Модели первого поколения эвм. Первое поколение эвм

Механические вычислительные машины На заре вычислительных машин считалось, что основное их назначение - вычисления. Попытки создания вычислительных машин предпринимались ещё в глубокой древности. Так, например великий учёный Леонардо да Винчи (1452-1519 гг) составил эскизы суммирующей машины на зубчатых колёсах. Специалисты из фирмы IBM создали по эскизам такую машину и убедились в её работоспособности.
В 1641-1642 гг. девятнадцатилетний Блез Паскаль (1623-1662), тогда еще мало кому известный французский учёный, создает действующую вычислительную машину. Машина могла складывать и вычитать десятичные числа.
В 1673 году другой великий европеец, немецкий ученый В. Г. Лейбниц (1646-1716), создает счётную машину для сложения и умножения двенадцатиразрядных десятичных чисел. К зубчатым колесам он добавил ступенчатый валик, позволяющий осуществлять умножение и деление.


Первое поколение ЭВМ Появление электронно-вакуумной лампы позволило претворить в жизнь идею создания вычислительной машины. Она появилась в 1946 году в США для решения задач и получила название ЭНИАК (ENIAK - Electronic Numerical Integrator and Calculator, в переводе "электронный численный интегратор и калькулятор"). От неё начался отсчет пути, по которому пошло развитие ЭВМ. В ЭВМ ЭНИАК было 20 тысяч электронных ламп, из которых ежемесячно заменялось 2000. За одну секунду машина выполняла 300 операций умножения или же 5000 сложений многоразрядных чисел.
Первая отечественная ЭВМ была создана в 1951 году под руководством академика С. А. Лебедева, и называлась она МЭСМ (малая электронная счетная машина). Затем в эксплуатацию вводятся БЭСМ-1 и БЭСМ-2 (большая электронная счетная машина). Самой мощной ЭВМ 50-х годов в Европе стала советская ЭВМ М-20 с быстродействием 20 тыс. оп/с, объем оперативной памяти-4000 машинных слов. ЭВМ первого поколения успешно использовались для решения научно-технических задач, в частности, в области космических иследований.


Электронная вычислительная машина БЭСМ-1


Второе поколение ЭВМ В 60-е годы 20 века был изобретён транзистор, который пришёл на смену электронным лампам. Это позволило изменить электронную базу ЭВМ на полупроводниковые элементы (транзисторы, диоды), а также резисторы и конденсаторы более совершенной конструкции. Один транзистор заменял 40 электронных ламп, работал с большей скоростью, был дешевле и надежнее. Средний срок его службы в 1000 раз превосходил продолжительность работы электронных ламп. Изменилась и технология соединения элементной базы. Появились первые печатные платы-пластины из изоляционного материала, например гетинакса, на которые специальная технология фотомонтажа позволяла наносить токопроводящий материал. Для закрепления элементной базы на них имелись специальные гнезда. Такая формальная замена одного типа элементов на другой существенно повлияла на все характеристики ЭВМ: габариты, надежность, производительность, условия эксплуатации, стиль программирования и работы на машине и пр. Изменился технологический процесс изготовления ЭВМ. К второму поколению относятся ЭВМ Минск-22, Минск-32, БЭСМ-6, CDC6600. Производительность: до 1 млн операций в секунду.


Электронная вычислительная машина БЭСМ-6

Третье поколение ЭВМ В 70-е годы 20 века появились интегральные микросхемы. Такие схемы могут содержать десятки, сотни и тысячи транзисторов и других элементов, которые физически неразделимы. Первой ЭВМ, выполненной на интегральных схемах, была IBM-360 фирмы IBM (International Busines Machine). Она положила начало большой серии моделей, название которых начиналось с IBM, а далее следовал номер. Аналогичные ЭВМ стали выпускаться и в странах СЭВ (Совета экономической взаимопомощи) Выпускались два семейства ЭВМ:

  • большие - ЕС ЭВМ (единая система), например ЕС - 1022, ЕС - 1035, ЕС - 1065;
  • малые - СМ ЭВМ (система малых), например СМ - 2, СМ - 3, СМ - 4. Производительность: сотни тысяч - миллионы операций в секунду. Увеличился объем памяти. Магнитный барабан постепенно вытесняется магнитными дисками, выполненными в виде автономных пакетов. Появились дисплеи, графопостроители.


    Электронная вычислительная машина IBM-360

    Четвёртое поколение ЭВМ Этот период характеризуется всевозможными новациями, приводящими к существенным изменениям. Однако кардинальных, революционных перемен, позволяющих говорить о смене поколений ЭВМ, пока не произошло. Следует особо отметить одну из самых важных идей: для обработки информации используется одновременно несколько процессоров (мультипроцессорная обработка). Новые технологии создания интегральных схем позволили разработать в конце 70-х - начале 80-х годов ЭВМ четвертого поколения на больших интегральных схемах (БИС), степень интеграции которых составляет десятки и сотни тысяч элементов на одном кристалле. Наиболее крупным сдвигом в электронно-вычислительной технике, связанным с применением БИС, стало создание микропроцессоров. Первый микропроцессор был создан фирмой Intel в 1971 году. На одном кристалле удалось сформировать минимальный по составу аппаратуры процессор, содержащий 2250 транзисторов. С появлением микропроцессора связано одно из важнейших событий в истории вычислительной техники - создание и применение персональных ЭВМ, что даже повлияло на терминологию. Название ЭВМ сейчас заменилось на всем привычное слово - компьютер. В 1977 году фирма "Эпл компьютер" (Apple Computer) наладила выпуск персональных компьютеров "Apple" (от англ. "яблоко").В этом типе компьютера за основу был взят принцип создания "дружественной" обстановки работы человека на ЭВМ, когда при создании программного обеспечения одним из основных требований стало обеспечение удобной работы пользователя. ЭВМ повернулась лицом к человеку. Дальнейшее ее совершенствование шло с учетом удобства работы пользователя.


    Персональный компьютер Apple
    Если раньше при эксплуатации ЭВМ был реализован принцип централизованной обработки информации, когда пользователи концентрировались вокруг одной ЭВМ, то с появлением персональных компьютеров произошло обратное движение - децентрализация, когда один пользователь может работать с несколькими компьютерами. В 1984 году фирмой IBM был разработан персональный компьютер на базе микропроцессора 80286 фирмы Intel с шиной архитектуры промышленного стандарта - ISA (Industry Standart Architecture). С этого времени началась жесткая конкуренция нескольких корпораций по производству персональных компьютеров. Гонка в поиске все более и более совершенных технических характеристик всех устройств компьютера продолжается и по сей день. Каждый год требуется коренная модификация существующей модели. Общее свойство семейства IBM PC - совместимость программного обеспечения снизу вверх и принцип открытой архитектуры, предусматривающий возможность дополнения имеющихся аппаратных средств без смены старых или их модификацию без замены всего компьютера. Современные ЭВМ превосходят компьютеры предыдущих поколений компактностью, огромными возможностями и доступностью для разных категорий пользователей. Компьютеры четвертого поколения развиваются в двух направлениях. Первое направление - создание многопроцессорных вычислительных систем. Второе - создание дешевых персональных компьютеров, как настольных, так и переносных, а на их основе - компьютерных сетей.
  • Компьютеризация — явление, которое наблюдается сейчас, наверное, во всех странах мира. Ее темпы впечатляют. Интересно проследить то, в каких условиях она осуществлялась исторически. Можно ли сказать, что компьютеризация — результат планомерного развития технологий выпуска ЭВМ и программного обеспечения для них? Каковы исторические этапы технологического совершенствования компьютеров?

    Что было до компьютеров?

    Интересно узнать, какого типа устройства исторически предшествовали ЭВМ. Так, можно отметить, что в 17 веке легендарный французский ученый Паскаль изобрел, как считается, первую счетную машину, которая действовала по механическому принципу. В начале 19 века британский исследователь Бэббидж изобрел первую аналитическую машину. Спустя несколько десятилетий американский инженер Холлерит создал табулятор — электрическую машину, с помощью которой можно было подсчитывать статистические данные. Впоследствии разработки ведущих лабораторий мира в направлении создания устройств, близких к компьютерам в современном понимании, активно продолжались.

    Первые компьютеры

    Один из первых в мире компьютеров был изобретен другим американским исследователем, Бушем, в 1930 году. История ЭВМ, представляющих собой полноценные цифровые устройства, многими учеными отсчитывается с 1944 года, когда американский профессор Айкнем сконструировал компьютер «Марк-1». Фактически это был девайс, относящийся к ЭВМ 1 поколения. Какие его особенности можно отметить? Прежде всего, наверное, габариты конструкции. Размеры 1 поколения ЭВМ были выдающимися. Так, «Марк-1» имел длину порядка 15 метров, высоту — около 2,5 м. Производительность первого цифрового компьютера по современным меркам была относительно скромной, но его роль в истории мировой индустрии компьютерной техники трудно переоценить. В 1946 году американские военные сконструировали компьютер «Эниак». Размеры 1 поколения ЭВМ на примере данного девайса могут показаться еще более внушительными. Компьютер «Эниак» обладал длиной порядка 30 м и весил 30 тонн.

    Нас будут интересовать, конечно, не только размеры 1 поколения ЭВМ, но и иные характеристики соответствующего типа машин. Рассмотрим их, а также последующую историю компьютеров подробнее.

    Особенности ЭВМ 1 поколения

    Функционировали ЭВМ 1 поколения на ламп — прибора, который работает за счет изменения потока частиц, движущихся от катода к аноду. Основной принцип соответствующего перемещения — термоэлектронная эмиссия. С самого начала компьютеры стали конструироваться по принципу распределения логических команд на 0 и 1. Данная схема реализуется до сих пор. Каким же образом она функционировала, когда в качестве основного компонента ПК использовались лампы? Очень просто. На входе лампы образовывалось напряжение, например 2 В. На выходе — меньше, например 1 В. Первое состояние лампы фиксировалось как 1, второе — как 0. Сочетание данных состояний на основе совокупности из десятков тысяч ламп формировало машинный код.

    Ламповые компьютеры, то есть те, которые относятся к 1 поколению, могли выполнять порядка 20 тыс. операций в секунду. Много это или не очень? Для сравнения, показатель для современных ПК — миллиарды операций в секунду. Но базовые задачи тех лет, в том числе и в военной сфере, характеристики ЭВМ первого поколения вполне позволяли выполнять.

    Компьютеры рассматриваемого типа не характеризовались высокой надежностью. Просто потому, что лампы часто перегорали, их нужно было менять. О гигантских размерах компьютеров мы уже сказали выше. Это предопределяло очень большие трудности с их транспортировкой, с оптимизацией их расположения в здании. Стоимость ЭВМ первого поколения была очень высокой — их приобретение могли позволить себе только крупные бизнесы и правительственные структуры с большим бюджетом. Также ламповые компьютеры характеризовались высокими эксплуатационными расходами — главным образом, в части энергопотребления. Работа на них требовала привлечения высококвалифицированных кадров с последующей выплатой им большой зарплаты. Человек, знающий хотя бы устройство ЭВМ, не говоря об умении программировать компьютер, был востребованным и дорогостоящим специалистом.

    Специфика ЭВМ первого поколения также в том, что на данных машинах задействовались отдельные языки программирования. К тому же набор машинных команд был достаточно простым. Как таковые программы — в привычном нам понимании - при работе с ЭВМ соответствующего типа не использовались. Это обуславливалось не только скромной производительностью компьютеров, но также и достаточно низкой технологичностью запоминающих устройств — чаще всего это были перфокарты и магнитные ленты, которые совершенно несопоставимы по скорости работы с привычными нам дисками.

    Однако к отмеченным неудобствам инженеры начали активно адаптироваться — главным образом посредством разработки различных алгоритмов автоматизации работы с машинным кодом. Несмотря на низкую производительность ЭВМ первого поколения, эффективность их эксплуатации все же постепенно росла.

    ЭВМ 2 поколения

    Мировая компьютерная индустрия после отмеченных изобретений продолжила активно развиваться. Изобретение «Марк-1», «Эниака» и других машин — это было только начало. ЭВМ 2 поколения появились уже в начале 60-х годов. Их основная особенность — в них вместо ламп были применены транзисторы. В результате производительность машин выросла. Кроме того, мы помним, что размеры 1 поколения ЭВМ были внушительны. Машины на транзисторах, в свою очередь, существенно уменьшились. Насколько явным оказалось преимущество задействования в структуре компьютеров соответствующих технологических решений? Достаточно лишь сказать, что 1 транзистор был способен заменить порядка 40 ламп. Совершенствовались также и Устройство ЭВМ второго поколения могло предполагать использование магнитных дисков, приближенных по структуре и концепции к тем девайсам, которые привычны современному пользователю.

    С точки зрения задействования программного обеспечения мировая компьютерная индустрия также сделала шаг вперед, благодаря возможностям соответствующего типа машин. Появились языки, относимые к категории высокого уровня. Программистами были разработаны трансляторы — средства, с помощью которых соответствующие алгоритмы переводились на язык, используемый в машинных командах ЭВМ. Были также реализованы принципы опережающего выполнения некоторых сценариев компьютерных программ. Стали появляться библиотечные приложения, различные мониторные системы, ставшие прообразами современных ОС.

    Вместе с тем, несмотря на некоторые попытки унификации задействования программных алгоритмов в различных машинах, разные ЭВМ характеризовались ограниченной совместимостью. Объединить их, условно говоря, в единую сеть и выстроить на ее основе корпоративную информационную систему было очень сложно.

    ЭВМ 3 поколения

    История ЭВМ 3 поколения начинается с машин, в конструкции которых стали применяться интегральные схемы, каждая из которых, как выяснилось, могла заменить около 1000 транзисторов. Производительность компьютеров значительно выросла. Появилась возможность запускать на ЭВМ несколько программных алгоритмов одновременно. Что такое Это кристалл из кремния, который имеет площадь порядка 10 кв. мм. По уровню производительности, как было подсчитано, одна ИС фактически была равна компьютеру «Эниак». В числе самых известных компьютеров 3 поколения — ЭВМ, разработанные компанией IBM — машины System 360.

    ЭВМ рассматриваемого типа характеризовались гораздо большей степенью взаимной совместимости, чем устройства, рассмотренные нами выше, в том числе и в аспекте программного обеспечения. В компьютерах 3 поколения были реализованы первые полноценные операционные системы, способные выполнять несколько задач одновременно. Многие из аппаратных функций начали передаваться на программный уровень.

    ЭВМ 4 поколения

    В 70-х годах в массовое производство были запущены так называемые большие интегральные схемы. Какую их особенность можно отметить? Прежде всего ту, что их производительность соответствовала примерно 1000 обычных интегральных схем. В итоге мировая компьютерная индустрия получила возможность выпускать устройства, по размерам и производительности сопоставимые с теми, которыми мы привыкли пользоваться сегодня.

    Благодаря повышению производительности фабричных линий по выпуску больших интегральных схем и иных ключевых компонентов ЭВМ, компьютеры постепенно становились дешевле. Если первые и вторые (в 50-е и 60-е годы) поколения ЭВМ были доступны, как мы отметили выше, главным образом, только крупным бизнесам и госструктурам, то в 1970-е ЭВМ стали активно покупать обычные граждане.

    Факторы компьютеризации

    Компьютеризация стала массовым явлением, особенно с появлением интернета в конце 80-х годов. Ее темпы были тем более динамичными, чем ниже становилась цена девайсов и меньше — их размер. Так, первые ПК, по многим признакам и технологической структуре аналогичные тем, что привычны нам сегодня, появились в середине 70-х и начале 80-х годов. В числе таковых девайсов — IBM PC, ставший прообразом самой распространенной сегодня компьютерной платформы. Они стали ближайшим конкурентом ПК, которые уже активно выпускались компанией Apple. Принципиальная разница между ними — в открытости концепции IBM и закрытости платформы от Apple. С точки зрения программно-аппаратной структуры разница между соответствующими типами ПК в целом невелика. В структуре IBM-платформы присутствуют такие ключевые компоненты, как процессор, ОЗУ, жесткий диск, видео- и материнская плата. При этом они могут быть заменены на другие — как вариант, более производительные.

    Современное поколение компьютеров

    Технологический задел, который был заложен инженерами в 70-е годы, оказался настолько значительным, что дальнейшее развитие ЭВМ эксперты и аналитики характеризуют как проходящее в рамках того же 4 поколения. То есть современные высокопроизводительные ПК функционируют, в целом, по тем же принципам, что и устройства 40-летней давности. В отдельных аспектах, таких как, например, размеры ЭВМ, современные компьютеры, безусловно, видятся существенно более технологичными. В устройстве величиной с небольшую тетрадь умещаются вычислительные мощности, значительно превышающие те, что стояли, к примеру, в первых ПК от Apple в 70-е годы.

    Преемственность концепций

    Но концептуально ПК, используемые нами сегодня, функционируют по схемам, впервые внедренным в ЭВМ 4 поколения. Нет никаких четких критериев, которые бы позволили сказать, что, условно говоря, первый IBM PC и современный ноутбук iMac — это ЭВМ разных поколений. Производительность значительно различается, но концепция, в целом, одна и та же.

    На основе платформы, предложенной IBM, реализовано большинство современных десктопов, ноутбуков, моноблоков. По многим критериям также и мобильные девайсы — смартфоны и планшеты - вполне соответствуют IBM-платформе, появившейся в 70-е годы. Так, в каждом из них, как и в ПК, есть процессор, ОЗУ, устройство для хранения данных — аналог жесткого диска.

    Трудно сказать даже, что принципиально вырос уровень комфорта пользования компьютерами, если сопоставлять первые образцы ПК 4 поколения и современные модели. Базовые аппаратные элементы управления ЭВМ — клавиатура, мышь — в принципе, за долгие годы не менялись. Появились, конечно, всевозможные тачскрины, бесконтактные дисплеи и прочие экзотические решения. Но не все пользователи относятся к ним в достаточной мере положительно.

    Усовершенствовались, конечно, и программные решения — ОС (на первых компьютерах 4 поколения стояли образцы, управляемые из командной строки, сегодня операционные системы включают функциональные графические интерфейсы), прикладные виды ПО. Первые виды соответствующих программ в 70-е годы были очень простыми по структуре.

    Сегодня это мощные инструменты реализации производственных задач. Если говорить об играх, то разница также заметна. В 70-е годы это были простейшие аркады, сегодня они позволяют совершать увлекательные погружения в виртуальное пространство. Однако созданы игры, ОС и по тем же алгоритмам, что и соответствующие решения в ранние годы разработки ЭВМ 4 поколения, часто на тех же языках программирования.

    Сравнение поколений ЭВМ

    Попробуем наглядно отобразить сравнительные характеристики поколений ЭВМ. Как это можно сделать? Вполне удобный вариант — сравнительная Она может быть представлена в структуре, отражающей ключевую характеристику компьютера — производительность, а также технологическую базу, на основе которой осуществляются вычисления.

    Поколение ЭВМ

    Производительность (операций в секунду)

    Технологическая база

    Порядка 20 тыс.

    Порядка 200 тыс.

    Транзисторы

    Порядка 1-2 млн

    Интегральные схемы

    Порядка 2-3 млрд и более (современные модели ПК)

    Большие интегральные схемы

    Таковы сравнительные характеристики поколений ЭВМ. Мы видим, насколько стремительно развивалась компьютерная техника. ЭВМ разных поколений — яркие примеры появления и успешного внедрения в производство самых инновационных и высокотехнологичных инженерных концепций — как на уровне аппаратных компонентов, так и в области программного обеспечения.

    С одной стороны, мы можем сделать вывод о том, что компьютеризация — явление, которое развивалось постепенно, соотносительно с ростом производительности ПК, их удешевлением и облегчением пользования. Но есть точка зрения, по которой процесс, о котором идет речь, характеризуется 2 периодами, когда он шел действительно галопирующими темпами, а именно после появления ЭВМ 4 поколения, а также после превращения интернета в глобальную сеть. Эти два фактора и стали, по мнению ряда исследователей, ключевыми драйверами компьютеризации.

    Поколения ЭВМ.

    Можно выделить 4 основные поколения ЭВМ. Но деление компьютерной техники на поколения - весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером.

    Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования. Этот прогресс показан в данной таблице:

    П О К О Л Е Н И Я Э В М ХАРАКТЕРИСТИКИ
    I II III IV
    Годы применения 1946-1958 1958-1964 1964-1972 1972 - настоящее время
    Основной элемент Эл.лампа Транзистор ИС БИС
    Количество ЭВМ в мире (шт.) Десятки Тысячи Десятки тысяч Миллионы
    Быстродействие (операций в секунду) 10 3 -14 4 10 4 -10 6 10 5 -10 7 10 6 -10 8
    Носитель информации Перфокарта, Перфолента Магнитная Лента Диск Гибкий и лазерный диск
    Размеры ЭВМ Большие Значительно меньше Мини-ЭВМ микроЭВМ

    Немногим более 50 лет прошло с тех пор, как появилась первая электронная вычислительная машина. За этот короткий для развития общества период сменилось несколько поколений вычислительных машин, а первые ЭВМ сегодня являются музейной редкостью. Сама история развития вычислительной техники представляет немалый интерес, показывая тесную взаимосвязь математики с физикой (прежде всего с физикой твердого тела, полупроводников, электроникой) и современной технологией, уровнем развития которой во многом определяется прогресс в производстве средств вычислительной техники.

    Электронно-вычислительные машины у нас в стране принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений - за ее короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого поколения. Что же является определяющим признаком при отнесении ЭВМ к тому или иному поколению? Это прежде всего их элементная база (из каких в основном элементов они построены), и такие важные характеристики, как быстродействие, емкость памяти, способы управления и переработки информации. Конечно же, деление ЭВМ на поколения в определенной мере условно. Существует немало моделей, которые по одним признакам относятся к одному, а по другим - к другому поколению. И все же, несмотря на эту условность поколения ЭВМ можно считать качественными скачками в развитии электронно-вычислительной техники.



    Первое поколение ЭВМ (1948 - 1958 гг.)

    Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, “Стрела”, “Минск-1”, “Урал-1”, “Урал-2”, “Урал-3”, M-20, "Сетунь", БЭСМ-2, "Раздан". Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2-3 тысяч операций в секунду, емкость оперативной памяти-2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В 1958 г. появилась машина M-20 с памятью 4К и быстродействием около 20 тысяч операций в секунду. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам). Этот период явился началом коммерческого применения электронных вычислительных машин для обработки данных. В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами и имели время доступа 1х10-3 с. Производственные системы и компиляторы пока не появились. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ этого поколения была крайне низкой.

    Второе поколение ЭВМ (1959 - 1967 гг.)

    Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличело емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д. К ЭВМ второго поколения относятся:

    ЭВМ М-40, -50 для систем противоракетной обороны;

    Урал -11, -14, -16 - ЭВМ общего назначения, ориентированные на решение инженерно-технических и планово-экономических задач;

    Минск -2, -12, -14 для решения инженерных, научных и конструкторских задач математического и логического характера;

    Минск-22 предназначена для решения научно-технических и планово-экономических задач;

    БЭСМ-3 -4, -6 машин общего назначения, ориентированных на решение сложных задач науки и техники;

    М-20, -220, -222 машина общего назначения, ориентированная на решение сложных математических задач;

    МИР-1 малая электронная цифровая вычислительная машина, предназначенная для решения широкого круга инженерно-конструкторских математических задач,

    "Наири" машина общего назначения, предназначеная для решения широкого круга инженерных, научно-технических, а также некоторых типов планово-экономических и учетно-статистических задач;

    Рута-110 мини ЭВМ общего назначения;

    и ряд других ЭВМ.

    ЭВМ БЭСМ-4, М-220, М-222 имели быстродействие порядка 20-30 тысяч операций в секунду и оперативную память-соответственно 8К, 16К и 32К. Среди машин второго поколения особо выделяется БЭСМ-6 , обладающая быстродействием около миллиона операций в секунду и оперативной памятью от 32К до 128К (в большинстве машин используется два сегмента памяти по 32К каждый).

    Данный период характеризуется широким применением транзисторов и усовершенствованных схем памяти на сердечниках. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода. В конце указанного периода появились универсальные и достаточно эффективные компиляторы для Кобола, Фортрана и других языков.

    Была достигнута уже величина времени доступа 1х10-6 с, хотя большая часть элементов вычислительной машины еще была связана проводами.

    Вычислительные машины этого периода успешно применялись в областях, связанных с обработкой множеств данных и решением задач, обычно требующих выполнения рутинных операций на заводах, в учреждениях и банках. Эти вычислительные машины работали по принципу пакетной обработки данных. По существу, при этом копировались ручные методы обработки данных. Новые возможности, предоставляемые вычислительными машинами, практически не использовались.

    Именно в этот период возникла профессия специалиста по информатике, и многие университеты стали предоставлять возможность получения образования в этой области.

    Первые ЭВМ появились более 60 лет назад. За это время электроника, микроэлектроника и вычислительная техника стали основными составляющими мирового научно-технического прогресса.

    Исторически принято выделять следующие поколения ЭВМ:

    1-е поколение – ламповые ЭВМ;

    2-е поколение – полупроводниковые ЭВМ;

    3-е поколение – ЭВМ, построенные на интегральных схемах;

    4-е поколение – ЭВМ на базе БИС и СБИС.

    Деление компьютерной техники на поколения - весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером.

    Идея делить машины на поколения вызвана тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования.

    4.1. Первые ЭВМ (до 1960 г.) и их разработчики

    Все ЭВМ первого поколения были сделаны на основе электронных ламп, что делало их ненадежными - лампы приходилось часто менять. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только правительства и крупные корпорации. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.

    Притом для каждой машины использовался свой язык программирования. Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства, оперативные запоминающие устройства были реализованы на основе ртутных линий задержки электронно-лучевых трубок.

    Эти неудобства преодолевались путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность её использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить её к требованиям, возникшим из опыта эксплуатации компьютеров.

    Наиболее известные компьютеры первого поколения следующие.

    ENIAC (1946 г.). Первой электронной вычислительной машиной обычно называют «ЭНИАК» (ENIAC - Electronical Numerical Integrator and Calculator), разработка которой велась под руководством Д. Моучли (John Mauchly) (1907-1980) и Д. Эккерта (John Eckert) (1919-1995) и закончилась в 1946 г., хотя приоритет Моучли и Эккерта оспорен Д. Атанасовым.

    В июне 1943 года артиллерийское управление заключило договор с Пенсильванским университетом на постройку «Электронной машины для расчета баллистических таблиц». Руководителем работ был назначен Моучли, а главным инженером - Эккерт. Всего 10 инженеров, 200 техников и большое число рабочих в течение двух с половиной лет трудились над созданием ENIAC. Предназначавшийся для военных целей ENIAC был закончен через 2 месяца после капитуляции Японии. Это было огромное сооружение (более 30 м в длину, площадь 120 м 2 и вес 30 т), состоящее из 40 панелей, расположенных П-образно и содержащих более 18000 электронных ламп и 1500 реле. Машина потребляла около 150 кВт энергии.

    Как только появился ENIAC, к машине Mark-1 стали относиться как к старому драндулету: использование электронных ламп вместо механических и электромеханических элементов позволило резко увеличить скорость выполнения машинных операций. ENIAC тратил на умножение всего 0,0028 секунды, а на сложение и того меньше - 0,0002 секунды. Основными схемами машины были так называемые ячейки "и", действовавшие как переключатели, ячейки "или", предназначавшиеся для объединения на одном выходе импульсов, идущих от разных источников, и, наконец, триггеры.

    В машине ENIAC 10 триггеров соединялись в кольцо, образуя десятичный счетчик, который исполнял роль счетного колеса механической машины. 10 таких колец плюс 2 триггера для представления знака числа образуют запоминающий регистр. Всего в ENIAC было 20 таких регистров. Каждый регистр снабжен схемой передачи десятков и мог быть использован для операций суммирования и вычитания. Другие арифметические операции выполнялись в специализированных блоках. Помимо памяти на триггерных ячейках, в машине имелся блок механических переключателей, на котором вручную могло быть установлено до 300 чисел. Числа передавались из одной части машины в другую посредством 11 проводников, по одному для каждого десятичного разряда и знака числа. Значение передаваемой цифры равнялось числу импульсов, прошедших по данному проводнику. Работой отдельных блоков машины управлял задающий генератор, который определял последовательность тактовых и синхронизирующих импульсов, эти импульсы "открывали" и "закрывали" соответствующие электронные блоки машины.

    Ввод чисел в машину производился с помощью перфокарт, а программное управление последовательностью выполнения операций осуществлялось, как в счетно-аналитических машинах, с помощью штекеров и наборных полей. Хотя такой способ программирования и требовал много времени для подготовки машины, т.е. для соединения на наборном поле (коммутационной доске) отдельных блоков машины, он позволял реализовывать счетные "способности" ENIAC и тем выгодно отличался от способа программной перфоленты, характерного для релейных машин.

    Солдаты, приписанные к этой огромной машине, постоянно находились возле нее, скрипя тележками, доверху набитыми электронными лампами. Стоило перегореть хотя бы одной лампе, как ENIAC тут же вставал, и начиналась суматоха: все спешно искали сгоревшую лампу. Одной из причин - возможно, и не слишком достоверной - столь частой замены ламп считалась такая: их тепло и свечение привлекали мотыльков, которые залетали внутрь машины и вызывали короткое замыкание. Когда все лампы работали, инженерный персонал мог настроить ENIAC на какую-нибудь задачу, вручную изменив подключение 6000 проводов. Все эти провода приходилось вновь переключать, когда вставала другая задача.

    ABC (1942 г.). Юридически приоритет создания первой ЭВМ решением суда в 1973 году был отдан американскому ученому болгарского происхождения Джону Атанасову (1903-1995). Профессор колледжа штата Айова Д. Атанасов в конце 30-х годов начал работать над созданием цифрового компьютера с использованием двоичной системы счисления. Машина строилась на электронных лампах и электромеханических компонентах. Кроме того, Атанасов изобрел, в частности, регенеративную память на конденсаторах – прообраз современных динамических ОЗУ.

    В 1939 году Атанасов вместе со своим аспирантом Клиффордом Берри приступил к настройке ЭВМ, предназначенной для решения систем линейных алгебраических уравнений с 30 неизвестными. Машина получила название Эй-Би-Си. Весной 1942 года работа в основном была закончена. Исходные данные должны были вводиться через стандартные перфокарты в десятичной форме. Затем в машине выполнялось преобразование в двоичный код, в котором проводились все вычисления. Каждое машинное слово состояло из 50 разрядов. Машина содержала более 300 ламп и занимала столько же площади, как большой канцелярский стол. Однако в 1942 году Атанасов перешел на другую работу и проект был закрыт.

    В 1940 году его лабораторию посетил Моучли во время научной конференции. Ряд идей был использован при создании машины ENIAC, о чем Атанасов узнал случайно из газет через 20 лет. Суд длился 7 лет, в результате чего первой ЭВМ была признана машина ABC, а не ENIAC.

    Однако следует отметить, что ABC был экспериментальным компьютером (демонтирован в 1942 году), ЭНИАК активно использовался до 1955 года (почти 10 лет).

    EDSAC (1949 г.). Первая машина с хранимой программой - «Эдсак» (EDSAC - Electronic Delay Storage Automatic Computer, т.е. электронный
    автоматический вычислитель с памятью на линиях задержки) была создана в Кембриджском университете (Англия) в 1949 г. Она имела запоминающее устройство на 512 ртутных линиях задержки. Время выполнения сложения было 0,07 мс, умножения - 8,5 мс.

    Глава математической лаборатории Кембриджского университета Морис В. Уилкс в 1947 г. принялся за разработку нового компьютера EDSAC, которая была закончена в 1949 г. Как и многие другие первые компьютеры, EDSAC был очень капризным в работе. Один из программистов вспоминал, что даже шум самолета, летящего за облаками, мог вызвать его остановку. После каждого ремонта для запуска компьютера в него загружали серию “исходных приказов”. Эта процедура сопровождалась характерным жужжанием, которое служило своего рода сигналом для всех желающих поработать на компьютере.

    Вначале EDSAC мог выполнять лишь 18 основных действий (современные компьютеры имеют в своем “репертуаре” более 200 команд), каждое из которых кодировалось определенной комбинацией нулей и единиц. С самого начала проектировщики EDSAC решили не заставлять программистов использовать в программах только машинные коды. Вместо этого они ввели систему мнемоники, где каждая машинная команда представлялась одной заглавной буквой. Так, S обозначала «вычитание», I – «прочитать следующий ряд отверстий на входной бумажной ленте», T – «передать информацию в память», а Z – «остановка машины».

    EDVAC (1950 г.). Проектирование EDVAC началось ещё до того, как заработал ENIAC. К разработчикам ENIAC (Эккерту и Моучли) присоединился Джон фон Нейман и несколько других специалистов.

    С именем американского ученого Джона фон Неймана (1903-1957) связывают основополагающие принципы построения ЭВМ первых поколений. Интерес фон Неймана к компьютерам связан с его участием в Манхэттенском проекте по созданию атомной бомбы в США (лаборатория в Лос-Аламосе). В 1946 году он опубликовал статью, в которой были изложены принципы построения архитектуры ЭВМ, получившей название фоннеймановской архитектуры. Фон Нейман начал работу в группе Моучли и Эккерта в то время, когда конструкция ЭНИАК уже была разработана. Машина EDVAC (Electronic Discrete Variable Automatic Computer - ЭВМ с дискретными переменными) имела фоннеймановскую архитектуру. Работа над этим проектом была закончена в 1950 году.

    МЭСМ (1951 г.) – «малая электронная счетная машина» была первой отечественной универсальной ламповой ЭВМ в СССР. Начало работ по созданию - 1948 г., завершение работ - 1950 г., официальный ввод в эксплуатацию - 1951 г. МЭСМ была самой быстродействующей и практически единственной регулярно эксплуатируемой ЭВМ в Европе в 1952-1953 гг. Эта машина разработана в Институте электроники Академии наук Украины под руководством академика Сергея Алексеевича Лебедева. Принципы построения МЭСМ были разработаны С.А. Лебедевым независимо от аналогичных работ на Западе. Коллектив сотрудников, создавших МЭСМ, стал ядром организованного на базе лаборатории С.А. Лебедева Вычислительного центра НАН Украины, а впоследствии - Института кибернетики им. В.М. Глушкова НАН Украины. Конструктивно была изготовлена в виде макета.

    Работа по созданию машины носила научно-исследовательский характер и имела целью экспериментальную проверку общих принципов построения универсальных ЦВМ. Основные параметры машины таковы: быстродействие – 50 операций в секунду; емкость оперативного запоминающего устройства (ОЗУ) – 31 число и 63 команды; представление чисел – 16 двоичных разрядов с фиксированной перед старшим разрядом запятой; команды трехадресные, длиной 20 двоичных разрядов (из них 4 разряда – код операции); рабочая частота – 5 килогерц; машина имела также постоянное (штекерное) запоминающее устройство (ЗУ) на 31 число и 63 команды; была предусмотрена также возможность подключения дополнительного запоминающего устройства на магнитном барабане емкостью в 5000 слов. ОЗУ было построено на триггерных регистрах, арифметическое устройство – параллельного действия, чем, в основном, и объясняются сравнительно большие аппаратные затраты (только в ОЗУ было использовано 2500 триодов и 1500 диодов). Потребляемая мощность составляла 25 кВт, машина размещалась на площади 60 м 2 .

    Обладая низким быстродействием и малой емкостью ОЗУ, МЭСМ, тем не менее, была алгоритмически довольно развитой и, кроме того, содержала в своей структуре некоторые особенности, представляющие интерес и сейчас. Так, непосредственно связанное с арифметическим устройством ОЗУ было построено на таких же триггерах, как и устройство управления и арифметическое устройство, и могло непосредственно связываться с медленно действующим ЗУ на магнитном барабане. Машина имела сменное долговременное ЗУ для хранения числовых констант и неизменных команд. Опыт, накопленный в процессе разработки машины, был использован при создании машины БЭСМ (см. далее), а сама МЭСМ рассматривалась в качестве действующего макета, на котором отрабатывались принципы построения БЭСМ.

    Несмотря на невысокие технические характеристики МЭСМ, выбранные с учетом ее назначения, проводилась эффективная эксплуатация машины, в процессе которой было решено большое количество научно-технических и народно-хозяйственных задач. Решение ряда задач играло важную роль для многих отраслей науки и техники начала 50-х гг. Создание и эксплуатация МЭСМ явились также решающим стимулом для развития программирования и разработки широкого круга вопросов вычислительной математики.

    UNIVAC-1 (1951 г.). В 1951 году Моучли и Эккерт разрабатывают машину UNIVAC-1 (Universal Automatic Computer), предназначенную для решения разнообразных задач бизнеса. UNIVAC стал первым серийным компьютером (с хранимой программой), нашедшим применение в различных сферах деятельности человека. UNIVAC-1 был впервые запущен в работу 14 июня 1951 года в Бюро переписи населения США. Считается, что именно UNIVAC положил начало компьютерному буму.

    В этой машине впервые была использована магнитная лента для записи и хранения информации. Компьютер мог содержать максимум 12 Мбайт данных, работал с тактовой частотой 0,008 МГц и требовал для установки 27 м 3 пространства. Несмотря на свой размер, вскоре эта машина стала очень популярным устройством для вычислений, позволявшим решать тысячи уравнений в секунду. Один из первых заказчиков компания General Electric применяла UNIVAC-1 для подготовки платежных ведомостей на зарплату. В течение первых нескольких лет после начала производства UNIVAC-1 его приобрели 46 заказчиков, начиная от армии Соединенных Штатов до корпорации DuPont.

    БЭСМ-2 (1952-1953 гг.). БЭСМ – «большая электронная счетная машина» первого поколения, разрабатывавшаяся в течение 1950-1953 гг. Производительность - 8-10 тыс. операций в секунду. Представление чисел - с плавающей запятой, 39 двоичных разрядов. Первая модель БЭСМ имела сниженное быстродействие, которое составляло около 2000 операций в секунду. Новая модель получила наименование БЭСМ-2. Было создано 7 экземпляров БЭСМ-2 на Казанском заводе счетно-аналитических машин. Оперативная память на электронно-акустических линиях задержки - 1024 слова, затем на электронно-лучевых трубках и позже на ферритовых сердечниках. Внешнее ЗУ состояло из двух магнитных барабанов и магнитной ленты емкость свыше 100 тыс. слов.

    4.2. Второе поколение ЭВМ (1960 – 1965 гг.)

    В 1958 г. в ЭВМ были применены полупроводниковые транзисторы, изобретённые в 1948 г. Уильямом Шокли. ЭВМ на транзисторной базе были более надёжны, долговечны, малы, могли выполнить значительно более сложные вычисления, обладали большой оперативной памятью. Один транзистор способен был заменить около 40 электронных ламп и работал с большей скоростью.

    Во втором поколении компьютеров дискретные транзисторные логические элементы вытеснили электронные лампы. В качестве носителей информации использовались магнитные ленты и магнитные сердечники, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски.

    В качестве программного обеспечения стали использовать языки программирования высокого уровня, были написаны специальные трансляторы с этих языков на язык машинных команд. Для ускорения вычислений в этих машинах было реализовано некоторое перекрытие команд - последующая команда начинала выполняться до окончания обработки предыдущей.

    Появился широкий набор библиотечных программ для решения разнообразных математических задач. Появились мониторные системы, управляющие режимом трансляции и исполнения программ. Из мониторных систем в дальнейшем выросли современные операционные системы.

    БЭСМ-6. Первый образец машины был создан в 1967 г. В ней реализованы такие новые принципы и решения, как параллельная обработка нескольких команд, сверхбыстрая регистровая память, расслоение и динамическое распределение оперативной памяти, многопрограммный режим работы, развитая система прерываний. БЭСМ-6 – это суперЭВМ второго поколения. Ее быстродействие составляло 1 млн операций в секунду, емкость оперативной памяти - 64-128К 50-разрядных слов. В аппаратуре БЭСМ-6 использовано около 60000 транзисторов и 180000 полупроводниковых диодов. Эта ЭВМ стала основной вычислительной системой для многих предприятий в оборонных отраслях промышленности и оставалась таковой в течение более полутора десятков лет. Всего в базовом варианте было выпущено около 350 компьютеров БЭСМ-6. В 1975 г. управление полетом по программе «Союз-Аполлон» обеспечивал вычислительный комплекс на основе БЭСМ-6.

    Отечественные ЭВМ серий «Стрела», М-20, «Урал», «Минск».

    Одна из первых (наравне с БЭСМ) отечественных ЭВМ «Стрела» разрабатывалась в СКБ-245 Министерства машиностроения и приборостроения СССР в 1950-1953 гг. под руководством Ю.Я. Базилевского и Б.И. Рамеева. Быстродействие - 2000 операций в секунду, оперативная память 2048 43-разрядных слов. Машина трехадресная.

    Юрий Яковлевич Базилевский (1912-1983) был главным конструктором ЭВМ «Стрела». Семь машин «Стрела» было изготовлено на Московском заводе САМ. В дальнейшем Ю.Я. Базилевский руководил разработкой специализированных вычислительных комплексов М-111 и 5Э61 для оборонных систем, будучи главным инженером СКБ-245. В 1970-80-х годы работал в Минприборе заместителем министра

    Машина «Урал-1» - первая из серии ЭВМ «Урал», созданная в 1957 г. под руководством Б.И. Рамеева в СКБ-245. Эта малая машина отличалась дешевизной и потому получила сравнительно широкое распространение в конце 50-х годов. Быстродействие - 100 операций в секунду, оперативная память (1024 слова) - на магнитном барабане. Вслед за «Уралом-1» последовали «Урал-2» с быстродействием 5000 операций в секунду с оперативной памятью на ферритовых сердечниках (1959 г.), «Урал-11», «Урал-14», «Урал-16» - серия (ряд) аппаратно и программно совместимых ЭВМ второго поколения разной производительности. Эти машины создавались под руководством Б.И. Рамеева в 1962-64 гг. уже в Пензенском НИИ математических машин. Эта серия предвосхитила решения IBM-360, принятые в дальнейшем для разработки ЕС ЭВМ в странах СЭВ.

    Параллельно с работой в Киеве С.А. Лебедев руководит разработкой большой электронной счетной машины БЭСМ в ИТМиВТ. С 1953 г. С.А.Лебедев возглавляет этот институт.

    БЭСМ-4 - вариант БЭСМ на полупроводниковой элементной базе (главный конструктор О.П.Васильев, научный руководитель С.А.Лебедев). Быстродействие - 20 тыс. операций в секунду, емкость оперативной памяти - 16384 48-разрядных слова. К 1962-1963 гг. относится создание прототипа, к 1964 г. - начало серийного выпуска.

    Одним из крупных центров компьютерной промышленности в СССР начиная с 60-х годов был Минск, где созданы завод ЭВМ и СКБ завода, позднее ставшее НИИ ЭВМ. Возглавил СКБ в 1964 г. Георгий Павлович Лопато (1924-2003). Его детищем является серия ЭВМ «Минск» (первая из машин серии «Минск-1» создана в 1960 г.). Под его руководством по заказу Минобороны разработан ряд мобильных вычислительных машин, совместимых с машинами ЕС ЭВМ.

    4.3. Третье поколение ЭВМ (1965 – 1972 гг.)

    В 1960 г. появились первые интегральные схемы (ИС), которые получили широкое распространение в связи с малыми размерами, но громадными возможностями. ИС - это кремниевый кристалл, площадь которого примерно 10 мм 2 . Одна ИС способна заменить десятки тысяч транзисторов. Один кристалл выполняет такую же работу, как и 30-тонный ЭНИАК. А компьютеры на базе ИС достигают производительности в 10 млн операций в секунду.

    В 1964 году фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения.

    Машины третьего поколения - это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами. Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

    Примеры машин третьего поколения - семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Емкость оперативной памяти достигает нескольких сотен тысяч слов.

    IBM 360/370. Компания IBM - мировой лидер в области создания средств вычислительной техники - основана в 1896 г. под названием Tabulating Machine Company изобретателем бумажных перфокарт и табуляторов Г. Холлеритом (1860-1929). В 1914 г. генеральным менеджером компании стал Томас Дж. Уотсон-старший, с именем которого связаны основные достижения компании в 20-40-х годах. С 1924 г. компания носит имя International Business Machines (IBM).

    В начале 40-х годов прошлого века в лабораториях IBM совместно с учеными Гарвардского университета (во главе с Г. Айкеном) была начата и закончена в 1944 г. разработка одной из первых электромеханических вычислительных машин Марк-1. В 1964 г. IBM выпускает первые модели System/360 (иначе IBM-360), назвав эту серию компьютерами третьего поколения, первые машины были на гибридных микросхемах. В разработке участвовали Д. Амдал, Г. Блау, Ф.П. Брукс-младший. Ряд System/360 был грандиозным проектом (стоимость 30 млрд долл., было задействовано около 100 тыс. сотрудников IBM). С 1971 г. IBM предлагает модели семейства System/370 на монолитных интегральных схемах. Запуском в производство новых моделей семейства 370 руководил Т. В. Лерсон, сменивший в 1974 г. Т. Дж. Уотсона-младшего на посту президента IBM.

    Семейства ЕС ЭВМ и СМ ЭВМ. Начиная с 1969 г., радиоэлектронная промышленность СССР переключилась на производство преимущественно машин ЕС и СМ ЭВМ. Уже после появления первых ЭВМ стала очевидной целесообразность перехода к построению единого ряда машин разной производительности (ЕС ЭВМ), но согласованных по системе команд, операционным системам и требованиям к определенным характеристикам внешних устройств. С этой целью в 1967 г. в Москве был создан Научно-исследовательский центр электронной вычислительной техники (НИЦЭВТ).

    В СССР дискуссии относительно проекта ЕС ЭВМ велись во второй половине 60-х годов прошлого века. Обсуждались две альтернативы построения единого ряда:

    1) на основе отечественного и западно-европейского опыта;

    2) на основе американской серии машин IBM-360.

    Первый вариант позволял продолжить развитие отечественного научного и инженерного потенциала с шансами сохранения конкурентоспособности отечественных ЭВМ, поскольку к этому времени мы имели одну из лучших машин в мире БЭСМ-6 и серию машин «Урал». При этом предполагалось взаимовыгодное сотрудничество с английскими и немецкими фирмами, разрабатывавшими ЭВМ, поскольку эти фирмы тоже стремились к сотрудничеству с советскими специалистами.

    Положительной стороной второго варианта была возможность использования программного обеспечения, уже созданного для IBM-360. Ведь IBM начала выпуск серии компьютеров IBM-360 еще в 1964 г. Для английских и немецких ЭВМ столь объемных наработок не было. Сторонники с вариантом базирования на IBM-360 справедливо считали, что необходимо существенно расширить применение ЭВМ в народном хозяйстве, а этого без богатого программного обеспечения не сделаешь. Причем имелось в виду наличие программного обеспечения не только на данный момент, но и в перспективе, а у нас в стране в то время (по данным академика А.А. Дородницына) было приблизительно 1500 квалифицированных программистов по сравнению с 50000 в США. Кроме того, из ориентации на IBM-360 вытекало лишь требование совместимости с системой команд IBM-360 и это не означало слепого копирования чужих решений.

    Было принято решение в пользу второго варианта, и НИЦЭВТ становится головной организацией по программе ЕС ЭВМ. Аван-проект ЕС ЭВМ разрабатывало Конструкторское бюро промышленной автоматики (КБПА) во главе с В.К. Левиным, а головной организацией по вопросам математического обеспечения стал Институт прикладной математики, где эти работы возглавляли М.Р. Шура-Бура и В.С. Штаркман.

    В 1971 г. прошла совместные испытания первая машина Единой системы ЕС-1020, разработанная Минским НИИ ЭВМ (гл. конструктор В. В. Пржиялковский). В 1972 г. Ереванским НИИММ сдана ЕС-1030 (гл. конструктор М. А. Семерджян). В 1973 г. в ГДР под руководством гл. конструктора М. Гюнтера создана ЕС-1040. В НИЦЭВТ закончена разработка старших моделей: в 1973 г. ЕС-1050, в 1977 г. - ЕС-1060 (гл. конструктор обеих моделей В.С. Антонов), в 1984 г. - ЕС-1066 (гл. конструктор Ю.С. Ломов). Генеральными конструкторами ЕС ЭВМ в этот период были С.А. Крутовских (1968-1970 гг.), А.М. Ларионов (1970-1977 гг.), В.В. Пржиялковский (1977-1990 гг.), одновременно являвшиеся директорами НИЦЭВТ.

    Для производства машин ЕС ЭВМ были задействованы заводы в Минске, Ереване, Казани, Пензе, Вильнюсе и в странах СЭВ.

    К 1979 г. доля ЕС ЭВМ в парке ЭВМ страны составляла 72 %. В серии ЕС ЭВМ наиболее массовыми были машины ЕС-1022 (к 1989 г. было выпущено около 3400 машин), ЕС-1033 (1405), ЕС-1035 (1872), ЕС-1045 (1069). Высокопроизводительных машин ЕС-1055, ЕС-1060 и ЕС-1061 было произведено по нескольку сотен. Всего за 20 лет промышленностью были поставлены для народного хозяйства и обороны страны более 16 тыс. вычислительных комплексов ЕС ЭВМ. Однако по своему техническому уровню эти машины значительно отставали от американских машин того же времени.

    В начале 1974 г. в СССР было принято решение о создании семейств не только больших, но и малых ЭВМ с ориентацией на архитектуру машин PDP-11 американской компании DEC. Семейство малых машин получило название СМ ЭВМ. В развитии СМ ЭВМ значительную роль сыграл Институт электронных управляющих машин под руководством Б.Н.Наумова.

    Борис Николаевич Наумов (1927-1988) в 1950 г. окончил МЭИ по специальности "Автоматическое управление". В 1950-1967 гг. Б.Н. Наумов работал в Институте автоматики и телемеханики (ИАТ). В 1958-1959 гг. был в командировке в Массачусетском технологическом институте (США), где встречался с Н. Винером. В 1967 г. возглавил ИНЭУМ (институт электронных управляющих машин) и стал главным конструктором АСВТ-М (Агрегатная система средств вычислительной техники на микроэлектронной базе). Уже в 1970 г. были созданы первые в стране управляющие вычислительные комплексы третьего поколения. При этом начали использоваться методы совмещенного (параллельного) проектирования.

    В период 1974-1984 гг. Б.Н. Наумов руководил разработкой системы малых ЭВМ (СМ ЭВМ) в качестве Генерального конструктора. Одной машиной из серии СМ ЭВМ был компьютер СМ-1420, предназначенный для работы в составе АСУТП, систем сбора, подготовки и обработки данных, систем автоматизации научных экспериментов и т.п. Среднее быстродействие этой машины 0,30 Mips или 0,23 Mflops. Оперативная память 248 К.

    Б.Н. Наумов был одним из инициаторов организации в составе АН СССР Отделения информатики, вычислительной техники и автоматизации, созданного в 1983 г. Б.Н. Наумов возглавил Институт проблем информатики АН СССР (ИПИ АН), организованный по его инициативе.

    Для СМ ЭВМ были приняты стандарты «де-факто» архитектур малых ЭВМ, наиболее распространенных в мире, предложены интерфейсы, обеспечивающие использование общей для всех моделей номенклатуры периферийных устройств и устройств связи с объектом. Разработанные под руководством Б.Н. Наумова принципы и стандарты СМ ЭВМ, охватывающие в комплексе все аспекты унификации элементов, узлов и устройств, конструкций, рядов моделей ЭВМ, средств программирования, учитывали технологию и производственные возможности отечественной промышленности и обеспечили возможность организации крупносерийного производства.

    На базе СМ ЭВМ был реализован ряд специализированных комплексов. Например, комплекс СМ-4 вместе с Фурье-процессором использовался для обработки радиолокационных изображений поверхности Венеры, что позволило справиться с уникальной по сложности задачей с помощью мини-ЭВМ вместо суперЭВМ.

    Новрузлу Эльнура 10 а

    1. Электронно-вычислительная машина (ЭВМ)

    2.

    2.1. I поколение ЭВМ

    2.2. II поколение ЭВМ

    2.3. III поколение ЭВМ

    2.4. IV поколение ЭВМ

    2.5. V поколение ЭВМ

    3. Поколение ЭВМ (таблица)

    Список использованной литературы

    1. ПОКОЛЕНИЕК ЭВМ

    Поколение

    Годы

    Элементная база

    Быстродействие

    Объем ОП

    Устройства ввода-вывода

    Программное обеспечение

    Примеры ЭВМ

    Электронная лампа

    10-20 тыс. операций в 1 с.

    2 Кбайт

    Перфоленты

    Перфокарты

    Машинные коды

    UNIVAC, МЭСМ, БЭСМ, СТРЕЛА

    c 1955

    Транзистор

    2 – 32 Кбайт

    «Традис»

    БЭСМ -6

    c 1966

    Интегральная схема (ИС)

    1-10 млн. операций в 1 с.

    64 Кбайт

    Многотерминальные системы

    Операционные системы

    БЭСМ -6

    c 1975

    1-100 млн. операций в 1 с.

    1-64 Кбайт

    Сети ПЭВМ

    Базы и банки данных

    Корнет

    УКНЦ

    с 90-х годов 20 в.

    Экспертные системы

    Скачать:

    Предварительный просмотр:

    МБОУ г. Астрахани СОШ № 52

    РЕФЕРАТ на тему:

    «ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА»

    Подготовила

    Ученица 10 а класса

    Новрузлу Эльнура

    Проверила учитель по информатике и ИКТ

    Комиссарова И.М.

    г. Астрахань, 2013

    Стр.

    1. Электронно-вычислительная машина (ЭВМ) 3
    2. Электронный этап развития вычислительной техники
    1. I поколение ЭВМ 3
    2. II поколение ЭВМ 4-5
    3. III поколение ЭВМ 5-7
    4. IV поколение ЭВМ 7-8
    5. V поколение ЭВМ 8-10
    1. Поколение ЭВМ (таблица) 11
    2. Список использованной литературы 12
    1. ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ)

    Электронно-вычислительная машина (ЭВМ) - быстродействующие вычислительные машины, решающие математические и логические задачи с большой точностью при выполнении в секунду несколько десятков тысяч операций. Техническая основа ЭВМ - электронные схемы. В ЭВМ есть запоминающее устройство (память), предназначенное для приема, хранения и выдачи информации, арифметическое устройство для операций над числами и устройство управления. Каждая машина имеет определенную систему команд.

    1. ЭЛЕКТРОННЫЙ ЭТАП РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ
    1. I поколение ЭВМ

    Принято считать, что первое поколение ЭВМ появилось в ходе Второй мировой войны после 1943 года, хотя первым работающим представителем следовало бы считать машину V-1 (Z1) Конрада Цузе, продемонстрированную друзьям и Гг родственникам в 1938 году. Это была первая электронная (построенная на самодельных аналогах реле) машина, капризная в обращении и ненадёжная в вычислениях. В мае 1941 года в Берлине Цузе представил машину Z3, вызвавшую восторг у специалистов. Несмотря на ряд недостатков, это был первый компьютер, который, при других обстоятельствах, мог бы иметь коммерческий успех. Однако первыми ЭВМ считаются английский Colossus (1943 г.) и американский ENIAC (1945 г.). ENIAC был первым компьютером на вакуумных лампах.

    Характерные черты

    • Элементная база – электронно-вакуумные лампы .
    • Соединение элементов – навесной монтаж проводами .
    • Габариты – ЭВМ выполнена в виде громадных шкафов .
    • Быстродействие – 10-20 тыс. операций в секунду .
    • Эксплуатация – сложная из-за частого выхода из строя электронно-вакуумных ламп.
    • Программирование – машинные коды .
    • Оперативная память – до 2 Кбайт .
    • Ввод и вывод данных с помощью перфокарт, перфолент .
    1. II поколение ЭВМ

    Второе поколение ЭВМ – это переход к транзисторной элементной базе, появление первых мини-ЭВМ. Получает дальнейшее развитие принцип автономии – он реализуется уже на уровне отдельных устройств, что выражается в их модульной структуре. Устройства ввода-вывода снабжаются собственными УУ (называемыми контроллерами), что позволило освободить центральное УУ от управления операциями ввода-вывода. Совершенствование и удешевление ЭВМ привели к снижению удельной стоимости машинного времени и вычислительных ресурсов в общей стоимости автоматизированного решения задачи обработки данных, в то же время расходы на разработку программ (т.е. программирование) почти не снижались, а в ряде случаев имели тенденции к росту. Таким образом, намечалась тенденция к эффективному программированию, которая начала реализовываться во втором поколении ЭВМ и получает развитие до настоящего времени. Начинается разработка на базе библиотек стандартных программ интегрированных систем, обладающих свойством переносимости, т.е. функционирования на ЭВМ разных марок. Наиболее часто используемые программные средства выделяются в ППП для решения задач определенного класса. Совершенствуется технология выполнения программ на ЭВМ: создаются специальные программные средства - системное ПО. Цель создания системного ПО – ускорение и упрощение перехода процессором от одной задачи к другой. Появились первые системы пакетной обработки, которые просто автоматизировали запуск одной программ за другой и тем самым увеличивали коэффициент загрузки процессора. Системы пакетной обработки явились прообразом современных операционных систем, они стали первыми системными программами, предназначенными для управления вычислительным процессом. В ходе реализации систем пакетной обработки был разработан формализованный язык управления заданиями, с помощью которого программист сообщал системе и оператору, какую работу он хочет выполнить на вычислительной машине. Совокупность нескольких заданий, как правило, в виде колоды перфокарт, получила название пакета заданий. Этот элемент жив до сих пор: так называемые пакетные (или командные) файлы MS DOS есть не что иное, как пакеты заданий (расширение в их имени bat является сокращением от английского слова batch, что означает пакет). К отечественным ЭВМ второго поколения относятся Проминь, Минск, Раздан, Мир.

    Характерные черты

    • Элементная база – полупроводниковые элементы (транзисторы) .
    • Соединение элементов – печатные платы и навесной монтаж .
    • Габариты – .
    • Быстродействие – 100-500 тыс. операций в секунду .
    • Эксплуатация – вычислительные центры со специальным штатом обслуживающего персонала, появилась новая специальность – оператор ЭВМ.
    • Программирование – на алгоритмических языках, появление ОС .
    • Оперативная память – 2 – 32 Кбайт .
    • Введен принцип разделения времени .
    • Введен принцип микропрограммного управления .
    • Недостаток – несовместимость программного обеспечения .
    1. III поколение ЭВМ

    Разработка в 60-х годах интегральных схем - целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ. Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независимо друг от друга, оперативно взаимодействовать с машиной. В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ - серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM. Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы. Например, странами СЭВ были выпущены ЭВМ единой серии («ЕС ЭВМ») «ЕС-1022», «ЕС-1030», «ЕС-1033», «ЕС-1046», «ЕС-1061», «ЕС-1066» и др. Производительность этих машин достигала от 500 тыс. до 2 млн. операций в секунду, объём оперативной памяти достигал от 8 Мб до 192 Мб. К ЭВМ этого поколения также относится «IВМ-370», «Электроника - 100/25», «Электроника - 79», «СМ-3», «СМ-4» и др. Для серий ЭВМ было сильно расширено программное обеспечение (операционные системы, языки программирования высокого уровня, прикладные программы и т.д.). Невысокое качество электронных комплектующих было слабым местом советских ЭВМ третьего поколения. Отсюда постоянное отставание от западных разработок по быстродействию, весу и габаритам, но, как настаивают разработчики СМ, не по функциональным возможностям. Для того, чтобы компенсировать это отставание, в разрабатывались спецпроцессоры, позволяющие строить высокопроизводительные системы для частных задач. Оснащенная спецпроцессором Фурье-преобразований СМ-4, например, использовалась для радиолокационного картографирования Венеры. Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ. Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию - ведь микропроцессор является сердцем и душой современного персонального компьютера. Но и это еще не все - поистине, рубеж 60-х и 70-х годов был судьбоносным временем. В 1969 г. зародилась первая глобальная компьютерная сеть - зародыш того, что мы сейчас называем Интернетом. И в том же 1969 году одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

    Характерные черты

    • Элементная база – интегральные схемы .
    • Соединение элементов – печатные платы .
    • Габариты – ЭВМ выполнена в виде однотипных стоек .
    • Быстродействие – 1-10 мил. операций в секунду .
    • Эксплуатация – вычислительные центры, дисплейные классы, новая специальность – системный программист.
    • Программирование – алгоритмические языки, ОС .
    • Оперативная память – 64 Кбайт .
    • Применяется принцип разделения времени, принцип модульности, принцип микропрограммного управления, принцип магистральности .
    • Появление магнитных дисков , дисплеев, графопостроителей.
    1. IV поколение ЭВМ

    К сожалению, начиная с середины 1970-х годов стройная картина смены поколений нарушается. Все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего, за счет повышения мощности и миниатюризации элементной базы и самих компьютеров. Обычно считается, что период с 1975 г. принадлежит компьютерам четвертого поколения. Их элементной базой стали большие интегральные схемы (БИС. В одном кристалле интегрированно до 100 тысяч элементов). Быстродействие этих машин составляло десятки млн. операций в секунду, а оперативная память достигла сотен Мб. Появились микропроцессоры (1971 г. фирма Intel), микро-ЭВМ и персональные ЭВМ. Стало возможным коммунальное использование мощности разных машин (соединение машин в единый вычислительный узел и работа с разделением времени). Однако, есть и другое мнение - многие полагают, что достижения периода 1975-1985 г.г. не настолько велики, чтобы считать его равноправным поколением. Сторонники такой точки зрения называют это десятилетие принадлежащим "третьему-с половиной" поколению компьютеров. И только с 1985г., когда появились супербольшие интегральные схемы (СБИС. В кристалле такой схемы может размещаться до 10 млн. элементов.), следует отсчитывать годы жизни собственно четвертого поколения, здравствующего и по сей день.

    1-ое направление - создание суперЭВМ - комплексов многопроцессорных машин. Быстродействие таких машин достигает нескольких миллиардов операций в секунду. Они способны обрабатывать огромные массивы информации. Сюда входят комплексы ILLIAS-4, CRAY, CYBER, «Эльбрус-1», «Эльбрус-2» и др. Многопроцессорные вычислительные комплексы (МВК) "Эльбрус-2" активно использовались в Советском Союзе в областях, требующих большого объема вычислений, прежде всего, в оборонной отрасли. Вычислительные комплексы "Эльбрус-2" эксплуатировались в Центре управления космическими полетами, в ядерных исследовательских центрах. Наконец, именно комплексы "Эльбрус-2" с 1991 года использовались в системе противоракетной обороны и на других военных объектах.

    2-ое направление - дальнейшее развитие на базе БИС и СБИС микро-ЭВМ и персональных ЭВМ (ПЭВМ). Первыми представителями этих машин являются Apple, IBM - PC (XT , AT , PS /2), «Искра», «Электроника», «Мазовия», «Агат», «ЕС-1840», «ЕС-1841» и др. Начиная с этого поколения ЭВМ повсеместно стали называть компьютерами. А слово «компьютеризация» прочно вошло в наш быт. Благодаря появлению и развитию персональных компьютеров (ПК), вычислительная техника становится по-настоящему массовой и общедоступной. Складывается парадоксальная ситуация: несмотря на то, что персональные и миникомпьютеры по-прежнему во всех отношениях отстают от больших машин, львиная доля новшеств - графический пользовательский интерфейс, новые периферийные устройства, глобальные сети - обязаны своим появлением и развитием именно этой "несерьезной" техники. Большие компьютеры и суперкомпьютеры, конечно же, не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.

    Характерные черты

    • Элементная база – большие интегральные схемы (БИС) .
    • Соединение элементов – печатные платы .
    • Габариты – компактные ЭВМ, ноутбуки .
    • Быстродействие – 10-100 млн. операций в секунду .
    • Эксплуатация – многопроцессорные и многомашинные комплексы, любые пользователи ЭВМ .
    • Программирование – базы и банки данных .
    • Оперативная память – 2-5 Мбайт .
    • Телекоммуникационная обработка данных, объединение в компьютерные сети.
    1. V поколение ЭВМ

    ЭВМ пятого поколения - это ЭВМ будущего. Программа разработки, так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний. Коротко говоря, для компьютеров пятого поколения не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется. Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры. На ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработке всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие «интеллектуализации» компьютеров - устранения барьера между человеком и компьютером.

    К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом. Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области. Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире. Экспертные системы и нейронные сети эффективно используются для задач классификации (фильтрация СПАМа, категоризация текста и т.д.). Добросовестно служат человеку генетические алгоритмы (используются, например, для оптимизации портфелей в инвестиционной деятельности), робототехника (промышленность, производство, быт - везде она приложила свою кибернетическую руку), а также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например распределенное представление знаний и решение задач в интернете: благодаря им в ближайшие несколько лет можно ждать революции в целом ряде областей человеческой деятельности.

    Программное обеспечение

    Примеры ЭВМ

    c 1946

    Электронная лампа

    10-20 тыс. операций в 1 с.

    2 Кбайт

    Перфоленты

    Перфокарты

    Машинные коды

    UNIVAC, МЭСМ, БЭСМ, СТРЕЛА

    c 1955

    Транзистор

    100-1000 тыс. операций в 1 с.

    2 – 32 Кбайт

    Магнитная лента, магнитные барабаны

    Алгоритмические языки, операционные системы

    «Традис»

    М-20

    IBM-701

    БЭСМ-6

    c 1966

    Интегральная схема (ИС)

    1-10 млн. операций в 1 с.

    64 Кбайт

    Многотерминальные системы

    Операционные системы

    EC-1030

    IBM-360

    БЭСМ-6

    c 1975

    Большая интегральная схема (БИС)

    1-100 млн. операций в 1 с.

    1-64 Кбайт

    Сети ПЭВМ

    Базы и банки данных

    IBM-386

    IBM-486

    Корнет

    УКНЦ

    с 90-х годов 20 в.

    Сверхбольшая интегральная схема (СБИС)

    Более 100 млн. операций в 1 с.

    Оптические и лазерные устройства

    Экспертные системы

    4.СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

    1. http://evm-story.narod.ru/#P0
    1. http://www.wikiznanie.ru/ru-wz/index.php/ЭВМ