существует система противовесов, позволяющая избежать кардинальных различий.

Парламент избирается по принципу равенства: чем больше населения в данной местности, тем большее количество представителей она имеет.

Определение понятия

Либеральная демократия в наши дни - это такая форма которая теоретически ограничивает власть большинства в интересах отдельных граждан или меньшинств. Те люди, которые относятся к большинству, должны быть избраны народом, но им недоступна. Граждане страны имеют возможность создавать различные ассоциации, выражающие их требования. Представитель ассоциации может избираться в правительство.

Демократия подразумевает согласие большинства народа с тем, что предлагают ему избранные представители. Народные избранники периодически проходят процедуру выборов. Они несут личную ответственность за свою деятельность. Обязательно должны соблюдаться свобода собраний и слова.

Такова теория, но практика сильно с ней расходится.

Обязательные условия существования демократии

Либеральная демократия предполагает выполнение таких требований:

  • Власть разделяется на равноправные ветви - законодательную, судебную и исполнительную, каждая из которых выполняет свои функции самостоятельно.
  • Власть правительства ограничена, все насущные вопросы страны решаются при участии народа. Формой взаимодействия может быть референдум или другие мероприятия.
  • Власть позволяет озвучивать и оговаривать разногласия, при необходимости принимается компромиссное решение.
  • Информация об управлении обществом доступна для всех граждан.
  • Общество в стране монолитно, нет признаков раскола.
  • Общество экономически успешно, количество общественного продукта увеличивается.

Сущность либеральной демократии

Либеральная демократия - это равновесие между элитой общества и другими его гражданами. В идеале демократическое общество защищает и поддерживает каждого своего члена. Демократия - противоположность авторитаризма, когда каждый человек может рассчитывать на свободу, справедливость и равенство.

Для того чтобы демократия была реальной, нужно соблюдать такие принципы:

  • Народный суверенитет. Это значит, что народ в любой момент в случае несогласия с правительством может изменить форму управления или конституцию.
  • Избирательное право может быть только равным и тайным. Каждый человек имеет один голос, и этот голос равен остальным.
  • Каждый человек свободен в своих убеждениях, защищён от произвола, голода и нищеты.
  • Гражданин имеет право не только на избранный им труд и его оплату, но и справедливое распределение общественного продукта.

Недостатки либеральной демократии

Они очевидны: власть большинства концентрируется в руках нескольких человек. Над ними трудно - практически невозможно - осуществлять контроль, а решения они принимают самостоятельно. Поэтому на практике разрыв между ожиданиями народа и действиями правительства оказывается огромным.

Антагонистом либеральной выступает при которой каждый человек может влиять на общее решение без промежуточного звена.

Характеристика либеральной демократии такова, что выборные представители постепенно дистанцируются от народа, а со временем полностью переходят под влияние групп, контролирующих финансовые потоки в обществе.

Инструменты демократии

Другие названия либеральной демократии - конституционная или буржуазная. Такие названия связаны с историческими процессами, по которым развивалась либеральная демократия. Определение это подразумевает, что главный нормативный документ общества - конституция, или основной закон.

Главный инструмент демократии - выборы, в которых (в идеале) может принять участие каждый совершеннолетний человек, не имеющий проблем с законом.

Граждане для выражения своего мнения могут принять участие в референдуме, митинге или обратиться в независимые средства массовой информации.

На практике доступ к СМИ могут получить только те граждане, которые в состоянии оплатить их услуги. Поэтому заявить о себе имеют реальный шанс только финансовые группы или отдельные весьма состоятельные граждане. Однако наряду с партией власти всегда есть оппозиция, которая может победить на выборах в случае неудач правительства.

Теоретическая сущность либеральной демократии великолепна, но её практическое использование ограничено финансовыми или политическими возможностями. Также часто встречается показная демократия, когда за правильными словами и яркими призывами скрываются вполне конкретные интересы, никак не учитывающие запросы населения.