Восьмеричный код. Правила переводов десятичных чисел в них и обратно

Для представления в цифровых устройствах чисел, а также другой информации в процессе программирования наряду с привычной для нас десятичной системой счисления широко используются другие системы. Рассмотрим наиболее употребительные позицион­ные системы счисления. Числа в таких системах счисления представляются последователь­ностью цифр (цифр разрядов):

a 5 a 4 a 3 a 2 a 1 a 0 …

Здесь a 0 , a 1 , . . . обозначают цифры нулевого, первого и других разрядов числа.

Цифре разряда приписан вес p k где р - основание системы счисления; k - номер разряда, равный индексу при обозначениях цифр разрядов. Так, приведенная выше запись означает следующее количество:

N = …+ a 5 × p 5 + a 4 × p 4 + a 3 × p 3 + a 2 × p 2 + a 1 × p 1 + a 0 × p 0 + …

Для представления цифр разрядов используется набор из p различных символов. Так, при р = 10 (т. е. в обычной десятичной системе счисления) для записи цифр разрядов используется набор из десяти символов: 0, 1, 2 ….. 9. При этом запись 729324 10 (здесь и далее индекс при числе указывает основание системы счисления, в которой представлено число) означает следующее количество:

Используя такой принцип представления чисел, но выбирая различные значения основания р , можно строить разнообразные системы счисления.

В двоичной системе счисления основание системы счисления р = 2. Таким образом, для записи цифр разрядов требуется набор всего лишь из двух символов, в качестве которых используются 0 и 1.


Следовательно, в двоичной системе счисления число представляется последовательностью символов 0 и 1. При этом запись 1011101 2 соответствует в десятичной системе счисления следующему числу:

В восьмеричной системе счисления основание системы счисления р = 8. Следовательно, для представления цифр разрядов должно использоваться восемь разных символов, в качестве которых выбраны 0, 1, 2,…,7 (заметим, что символы 8 и 9 здесь не используются и в записи чисел встречаться не должны). Например, записи 735460 8 в десятичной системе счисления соответствует следующее число:

т. е. запись 735460 8 означает число, содержащее семь раз по 8 5 = 32768, три раза по 8 4 = 4096, пять раз по 8 3 = 512, четыре раза по 8 2 = 64, шесть раз по 8 1 = 8 и ноль раз по 8 0 = 1.

В шестнадцатеричной системе счисления основание системы счисления р = 16 и для записи цифр разрядов должен использоваться набор из 16 символов: 0, 1,2…..9, А, В, С, D, Е, F. В нем используются 10 арабских цифр, и до требуемых шестнадцати их дополняют шестью начальными буквами латинского алфавита. При этом символу А в десятичной системе счисления соответствует 10, В – 11, С – 12, D – 13, Е – 14, F – 15.

Запись AB9C2F 16 соответствует следующему числу в десятичной системе счисления:

Для хранения n -разрядных чисел в цифровой аппаратуре можно использовать устройст­ва, содержащие n элементов, каждый из которых запоминает цифру соответствующего разряда числа. Наиболее просто осуществляется хранение чисел, представленных в двоичной системе счисления. Для запоминания цифры каждого разряда двоичного числа могут исполь­зоваться устройства с двумя устойчивыми состояниями (например, триггеры). Одному из этих устойчивых состояний ставится в соответствие цифра 0, другому – цифра 1.

Восьмеричная система счисления

Позиционная целочисленная система счисления с основанием 8. Для представления чисел в ней используются цифры 0 до 7.

Восьмеричная система часто используется в областях, связанных с цифровыми устройствами. Характеризуется лёгким переводом восьмеричных чисел в двоичные и обратно, путём замены восьмеричных чисел на триплеты двоичных. Ранее широко использовалась в программировании и вообще компьютерной документации, однако в настоящее время почти полностью вытеснена шестнадцатеричной.

Шестнадцатеричная система счисления

(шестнадцатеричные числа) -- позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 10 10 до 15 10 , то есть (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).

Правила переводов десятичных чисел в них и обратно

·

Для преобразования из двоичной системы в десятичную используют следующую таблицу степеней основания 2:

Точно так же, начиная с двоичной точки, двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа.Таким образом, двоичное число 110001 равнозначно десятичному 49.

Преобразование методом Горнера

Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Например, двоичное число 1011011 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+0=22 >> 22*2+1=45 >> 45*2+1=91 То есть в десятичной системе это число будет записано как 91. Или число 101111 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+1=23 >> 23*2+1=47 То есть в десятичной системе это число будет записано как 47.

Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой:

  • 19 /2 = 9 с остатком 1
  • 9 /2 = 4 c остатком 1
  • 4 /2 = 2 с остатком 0
  • 2 /2 = 1 с остатком 0
  • 1 /2 = 0 с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в делимом не будет 0. В результате получаем число 19 в двоичной записи: 10011.

Преобразование дробных двоичных чисел в десятичные

Нужно перевести число 1011010.101 в десятичную систему. Запишем это число следующим образом:

Преобразование дробных десятичных чисел в двоичные

Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

  • · Вначале переводится целая часть десятичной дроби в двоичную систему счисления;
  • · Затем дробная часть десятичной дроби умножается на основание двоичной системы счисления;
  • · В полученном произведении выделяется целая часть, которая принимается в качестве значения первого после запятой разряда числа в двоичной системе счисления;
  • · Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются с предыдущего шага.

Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

Перевод целой части дает 206 10 =11001110 2 по ранее описанным алгоритмам; дробную часть умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:

  • 116 * 2 = 0.232
  • 232 * 2 = 0.464
  • 464 * 2 = 0.928
  • 928 * 2 = 1.856
  • 856 * 2 = 1.712
  • 712 * 2 = 1.424
  • 424 * 2 = 0.848
  • 848 * 2 = 1.696
  • 696 * 2 = 1.392
  • 392 * 2 = 0.784

Получим: 206,116 10 =11001110,0001110110 2

· Преобразование восьмеричных чисел в десятичные.

Алгоритм перевода чисел из восьмеричной в десятичную систему счисления аналогичен уже рассматривавшему мною в разделе: Преобразование двоичных чисел в десятичные.

Для перевода восьмеричного числа в двоичное необходимо заменить каждую цифру восьмеричного числа на триплет двоичных цифр.

Пример: 2541 8 = 010 101 100 001 = 010101100001 2

Существует таблица перевода восьмеричных чисел в двоичные

· Преобразование шестнадцатеричных чисел в десятичные.

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Например, требуется перевести шестнадцатеричное число 5A3 в десятичное. В этом числе 3 цифры. В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:

5A3 16 = 3·16 0 +10·16 1 +5·16І= 3·1+10·16+5·256= 3+160+1280= 1443 10

Для перевода многозначного двоичного числа в шестнадцатеричную систему нужно разбить его на тетрады справа налево и заменить каждую тетраду соответствующей шестнадцатеричной цифрой.

Например:

010110100011 2 = 0101 1010 0011 = 5A3 16

Таблица перевода чисел

    Позиционная система счисления с основанием 8, в которой для записи чисел используются цифры 0, 1, 2, 3, 4, 5, 6 и 7. См. также: Позиционные системы счисления Финансовый словарь Финам … Финансовый словарь

    - (octal notation) Система чисел, использующая для выражения чисел восемь цифр от 0 до 7. Так, десятичное число 26 в восьмеричной системе будет записано как 32. Не будучи столь популярной, как шестнадцатиричная система счисления (hexadecimal… … Словарь бизнес-терминов

    - — Тематики электросвязь, основные понятия EN octal notation … Справочник технического переводчика

    восьмеричная система счисления

    восьмеричная система - aštuonetainė sistema statusas T sritis automatika atitikmenys: angl. octal notation; octal number system; octal system; octonary notation vok. Achtersystem, n; oktales Zahlsystem, n; Oktalschreibweise, f; Oktalsystem, n rus. восьмеричная система … Automatikos terminų žodynas

    Двенадцатеричная система счисления позиционная система счисления с целочисленным основанием 12. Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. Существует другая система обозначения, где для недостающих цифр используют не A и B, а t от… … Википедия

    - (hexadecimal notation) Числовая система, использующая десять цифр от 0 до 9 и буквы от A до F для выражения чисел. Например, десятичное число 26 записывается в этой системе как 1А. Числа шестидесятеричной системы широко используются в… … Словарь бизнес-терминов

    Системы счисления в культуре Индо арабская система счисления Арабская Индийские Тамильская Бирманская Кхмерская Лаоская Монгольская Тайская Восточноазиатские системы счисления Китайская Японская Сучжоу Корейская Вьетнамская Счётные палочки… … Википедия

Для записи каждой цифры восьмеричной с.с. требуется максимум 3 разряда.

Алгоритм перевода из 2-ой в 8-ую систему счисления

При переводе из 2-ой в 8-ую систему счисления надо число разбить на триады (по три разряда) и записать каждую триаду эквивалентным двоичным кодом, недостающее число разрядов надо дополнить слева нулями.

100111101 2 = 100 111 101 2 =475 8

1100010 2 = 001 100 010 2 =142 8

Алгоритм перевода из 8-ой в 2-ую

Для перевода из 8-ой в 2-ую используется обратное правило.

Каждую цифру 8-ого числа надо записать тремя разрядами соответствующего ей двоичного кода

Перевод из 8-ой в 2-ую

563 8 = 101110011 2

Перевод из 8-ой в 10-ую

563 8 = 5*8 2 + 6*8 1 + 3*8 0 = 512+ 40 + 7 = 371 10

9 Шестнадцатеричная система счисления. Запись чисел в шестнадцатеричной системе счисления. Привести примеры.

В шестнадцатеричной системе счисления основание системы равно 16, т.е. для записи чисел используется 16 символов: цифры от 0 до 9 и далее буквы латинского алфавита от AдоF

Ниже представлена таблица соответствия кодов чисел четырех систем счисления.

Для записи 1 цифры шестнадцатеричного числа в двоичной системе счисления требуется 4 разряда.

Алгоритм перевода чисел из 2-ой в 16-ую систему счисления

При переводе чисел из 2-ой в 16-ую систему счисления надо число разбить на тетрады (по четыре разряда) и записать каждую тетраду эквивалентным двоичным кодом, недостающее число разрядов надо дополнить слева нулями.

Примеры:

    1001 1110 2 = 9E 16

0010 0010 2 = 22 16

Алгоритм перевода чисел из 16-ой в 2-ую

Для перевода из 16-ой в 2-ую используется обратное правило.

Каждую цифру шестнадцатеричного числа надо записать четырьмя разрядами соответствующего ей двоичного кода

Перевод из 16-ой в 2-ую

173 16 = 101110011 2

Перевод из 16-ой в 10-ую

173 16 = 1*16 2 + 7*16 1 + 3*16 0 = 256 + 112 + 3 = 371 10

10 Перевод чисел из десятичной системы счисления в любую другую позиционную систему счисления. Привести примеры.

Для перевода целого десятичного числа N в систему счисления с основанием q необходимо N разделить с остатком ("нацело") на q , записанное в той же десятичной системе. Затем неполное частное, полученное от такого деления, нужно снова разделить с остатком на q , и т.д., пока последнее полученное неполное частное не станет равным нулю. Представлением числа N в новой системе счисления будет последовательность остатков деления, изображенных одной q-ичной цифрой и записанных в порядке, обратном порядку их получения.

Пример: Переведем число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

В двоичную В восьмеричную В шестнадцатеричную

: 7510 = 1 001 0112 = 1138 = 4B16.


Введение

Современный человек в повседневной жизни постоянно сталкивается с числами: мы запоминаем номера автобусов и телефонов, в магазине

подсчитываем стоимость покупок, ведём свой семейный бюджет в рублях и копейках (сотых долях рубля) и т.д. Числа, цифры. Они с нами везде.

Понятие числа - фундаментальное понятие как математики, так и информатики. Сегодня, в самом конце XX века, для записи чисел человечество использует в основном десятичную систему счисления. А что такое система счисления?

Система счисления - это способ записи (изображения) чисел.

Различные системы счисления, которые существовали раньше и которые используются в настоящее время, делятся на две группы: позиционные и непозиционные. Наиболее совершенными являются позиционные системы счисления, т.е. системы записи чисел, в которых вклад каждой цифры в величину числа зависит от её положения (позиции) в последовательности цифр, изображающей число. Например, наша привычная десятичная система является позиционной: в числе 34 цифра 3 обозначает количество десятков и "вносит" в величину числа 30, а в числе 304 та же цифра 3 обозначает количество сотен и "вносит" в величину числа 300.

Системы счисления, в которых каждой цифре соответствует величина, не зависящая от её места в записи числа, называются непозиционными.

Позиционные системы счисления - результат длительного исторического развития непозиционных систем счисления.


1.История систем счисления

  • Единичная система счисления

Потребность в записи чисел появилась в очень древние времена, как только люди начали считать. Количество предметов, например овец, изображалось нанесением чёрточек или засечек на какой - либо твёрдой поверхности: камне, глине, дереве (до изобретения бумаги было ещё очень и очень далеко). Каждой овце в такой записи соответствовала одна чёрточка. Археологами найдены такие "записи" при раскопках культурных слоёв, относящихся к периоду палеолита (10 - 11 тысяч лет до н.э.).

Учёные назвали этот способ записи чисел единичной ("палочной") системой счисления. В ней для записи чисел применялся только один вид знаков - "палочка". Каждое число в такой системе счисления обозначалось с помощью строки, составленной из палочек, количество которых и равнялось обозначаемому числу.

Неудобства такой системы записи чисел и ограниченность её применения очевидны: чем большее число надо записать, тем длиннее строка из палочек. Да и при записи большого числа легко ошибиться, нанеся лишнее количество палочек или, наоборот, не дописав их.

Можно предложить, что для облегчения счёта люди стали группировать предметы по 3, 5, 10 штук. И при записи использовали знаки, соответствующие группе из нескольких предметов. Естественно, что при подсчёте использовались пальцы рук, поэтому первыми появились знаки для обозначения группа предметов из 5 и 10 штук (единиц). Таким образом, возникли уже более удобные системы записи чисел.

  • Древнеегипетская десятичная непозиционная система счисления

В древнеегипетской системе счисления, которая возникла во второй половине третьего тысячелетия до н.э., использовались специальные цифры для обозначения чисел 1, 10, 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 . Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из них повторялась не более девяти раз.

Пример. Число 345 древние египтяне записывали так:

Рисунок 1 Запись числа древнеегипетской системой счисления

Обозначение цифр в непозиционной древнеегипетской системе счисления:

Рисунок 2 Единица

Рисунок 3 Десятки

Рисунок 4 Сотни

Рисунок 5 Тысячи

Рисунок 6 Десятки тысяч

Рисунок 7 Сотни тысяч

В основе как палочной, так и древнеегипетской системы счисления лежал простой принцип сложения, согласно которому значение числа равно сумме значений цифр, участвующих в его записи. Учёные относят древнеегипетскую систему счисления к десятичной непозиционной.

  • Вавилонская(шестидесятеричная) система счисления

Числа в этой системе счисления составлялись из знаков двух видов: прямой клин (рисунок 8) служил для обозначения единиц, лежачий клин (рисунок 9) - для обозначения десятков.

Рисунок 8 Прямой клин

Рисунок 9 Лежачий клин

Таким образом, число 32 записывали так:

Рисунок 10 Запись числа 32 на вавилонской шестидесятеричной системе счисления

Число 60 снова обозначалось тем же знаком(рисунок 8) , что и 1. Этим же знаком обозначались числа 3600 = 60 2 , 216000 = 60 3 и все другие степени 60. Поэтому вавилонская система счисления получила название шестидесятеричной.

Для определения значения числа нужно было изображение числа разбить на разряды справа налево. Чередование групп одинаковых знаков ("цифр") соответствовало чередованию разрядов:

Рисунок 11 Разбивание на разряды числа

Значение числа определяли по значениям составляющих его "цифр", но с учетом того, что "цифры" в каждом последующем разряде значили в 60 раз больше тех же "цифр" в предыдущем разряде.

Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а число в целом - в позиционной системе с основанием 60.

Запись числа у вавилонян была неоднозначной, так как не существовало "цифры" для обозначения нуля. Запись числа 92, могла обозначать не только 92 = 60 + 32, но и 3632 = 3600 + 32 = 602 + 32 и т.д. Для определения абсолютного значения числа требовались дополнительные сведения. Впоследствии вавилоняне ввели специальный символ (рисунок 12) для обозначения, пропущенного шестидесятеричного разряда, что соответствует в привычной нам десятичной системе появлению цифры 0 в записи числа. Но в конце числа этот символ обычно не ставился, то есть этот символ не был нулем в нашем понимании.

Рисунок 12 Символ для обозначения пропущенного шестидесятеричного разряда

Таким образом, число 3632 теперь нужно было записывать так:

Рисунок 13 Запись числа 3632

Таблицу умножения вавилоняне никогда не запоминали, так как это было практически невозможно. При вычислениях они пользовались готовыми таблицами умножения.

Шестидесятеричная вавилонская система - первая известная нам система счисления, основанная на позиционном принципе. Система вавилонян сыграла большую роль в развитии математики и астрономии, ее следы сохранились до наших дней. Так, мы до сих пор делим час на 60 минут, а минуту на 60 секунд. Точно также же, следуя примеру вавилонян, окружность мы делим на 360 частей (градусов).

  • Римская система счисления

Примером непозиционной системы счисления, которая сохранилась до наших дней, может служить системы счисления, применявшаяся более двух с половиной тысяч лет назад в Древнем Риме.

В основе римской системы счисления лежат знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для 10, а также специальные знаки для обозначения чисел 50, 100, 500 и 1000.

Обозначения для последних четырех чисел с течением времени претерпели значительные изменения. Ученые предполагают, что первоначально знак для числа 100 имел вид пучка из трех черточек наподобие русской буквы Ж, а для числа 50 — вид верхней половинки этой буквы, которая в дальнейшем трансформировалась в знак L:

Рисунок 14 Трансформация числа 100

Для обозначения чисел 100, 500 и 1000 стали применять первые буквы соответствующих латинских слов (Centum — сто, Demimille — половина тысячи, Mille — тысяча).

Чтобы записать число, римляне использовали не только сложение, но и вычитание ключевых чисел. При этом применялось следующее правило.

Значение каждого меньшего знака, поставленного слева от большего, вычитается из значения большего знака.

Например, запись IX обозначает число 9, а запись XI — число 11. Десятичное число 28 представляется следующим образом:

XXVIII = 10 + 10 + 5 + 1 + 1 + 1.

Десятичное число 99 имеет такое представление:

Рисунок 15 Число 99

То, что при записи новых чисел ключевые числа могут не только складываться, но и вычитаться, имеет существенный недостаток запись римскими цифрами лишает число единственности представления. Действительно, в соответствии с приведенным выше правилом, число 1995 можно записать, например, следующими способами:

MCMXCV = 1000 + (1000 - 100) + (100 -10) + 5,

MDCCCCLXXXXV = 1000 + 500 + 100 + 100 + 100 + 100 + 50 + 10 + 10 + 10 + 10 + 5

MVM = 1000 + (1000 - 5),

MDVD = 1000 + 500 + (500 - 5) и так далее.

Единых правил записи римских чисел до сих пор нет, но существуют предложения о принятии для них международного стандарта.

В наши дни любую из римских цифр предлагается записывать в одном числе не более трех раз подряд. На основании этого построена таблицы, которой удобно пользоваться для обозначения чисел римскими цифрами:

Единицы

Десятки

Сотни

Тысячи

10 X

100 C

1000 M

2 II

20 XX

200 CC

2000 MM

3 III

30 XXX

300 CCC

3000 MMM

4 IV

40 XL

400 CD

50 L

500 D

6 VI

60 LX

600 DC

7 VII

70 LXX

700 DCC

8 VIII

80 LXXX

800 DCCC

9 IX

90 XC

900 CM

Таблица 1 Таблица римских цифр

Римскими цифрами пользовались очень долго. Еще 200 лет назад в деловых бумагах числа должны были обозначаться римскими цифрами (считалось, что обычные арабские цифры легко подделать).

В настоящее время римская система счисления не применяется, за некоторыми исключениями:

  • Обозначения веков (XV век и т.д.), годов н. э. (MCMLXXVII т. д.) и месяцев при указании дат (например, 1. V.1975).
  • Обозначение порядковых числительных.
  • Обозначение производных небольших порядков, больших трёх: yIV, yV и т.д.
  • Обозначение валентности химических элементов.
    • Славянская система счисления

Эта нумерация была создана вместе со славянской алфавитной системой для переписки священных книг для славян греческими монахами братьями Кириллом (Константином) и Мефодием в IX веке. Эта форма записи чисел получила большое распространение в связи с тем, что имела полное сходство с греческой записью чисел.

Единицы

Десятки

Сотни

Таблица 2 Славянская система счисления

Если посмотреть внимательно, то увидим, что после "а" идет буква "в", а не "б" как следует по славянскому алфавиту, то есть используются только буквы, которые есть в греческом алфавите. До XVII века эта форма записи чиcел была официальной на территории современной России, Белоруссии, Украины, Болгарии, Венгрии, Сербии и Хорватии. До сих пор в православных церковных книгах используется эта нумерация.

  • Система счисления майя

Эта система использовалась для календарных расчетов. В быту майя использовали непозиционную систему сходную с древнеегипетской. Об этой системе дают представление сами цифры майя, которые можно трактовать как запись первых 19 натуральных чисел в пятеричной непозиционной системе счисления. Аналогичный принцип составных цифр использован в вавилонской шестидесятеричной системе счисления.

Цифры майя состояли из нуля (знак ракушки) и 19 составных цифр. Эти цифры конструировались из знака единицы (точка) и знака пятёрки (горизонтальная черта). Например, цифра, обозначающая число 19, писалась как четыре точки в горизонтальном ряду над тремя горизонтальными линиями.

Рисунок 16 Система счисления майя

Числа свыше 19 писались согласно позиционному принципу снизу вверх по степеням 20. Например:

32 писалось как (1)(12) = 1×20 + 12

429 как (1)(1)(9) = 1×400 + 1×20 + 9

4805 как (12)(0)(5) = 12×400 + 0×20 + 5

Для записи цифр от 1 до 19 иногда также использовались изображения божеств. Такие цифры использовались крайне редко, сохранившись лишь на нескольких монументальных стелах.

Позиционная система счисления требует использования нуля для обозначения пустых разрядов. Первая дошедшая до нас дата с нулём (на стеле 2 в Чиапа-де Корсо, Чиапас) датирована 36 годом до н. э. Первая позиционная система счисления в Евразии, созданная в древнем Вавилоне за 2000 лет до н. э., первоначально нуля не имела, а впоследствии знак нуля использовался только в промежуточных разрядах числа, что приводило к неоднозначной записи чисел. Непозиционные системы счисления древних народов нуля, как правило, не имели.

В «долгом счёте» календаря майя была использована разновидность 20-ричной системы счисления, в которой второй разряд мог содержать только цифры от 0 до 17, после чего к третьему разряду добавлялась единица. Таким образом, единица третьего разряда означала не 400, а 18×20 = 360, что близко к числу дней в солнечном году.

  • История арабских чисел

Это, самая распространенная на сегодняшний день нумерация. Название "арабская" для нее не совсем верно, поскольку хоть и завезли ее в Европу из арабских стран, но там она тоже была не родной. Настоящая родина этой нумерации - Индия.

В различных районах Индии существовали разнообразные системы нумерации, но в какой-то момент среди них выделилась одна. В ней цифры имели вид начальных букв соответствующих числительных на древнеиндийском языке - санскрите, использующем алфавит "Деванагари".

Первоначально этими знаками представлялись числа 1, 2, 3, … 9, 10, 20, 30, …, 90, 100, 1000; с их помощью записывались другие числа. Но в последствии был введен особый знак - жирная точка, или кружок, для указания пустующего разряда; и нумерация "Деванагари" превратилась в поместную десятичную систему. Как и когда совершился такой переход - до сих пор неизвестно. К середине VIII века позиционная система нумерации получает широкое применение. В это же время она проникает в соседние страны: Индокитай, Китай, Тибет, Среднюю Азию.

Решающую роль в распространении индийской нумерации в арабских странах сыграло руководство, составленное в начале IX века Мухаммедом Аль Хорезми. Оно было переведено в Западной Европе на латинский язык в XII веке. В XIII веке индийская нумерация получает преобладание в Италии. В других странах она распространяется к XVI веку. Европейцы, заимствовав нумерацию у арабов, называли ее "арабской". Это исторически неправильное название удерживается и поныне.

Из арабского языка заимствовано и слово "цифра" (по-арабски "сыфр"), означающее буквально "пустое место" (перевод санскритского слова "сунья", имеющего тот же смысл). Это слово применялось для названия знака пустого разряда, и этот смысл сохраняло до XVIII века, хотя еще в XV веке появился латинский термин "нуль" (nullum - ничто).

Форма индийских цифр претерпевала многообразные изменения. Та форма, которой мы сейчас пользуемся установилась в XVI веке.

  • История нуля

Нуль бывает разный. Во-первых, нуль – это цифра, которая используется для обозначения пустого разряда; во-вторых, нуль – это необычное число, так как на нуль делить нельзя и при умножении на нуль любое число становиться нулем; в-третьих, нуль нужен для вычитания и сложения, иначе, сколько будет, если из 5 вычесть 5?

Впервые нуль появился в древневавилонской системе счисления, он использовался для обозначения пропущенных разрядов в числах, но такие числа как 1 и 60 у них записывали одинаково, так как нуль в конце числа у них не ставился. В их системе нуль выполнял роль пробела в тексте.

Изобретателем формы нуля можно считать великого греческого астронома Птолемея, так как в его текстах на месте знака пробела стоит греческая буква омикрон, очень напоминающая современный знак нуля. Но Птолемей использует нуль в том же смысле, что и вавилоняне.

На стенной надписи в Индии в IX веке н.э. впервые символ нуля встречается в конце числа. Это первое общепринятое обозначение современного знака нуля. Именно индийские математики изобрели нуль во всех его трех смыслах. Например, индийский математик Брахмагупта еще в VII века н.э. активно стал использовать отрицательные числа и действия с нулем. Но он утверждал, что число, деленное на нуль, есть нуль, что конечно ошибка, но настоящая математическая дерзость, которая привела к другому замечательному открытию индийских математиков. И в XII веке другой индийский математик Бхаскара делает еще попытку понять, что же будет при делении на нуль. Он пишет: "количество, деленное на нуль, становится дробью, знаменатель которой равен нулю. Эту дробь называют бесконечностью".

Леонардо Фибоначчи, в своем сочинении "Liber abaci" (1202) называет знак 0 по-арабски zephirum. Слово zephirum – это арабское слово as-sifr, которое произошло от индийского слова sunya, т. е. пустое, служившего названием нуля. От слова zephirum произошло французское слово zero (нуль) и итальянское слово zero. С другой стороны, от арабского слова as-sifr произошло русское слово цифра. Вплоть до середины XVII века это слово употреблялось специально для обозначения нуля. Латинское слово nullus (никакой) вошло в обиход для обозначения нуля в XVI веке.

Нуль - это уникальный знак. Нуль – это чисто абстрактное понятие, одно из величайших достижений человека. Его нет в природе окружающей нас. Без нуля можно спокойно обойтись в устном счете, но невозможно обойтись для точной записи чисел. Кроме этого, нуль находится в противовесе всем остальным числам, и символизирует собой бесконечный мир. И если “все есть число”, то ничто есть все!

  • Недостатки непозиционной системы счисления

Непозиционные системы счисления имеют ряд существенных недостатков:

1.Существует постоянная потребность введения новых знаков для записи больших чисел.

2.Невозможно представлять дробные и отрицательные числа.

3.Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения. В частности, у всех народов наряду с системами счисления были способы пальцевого счета, а у греков был счетная доска абак – что-то наподобие наших счетов.

Но мы до сих пор пользуемся элементами непозиционной системы счисления в обыденной речи, в частности, мы говорим сто, а не десять десятков, тысяча, миллион, миллиард, триллион.


2.Двоичная система счисления.

В этой системе всего две цифры - 0 и 1. Особую роль здесь играет число 2 и его степени: 2, 4, 8 и т.д. Самая правая цифра числа показывает число единиц, следующая цифра - число двоек, следующая - число четверок и т.д. Двоичная система счисления позволяет закодировать любое натуральное число - представить его в виде последовательности нулей и единиц. В двоичном виде можно представлять не только числа, но и любую другую информацию: тексты, картинки, фильмы и аудиозаписи. Инженеров двоичное кодирование привлекает тем, что легко реализуется технически. Наиболее простыми с точки зрения технической реализации являются двухпозиционные элементы, например, электромагнитное реле, транзисторный ключ.

  • История двоичной системы счисления

В основу поисков инженеры и математики положили двоичную двухпозиционную - природу элементов вычислительной техники.

Возьмите, к примеру, двухполюсный электронный прибор - диод. Он может находиться только в двух состояниях: или проводит электрический ток - «открыт», или не проводит его - «заперт». А триггер? Он тоже имеет два устойчивых состояния. По такому же принципу работают запоминающие элементы.

Почему же не использовать тогда двоичную систему счисления? Ведь в ней только две цифры: 0 и 1. А это удобно для работы на электронной машине. И новые машины стали считать с помощью 0 и 1.

Не думайте, что двоичная система - современница электронных машин. Нет, она намного старше. Двоичным счислением люди интересуются давно. Особенно им увлекались с конца XVI до начала XIX века.

Лейбниц считал двоичную систему простой, удобной и красивой. Он говорил, что «вычисление с помощью двоек... является для науки основным и порождает новые открытия... При сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок».

По просьбе ученого в честь «диадической системы» - так тогда называли двоичную систему - была выбита медаль. На ней изображалась таблица с числами и простейшие действия с ними. По краю медали вилась лента с надписью: «Чтобы вывести из ничтожества все, достаточно единицы».

Формула 1 Количество информации в битах

  • Перевод из двоичной в десятичную систему счисления

Задача перевода чисел из двоичной системы счисления в десятичную чаще всего возникает уже при обратном преобразовании вычисленных либо обработанных компьютером значений в более понятные пользователю десятичные цифры. Алгоритм перевода двоичных чисел в десятичные достаточно прост (его иногда называют алгоритмом замещения):

Для перевода двоичного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания двоичной системы счисления на соответствующие цифры в разрядах двоичного числа.

Например, требуется перевести двоичное число 10110110 в десятичное. В этом числе 8 цифр и 8 разрядов (разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с уже известным нам правилом представим его в виде суммы степеней с основанием 2:

10110110 2 = (1·2 7 )+(0·2 6 )+(1·2 5 )+(1·2 4 )+(0·2 3 )+(1·2 2 )+(1·2 1 )+(0·2 0 ) = 128+32+16+4+2 = 182 10

В электронике устройство, осуществляющее похожее преобразование, называется дешифратором (декодером, англ. decoder).

Дешифратор — это схема преобразующая двоичный код, подаваемый на входы, в сигнал на одном из выходов, то есть дешифратор расшифровывает число в двоичном коде, представляя его логической единицей на выходе, номер которого соответствует десятичному числу.

  • Перевод из двоичной в шестнадцатеричную систему счисления

Каждый разряд шестнадцатеричного числа содержит 4 бита информации.

Таким образом, для перевода целого двоичного числа в шестнадцатеричное его нужно разбить на группы по четыре цифры (тетрады), начиная справа, и, если в последней левой группе окажется меньше четырех цифр, дополнить ее слева нулями. Для перевода дробного двоичного числа (правильной дроби) в шестнадцатеричное необходимо разбить его на тетрады слева направо и, если в последней правой группе окажется меньше четырех цифр, то необходимо дополнить ее справа нулями.

Затем надо преобразовать каждую группу в шестнадцатеричную цифру, воспользовавшись для этого предварительно составленной таблицей соответствия двоичных тетрад и шестнадцатеричных цифр.

Шестнад-

теричное

число

Двоичная

тетрада

Таблица 3 Таблица шестнадцатеричных цифр и двоичных тетрад

  • Перевод из двоичной в восьмеричную систему счисления

Перевести двоичное число в восьмеричную систему достаточно просто, для этого нужно:

  1. Разбить двоичное число на триады (группы из 3-х двоичных цифр), начиная с младших разрядов. Если в последней триаде (старшие разряды) будет меньше трех цифр, то дополним ее до трех нулями слева.
    1. Под каждой триадой двоичного числа записать соответствующую ей цифру восьмеричного числа из следующей таблицы.

Восьмеричное

число

Двоичная триада

Таблица 4 Таблица восьмеричных чисел и двоичных триад


3.Восьмеричная система счисления

Восьмеричная система счисления — это позиционная система счисления с основанием 8. Для записи чисел в восьмеричной системе используется 8 цифр от нуля до семи (0,1,2,3,4,5,6,7).

Применение: восьмеричная система наряду с двоичной и шестнадцатеричной используется в цифровой электронике и компьютерной технике, однако в настоящее время применяется редко (ранее использовалась в низкоуровневом программировании, вытеснена шестнадцатеричной).

Широкое применение восьмеричной системы в электронной вычислительной технике объясняется тем, что для нее характерен легкий перевод в двоичную и обратно с помощью простой таблицы, в которой все цифры восьмеричной системы от 0 до 7 представлены в виде двоичных триплетов (Таблица 4).

  • История восьмеричной системы счисления

История: возникновение восьмеричной системы связывают с такой техникой счета на пальцах, когда считались не пальцы, а промежутки между ними (их всего восемь).

В 1716 году король Швеции Карл XII предложил известному шведскому философу Эмануэлю Сведенборгу разработать числовую систему, основанную на 64 вместо 10. Однако Сведенборг считал, что для людей с меньшим интеллектом, чем король, оперировать такой системой счисления будет слишком трудно и предложил в качестве основания число 8. Система была разработана, но смерть Карла XII в 1718 году помешала ввести ее как общепринятую, данная работа Сведенборга не опубликована.

  • Перевод из восьмеричной в десятичную систему счисления

Для перевода восьмеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания восьмеричной системы счисления на соответствующие цифры в разрядах восьмеричного числа. [ 24]

Например, требуется перевести восьмеричное число 2357 в десятичное. В этом числе 4 цифры и 4 разряда (разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с уже известным нам правилом представим его в виде суммы степеней с основанием 8:

23578 = (2·83)+(3·82)+(5·81)+(7·80) = 2·512 + 3·64 + 5·8 + 7·1 = 126310

  • Перевод из восьмеричной в двоичную систему счисления

Для перевода из восьмеричной в двоичную систему нужно каждую цифру числа надо преобразовать в группу из трех двоичных цифр триаду(Таблица 4).

  • Перевод из восьмеричной в шестнадцатеричную систему счисления

Для перевода из шестнадцатеричной в двоичную систему нужно каждую цифру числа надо преобразовать в группу из трех двоичных цифр тетраду (Таблица 3).


3.Шестнадцатеричная система счисления

Позиционная система счисления по целочисленному основанию 16.

Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 1010 до 1510, то есть (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).

Широко используется в низкоуровневом программировании и компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами.

В стандарте Юникода номер символа принято записывать в шестнадцатеричном виде, используя не менее 4 цифр (при необходимости — с ведущими нулями).

Шестнадцатеричный цвет — запись трёх компонент цвета (R, G и B) в шестнадцатеричном виде.

  • История шестнадцатеричной системы счисления

Шестнадцатеричная система счисления внедрена американской корпорацией IBM. Широко используется в программировании для IBM-совместимых компьютеров. Минимальной адресуемой (пересылаемой между компонентами компьютера) единицей информации является байт, состоящий, как правило, из 8 бит (англ. bit — binary digit — двоичная цифра, цифра двоичной системы), а два байта, то есть 16 бит, составляют машинное слово (команду). Таким образом, для записи команд удобно использовать систему с основанием 16.

  • Перевод из шестнадцатеричной в двоичную систему счисления

Алгоритм перевода чисел из шестнадцатеричной системы счисления двоичную крайне прост. Необходимо только заменить каждую цифру шестнадцатеричного числа ее эквивалентом в двоичной системе счисления (в случае положительных чисел). Отметим только, что каждое шестнадцатеричное число следует заменять двоичным, дополняя его до 4 разрядов (в сторону старших разрядов).

  • Перевод из шестнадцатеричной в десятичную систему счисления

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Например, требуется перевести шестнадцатеричное число F45ED23C в десятичное. В этом числе 8 цифр и 8 разрядов (помним, что разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:

F45ED23C 16 = (15·16 7 )+(4·16 6 )+(5·16 5 )+(14·16 4 )+(13·16 3 )+(2·16 2 )+(3·16 1 )+(12·16 0 ) = 4099854908 10

  • Перевод из шестнадцатеричной в восьмеричную систему счисления

Обычно при переводе чисел из шестнадцатеричной в восьмеричную систему счисления вначале шестнадцатеричное число переводят в двоичное, затем разбивают его на триады, начиная с младшего бита, а потом заменяют триады соответствующими им эквивалентами в восьмеричной системе(Таблица 4).


Заключение

Сейчас в большинстве стран мира, несмотря на то, что там говорят на разных языках, считают одинаково, "по-арабски".

Но так было не всегда. Еще каких-то пятьсот лет назад ничего подобного и в помине не было даже в просвещенной Европе, не говоря уже о какой-нибудь Африке или Америке.

Но тем не менее числа люди все равно как-то записывали. У каждого народа была своя собственная или позаимствованная у соседа система записи чисел. Одни использовали буквы, другие - значки, третьи - закорючки. У кого-то получалось удобнее, у кого-то не очень.

На данный момент мы используем разные системы счисления разных народов, не смотря на то, что десятичная система счисления имеет ряд преимуществ перед остальными.

Вавилонская шестидесятеричная система счисления до сих используется в астрономии. Ее след сохранился до наших дней. Мы до сих пор измеряем время в шестидесяти секундах, в часах шестьдесят минут, также она применяется в геометрии для измерения углов.

Римская непозиционная система счисления используется нами для обозначения параграфов, разделов и в конечно же в химии.

В компьютерных технологиях используется двоичная система. Именно из-за использования всего двух чисел 0 и 1 она лежит в основе работы компьютера, так как у него два устойчивых состояния: низкое или высокое напряжение, есть ток или нет тока, намагничено или не намагничено.Для людей двоичная система счисления не удобна из-за громоздкости записи кода, но переводить числа из двоичную систему в десятичную и обратно не так уж и удобно, поэтому стали использовать восьмеричную и шестнадцатеричную системы счисления.


Список рисунков


Список таблиц


Формулы


Список литературы и источников

  1. Берман Н.Г. "Счет и число". ОГИЗ Гостехиздат Москва 1947 год.
  2. Бругш Г. Все о Египте– М:. Ассоциация Духовного Единения «Золотой Век», 2000. — 627 с.
  3. Выгодский М. Я. Арифметика и алгебра в Древнем мире – М.: Наука, 1967.
  4. Ван дер Варден Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции / Пер. с голл. И. Н. Веселовского. — М., 1959. — 456 с.
  5. Г. И. Глейзер. История математики в школе. М.: Просвещение, 1964, 376 с.
  6. Босова Л. Л. Информатика: Учебник для 6 класса
  7. Фомин С.В. Системы счисления, М.: Наука, 2010
  8. Всевозможные нумерации и системы счисления (http://www.megalink.ru/~agb/n/numerat.htm )
  9. Математический энциклопедический словарь. — М.: «Сов. энциклопедия », 1988. — С. 847
  10. Талах В.Н., Куприенко С.А. Америка первоначальная. Источники по истории майя, наука (астеков) и инков
  11. Талах В.М. Введение в иероглифическую письменность Майя
  12. А.П.Юшкевич, История математики, Том 1, 1970
  13. И. Я. Депман, История арифметики, 1965
  14. Л.З.Шауцукова, "Основы информатики в вопросах и ответах", Издательский центр "Эль-Фа", Нальчик, 1994
  15. А.Костинский, В.Губайловский, Триединый нуль (http://www.svoboda.org/programs/sc/2004/sc.011304.asp )
  16. 2007-2014 "История компьютера" (http://chernykh.net/content/view/50/105/ )
  17. Информатика. Базовый курс. / Под ред. С.В.Симоновича. - Спб., 2000 г.
  18. Зарецкая И.Т., Колодяжный Б.Г., Гуржий А.Н., Соколов А.Ю. Информатика:Учебное пособие для 10 – 11 кл. средних общеобразовательных школ. – К.: Форум, 2001. – 496 с.
  19. ГлавСправ 2009–2014(http://edu.glavsprav.ru/info/nepozicionnyje-sistemy-schisleniya/ )
  20. Информатика. Компьютерная техника. Компьютерные технологии. / Пособие под ред. О.И.Пушкаря.- Издательский центр "Академия", Киев, - 2001 г.
  21. Учебное пособие «Арифметические основы ЭВМ и систем». Часть 1. Системы счисления
  22. О.Ефимова, В.Морозова, Н.Угринович «Курс компьютерной технологии»учебное пособие для старших классов
  23. Каган Б.М. Электронные вычислительные машины и системы.- М.:Энергоатомиздат, 1985
  24. Майоров С.А., Кириллов В.В., Приблуда А.А., Введение в микроЭВМ, Л.: Машиностроение, 1988.
  25. Фомин С.В. Системы счисления, М.: Наука, 1987
  26. Выгодский М.Я. Справочник по элементарной математике, М.: Государственное издательство технико-теоретической литературы, 1956.
  27. Математическая энциклопедия. М: “Советская энциклопедия” 1985г.
  28. Шауман А. М. Основы машинной арифметики. Ленинград, Издательство Ленинградского университета. 1979г.
  29. Ворощук А. Н. Основы ЦВМ и программирования. М:”Наука” 1978г.
  30. Ролич Ч. Н. – От 2 до 16, Минск, «Высшая школа», 1981г.