Устройство космической ракеты. Схема запуска спутника с помощью ракеты «Vanguard» (двигатель первой ступени прекращает работу в точке А)

Учитывая опыт боевого применения крылатых ракет, охватывающий шесть с половиной десятилетий, их можно рассматривать как зрелую и хорошо зарекомендовавшую себя технологию. За время их существования произошло значительное развитие технологий, используемых при создании крылатых ракет, охватывающих планер, двигатели, средства преодоления ПВО и системы навигации.


Благодаря технологиям создания, планера ракеты становились все более и более компактными. Теперь их можно разместить во внутренних отсеках и на внешних подвесках самолетов, корабельных пусковых установках трубного типа или торпедных аппаратах подводных лодок. Двигатели изменились от простых пульсирующих воздушно-реактивных двигателей через турбореактивные и жидкотопливные ракетные двигатели или прямоточные воздушно-реактивные двигатели (ПВРД) к нынешней комбинации турбореактивных двигателей для дозвуковых тактических крылатых ракет, турбовентиляторных для дозвуковых стратегических крылатых ракет и прямоточных воздушно-реактивных двигателей или смешанных турбореактивных/ракетных конструкций для сверхзвуковых тактических крылатых ракет.

Средства преодоления ПВО возникли в 1960-х годах когда системы противовоздушной обороны приобрели большую эффективность. К ним относятся низкая высота полета с огибанием рельефа местности или полёт ракеты на предельно малой высоте над поверхностью моря с целью скрыться от радаров и все чаще форма повышающая малозаметность и радиопоглощающие материалы, призванные снизить радиолокационную заметность. Некоторые советские крылатые ракеты были также оборудованы передатчиками помех оборонительного назначения, призванных сорвать перехват зенитноракетных комплексов.

Наконец, за этот период значительно развилась и разнообразилась система навигации крылатых ракет.

Проблемы навигации крылатых ракет
Основной идеей всех крылатых ракет является то, что это может быть запущено в цель вне пределов досягаемости систем противовоздушной обороны противника с целью не подвергать стартовую платформу ответной атаке. Это создает серьезные проблемы проектирования, первой из которых становится задача заставить крылатую ракету надежно переместиться на расстояние до тысячи километров в непосредственную близость к намеченной цели - и как только она будет находиться в непосредственной близости от цели, обеспечить боевой части точное наведение на цель чтобы произвести запланированный военный эффект.


Первая боевая крылатая ракета FZG-76/V-1

Первой боевой крылатой ракетой была немецкая FZG-76/V-1, более 8000 которых было применено, причем, в основном, по целям в Великобритании. Если судить по современным меркам то ее система навигации была достаточно примитивной: автопилот на базе гироскопа выдерживал курс, а анемометр расстояние до цели. Ракета выставлялась по намеченному курсу перед запуском и на ней выставлялось рассчетное расстояние до цели и как только одометр указывал, что ракета находится над целью, автопилот уводил её в крутое пикирование. Ракета обладала точностью в около мили и этого было достаточно для бомбардировки крупных городских целей, таких как Лондон. Главной целью бомбардировок было терроризирование гражданского населения и отвлечение воинских сил Великобритании от наступательных операций и направление их на выполнение задач ПВО.


Первая американская крылатая ракета JB-2 являющаяся копией немецкой V-1

В непосредственно послевоенный период США и СССР воссоздали V-1 и начали развитие своих собственных программ крылатых ракет. Первое поколение театра военных действий и тактического ядерного оружия вызвало создание крылатых ракет серии Regulus ВМС США, серии Mace/Matador ВВС США и советских серий Комета КС-1 и Комета-20 и дальнейшего развития технологии навигации. Все эти ракеты первоначально используют автопилоты на основе точных гироскопов, но также возможности корректировки траектории ракеты по каналам радиосвязи так, что ядерная боеголовка могла быть доставлена как можно точнее. Промаха в сотни метров может быть достаточно, чтобы уменьшить избыточное давление произведенное ядерной боеголовкой было ниже летального порога укрепленных целей. В 1950-х годах на вооружение поступили первые конвенциональные послевоенные тактические крылатые ракеты, прежде всего в качестве противокорабельного оружия. В то время как на маршевом участке траектории наведение продолжалось на основе гироскопа, а иногда и корректировалось по радиосвязи, точность наведения на конечном участке траектории обеспечивалась ГСН с РЛС малой дальности действия, полуактивной на самых ранних версиях, но вскоре вытесненной активными радарами. Ракеты этого поколения обычно летят на средних и больших высотах, пикируя при атаке на цель.


Межконтинентальная крылатая ракета Northrop SM-62 Snark

Следующий важный этап в технологии навигации крылатых ракет последовал с принятием на вооружение межконтинентальных крылатых ракет наземного базирования Northrop SM-62 Snark, предназначенных для автономного полета над полярными регионами для атаки крупными ядерными боеголовками целей на территории Советского Союза. Межконтинентальные расстояния представили перед конструкторами новый вызов - создать ракету способную поражать цели на расстоянии в десять раз больше, чем это могли сделать более ранние версии крылатых ракет. На Snark была установлена надлежащая инерциальная навигационная система использующая гиростабилизированный платформу и точные акселерометры для измерения движения ракеты в пространстве, а также аналоговый компьютер используемый для накопления измерений и определения положения ракеты в пространстве. Однако вскоре выявилась проблема, дрейф в инерциальной системе был слишком велик для оперативного использования ракеты, а ошибки инерциальной системы позиционирования оказались кумулятивными - таким образом, погрешность позиционирования накапливалась с каждым часом полета.

Решением этой проблемы стало другое устройство, предназначенное для выполнения прецизионных измерений географического положения ракеты на траектории её полета и способное исправить или "привязать" ошибки генерированные в инерциальной системе. Это фундаментальная идея и сегодня остается центральной в конструкции современного управляемого оружия. Так, накопленные ошибки инерциальной системы периодически сводятся к ошибке позиционного измерительного прибора.


Крылатая ракета Martin Matador

Для решения этой задачи была применена астронавигационная система или ориентация по звездам, автоматизированное оптическое устройство, осуществляющее угловые измерения известного положения звезд и использующая их для расчета положения ракеты в пространстве. Астронавигационная система оказались весьма точной, но и довольно дорогой в производстве и сложной в обслуживании. Также требовалось, чтобы ракеты, оснащенные этой системой, летели на большой высоте во избежание влияния облачности на линию визирования к звездам.

Менее известно, что успех астронавигационных систем, повсеместно послужил толчком в развитии в настоящее время спутниковых навигационных систем, таких как GPS и ГЛОНАСС. Спутниковая навигация основывается на аналогичной астронавигации концепции, но вместо звезд используются искусственные спутники Земли на полярных орбитах, а вместо естественного света искусственные СВЧ сигналы, а также используются измерения псевдо-диапазона, а не угловые измерения. В итоге эта система значительно снизила расходы и позволила осуществлять определение местоположения на всех высотах в любых погодных условиях. Несмотря на то, что технологии спутниковой навигации были изобретены в начале 1960-х годов, они стали оперативно использоваться только в 1980-е годы.

В 1960-е годы произошли существенные улучшения точности инерциальных систем, а также увеличилась стоимость такого оборудования. В результате это привело к противоречивым требованиям по точности и стоимости. Как результат возникла новая технология в области навигации крылатых ракет основанная на системе определения местоположения ракеты путем сопоставления радиолокационного отображения местности с эталонной картографической программой. Данная технология поступила на вооружение крылатых ракет США в 1970-е годы и советских ракет в 1980-е. Технология TERCOM (система цифровой корреляции с рельефом местности блока наведения крылатой ракеты) была использована, как и система астронавигации, для обнуления совокупных инерциальных системных ошибок.


Крылатая ракета Комета

Технология TERCOM относительно проста по замыслу, хотя и сложна в деталях. Крылатая ракета непрерывно измеряет высоту местности под траекторией своего полета, используя для этого радиолокационный высотомер, и сравнивает результаты этих измерений с показаниями барометрического высотомера. Навигационная система TERCOM также хранит в себе цифровые карты высот местности, над которой ей предстоит лететь. Затем с помощью компьютерной программы профиль местности, над которым пролетает ракета сравнивается с сохраненной в памяти цифровой картой высот с целью определить наилучшее их соответствие. Как только профиль согласован с базой данных, можно с большой точностью определить положение ракеты на цифровой карте, что используется для исправления совокупных ошибок инерциальной системы.

TERCOM обладала огромным преимуществом перед астронавигационными системами: она позволяла крылатым ракетам осуществлять полет на предельно низкой высоте необходимой для преодоления ПВО противника, она оказалась относительно дешевой в производстве и очень точной (до десятка метров). Это более чем достаточно для 220 килотонной ядерной боеголовки и достаточно для 500 килограммовой конвенциональной боеголовки применяемой против множества типов целей. И всё же TERCOM не была лишена недостатков. Ракета которая должна была пролететь над уникальной холмистой местностью, легко сравниваемой с профилем высоты цифровых карт, обладала превосходной точностью. Однако TERCOM оказалась неэффективна над водной поверхностью, над сезонно изменяемой местностью, такой как песчаные дюны и местностью с различной сезонной отражательной способностью радара, такой как сибирская тундра и тайга, где снегопады могут изменить высоту местности или скрыть её особенности. Ограниченная емкость памяти ракет часто затрудняла хранение достаточного количества картографических данных.


Крылатая ракета Boeing AGM-86 CALCM

Будучи достаточной для оснащенных ядерными боеголовками КР Томагавк RGM-109A ВМФ и AGM-86 ALCM ВВС, TERCOM была явно не достаточной для уничтожения обычной боеголовкой отдельных зданий или сооружений. В связи с этим ВМС США оснастили TERCOM крылатых ракет Томагавк RGM-109C/D дополнительной системой основанной на так называемой технологии корреляции отображения объекта с его эталонным цифровым образом. Эта технология была использована в 1980-е годы на баллистических ракетах Першинг II, советских КАБ-500/1500Кр и американских высокоточных бомбах DAMASK/JDAM, а также на последних китайских управляемых противокорабельных ракетных комплексах, предназначенных для борьбы с авианосцами.

При корреляции отображения объекта используется камера для фиксации местности перед ракетой, а затем информация с камеры сравнивается с цифровым изображением полученным с помощью спутников или воздушной разведки и хранящейся в памяти ракеты. Измеряя угол поворота и смещение, необходимые для точного совпадения двух изображений, прибор способен очень точно определить ошибку местоположения ракеты и использовать её для коррекции ошибок инерциальной и TERCOM навигационных систем. Блок цифровой корреляции системы наведения крылатых ракет DSMAC используемый на нескольких блоках КР Томагавк были действительно точными, но обладал побочными оперативными эффектами похожими на TERCOM, которую необходимо было программировать на полет ракеты над легко узнаваемой местностью особенно в непосредственной близости от цели. В 1991-ом году во время операции Буря в пустыне, это привело к тому ряд шоссейных развязок в Багдаде были использованы в качестве таких привязок, что в свою очередь позволило войскам противовоздушной обороны Саддама расположить там зенитные батареи и сбить несколько Томагавков. Также как и TERCOM блок цифровой корреляции системы наведения крылатых ракет чувствителен к сезонным изменениям контраста местности. Томагавки, оснащенные DSMAC также несли лампы-вспышки для освещения местности в ночное время.

В 1980-е годы в американские крылатые ракеты были интегрированы первые приемники GPS. Технология GPS была привлекательна, поскольку она позволяла ракете постоянно исправлять свои инерциальные ошибки независимо от рельефа местности и погодных условий, а также она действовала одинаково как над водой, так и над землей.

Эти преимущества были сведены на нет проблемой слабой помехозащищенности GPS, так как сигнал GPS по своей природе очень слабый, восприимчивый к эффекту "повторного изображения" (когда сигнал GPS отражается от рельефа местности или зданий) и изменению точности в зависимости от количества принимаемых спутников и тому, как они распределены по небу. Все американские крылатые ракеты на сегодняшний день оснащены приемниками GPS и пакетом инерциальной системы наведения, причем в конце 1980-х и начале 1990-х годов технологию механической инерциальной системы заменили более дешевой и более точной инерциальной навигационной системой на кольцевых лазерных гироскопах.


Крылатая ракета AGM-158 JASSM

Проблемы связанные с основной точностью GPS постепенно решаются путем введения широкодиапазонных методов GPS (Wide Area Differential GPS) при которых коррекционные сигналы действительные для данного географического положения транслируются на приемник GPS по радиоканалу (в случае американских ракет используется WAGE -Wide Area GPS Enhancement). Основными источниками сигналов этой системы являются радионавигационные маяки и спутники на геостационарной орбите. Наиболее точные технологии подобного рода, разработанные в США в 1990-е годы, способны исправить ошибки GPS до нескольких дюймов в трех измерениях и являются достаточно точными, чтобы попасть ракетой в открытый люк бронемашины.

Проблемы с помехоустойчивостью и "повторным изображением" оказались наиболее трудно решаемыми. Они привели к внедрению технологии так называемых "умных" антенн, как правило, основанных на "цифровом формировании луча" в программном обеспечении. Идея, стоящая за этой технологией проста, но как водится сложна в деталях. Обычная антенна GPS принимает сигналы со всей верхней полусферы над ракетой, таким образом, включая спутники GPS, а также вражеские помехи. Так называемая антенна с управляемой диаграммой направленности (Controlled Reception Pattern Antenna, CRPA) при помощи программного обеспечения синтезирует узкие пучки, направленные к предполагаемому месторасположению спутников GPS, в результате чего антенна оказывается "слепа" во всех других направлениях. Наиболее продвинутые конструкции антенн этого типа производят так называемые "нули" в диаграмме направленности антенны направленные на источники помех для дальнейшего подавления их влияния.


Крылатая ракетаТомагавк

Большая часть проблем получивших широкую огласку в начале производства крылатых ракет AGM-158 JASSM были результатом проблем с программным обеспечением приемника GPS, в результате которых ракета теряла спутники GPS и сбивалась со своей траектории.

Продвинутые приемники GPS обеспечивают высокий уровень точности и надежную помехоустойчивость к расположенным на земной поверхности источникам помех GPS. Они менее эффективны против сложных источников помех GPS развернутых на спутниках, беспилотных летательных аппаратах или аэростатах.

Последнее поколение американских крылатых ракет использует GPS-инерциальную систему наведения, дополняет её установленной в носовой части ракеты цифровой тепловизионной камерой, преследующей цель обеспечить возможности подобные DSMAC против неподвижных целей с соответствующим программным обеспечением и возможностью автоматического опознавания образов и против подвижных целей, таких как зенитно-ракетные системы или ракетные пусковые установки. Линии передачи данных, как правило, происходят от технологии JTIDS/Link-16, внедряемой для обеспечения возможности перенацеливания оружия в случае, когда подвижная цель изменила своё местоположение в время нахождения ракеты на марше. Использование этой функции главным образом зависит от пользователей обладающих разведкой и возможностями выявления таких перемещений цели.

Долгосрочные тенденции в развитии навигации крылатых ракет приведут к их большей интеллектуальности, большей автономности, большему разнообразию в датчиках, повышенной надежности и снижению стоимости.

Пусть полеты в космос уже давно привычное дело. Но все ли вы знаете о космических ракетах-носителях? Разберем по частям и посмотрим, из чего они состоят и как работают.

Ракетные двигатели

Двигатели – важнейшая составная часть ракеты-носителя. Они создают силу тяги, за счет которой ракета поднимается в космос. Но когда речь идет о ракетных двигателях, не стоит вспоминать те, что находятся под капотом автомобиля или, например, крутят лопасти несущего винта вертолета. Ракетные двигатели совсем другие.

В основе действия ракетных двигателей – третий закон Ньютона. Историческая формулировка этого закона говорит, что любому действию всегда есть равное и противоположное противодействие, проще говоря – реакция. Поэтому и двигатели такие называются реактивными.

Реактивный ракетный двигатель в процессе работы выбрасывает вещество (так называемое рабочее тело) в одном направлении, а сам движется в противоположном направлении. Чтобы понять, как это происходит, не обязательно самому летать на ракете. Самый близкий, «земной», пример – это отдача, которая получается при стрельбе из огнестрельного оружия. Рабочим телом здесь выступают пуля и пороховые газы, вырывающиеся из ствола. Другой пример – надутый и отпущенный воздушный шарик. Если его не завязать, он будет лететь до тех пор, пока не выйдет воздух. Воздух здесь – это и есть то самое рабочее тело. Проще говоря, рабочее тело в ракетном двигателе – продукты сгорания ракетного топлива.

Модель ракетного двигателя РД-180

Топливо

Топливо ракетных двигателей, как правило, двухкомпонентное и включает в себя горючее и окислитель. В ракете-носителе «Протон» в качестве горючего используется гептил (несимметричный диметилгидразаин), а в качестве окислителя – тетраксид азота. Оба компонента чрезвычайно токсичны, но это «память» о первоначальном боевом предназначении ракеты. Межконтинентальная баллистическая ракета УР-500 – прародитель «Протона», – имея военное предназначение, до старта должна была долго находиться в боеготовом состоянии. А другие виды топлива не позволяли обеспечить долгое хранение. Ракеты «Союз-ФГ» и «Союз-2» используют в качестве топлива керосин и жидкий кислород. Те же топливные компоненты используются в семействе ракет-носителей «Ангара», Falcon 9 и перспективной Falcon Heavy Илона Маска. Топливная пара японской ракеты носителя «H-IIB» («Эйч-ту-би») – жидкий водород (горючее) и жидкий кислород (окислитель). Как и в ракете частной аэрокосмической компании Blue Origin, применяемой для вывода суборбитального корабля New Shepard. Но это все жидкостные ракетные двигатели.

Применяются также и твердотопливные ракетные двигатели, но, как правило, в твердотопливных ступенях многоступенчатых ракет, таких как стартовый ускоритель ракеты-носителя «Ариан-5», вторая ступень РН «Антарес», боковые ускорители МТКК Спейс шаттл.

Ступени

Полезная нагрузка, выводимая в космос, составляет лишь малую долю массы ракеты. Ракеты-носители главным образом «транспортируют» себя, то есть собственную конструкцию: топливные баки и двигатели, а также топливо, необходимое для их работы. Топливные баки и ракетные двигатели находятся в разных ступенях ракеты и, как только они вырабатывают свое топливо, то становятся ненужными. Чтобы не нести лишний груз, они отделяются. Кроме полноценных ступеней применяются и внешние топливные емкости, не оснащенные своими двигателями. В процессе полета они также сбрасываются.

Первая ступень РН «Протон-М»

Существует две классические схемы построения многоступенчатых ракет: c поперечным и продольным разделением ступеней. В первом случае ступени размещаются одна над другой и включаются только после отделения предыдущей, нижней, ступени. Во втором случае вокруг корпуса второй ступени расположены несколько одинаковых ракет-ступеней, которые включаются и сбрасываются одновременно. В этом случае двигатель второй ступени также может работать при старте. Но широко применяется и комбинированная продольно-поперечная схема.

Варианты компоновки ракет

Стартовавшая в феврале этого года с космодрома в Плесецке ракета-носитель легкого класса «Рокот» является трехступенчатой с поперечным разделением ступеней. А вот РН «Союз-2», запущенная с нового космодрома «Восточный» в апреле этого года, – трехступенчатая с продольно-поперечным разделением.

Интересную схему двухступенчатой ракеты с продольным разделением представляет собой система Спейс шаттл. В ней и кроется отличие американских шаттлов от «Бурана». Первая ступень системы Спейс шаттл – боковые твердотопливные ускорители, вторая – сам шаттл (орбитер) с отделяемым внешним топливным баком, который по форме напоминает ракету. Во время старта запускаются двигатели как шаттла, так и ускорителей. В системе «Энергия – Буран» двухступенчатая ракета-носитель сверхтяжелого класса «Энергия» была самостоятельным элементом и помимо вывода в космос МТКК «Буран» могла быть применена и для других целей, например для обеспечения автоматических и пилотируемых экспедиций на Луну и Марс.

Разгонный блок

Может показаться, что как только ракета вышла в космос, то цель достигнута. Но это не всегда так. Целевая орбита космического аппарата или полезного груза может быть гораздо выше линии, от которой начинается космос. Так, например, геостационарная орбита, на которой размещаются телекоммуникационные спутники, расположена на высоте 35 786 км над уровнем моря. Вот для этого и нужен разгонный блок, который, по сути, является еще одной ступенью ракеты. Космос начинается уже на высоте 100 км, там же начинается невесомость, которая является серьезной проблемой для обычных ракетных двигателей.

Одна из основных «рабочих лошадок» российской космонавтики ракета-носитель «Протон» в паре с разгонным блоком «Бриз-М» обеспечивает выведение на геостационарную орбиту полезных грузов массой до 3,3 т. Но первоначально вывод осуществляется на низкую опорную орбиту (200 км). Хотя разгонный блок и называют одной из ступеней корабля, от обычной ступени он отличается двигателями.

РН «Протон-М» с разгонным блоком «Бриз-М» на сборке

Для перемещения космического аппарата или корабля на целевую орбиту или направления его на отлетную или межпланетную траекторию разгонный блок должен иметь возможность выполнить один или несколько маневров, при совершении которых изменяется скорость полета. А для этого необходимо каждый раз включать двигатель. Причем в периоды между маневрами двигатель находится в выключенном состоянии. Таким образом, двигатель разгонного блока способен многократно включаться и выключаться, в отличие от двигателей других ступеней ракет. Исключением являются многоразовые Falcon 9 и New Shepard, двигатели первых ступеней которых используются для торможения при посадке на Землю.

Полезная нагрузка

Ракеты существуют для того, чтобы что-то выводить в космос. В частности, космические корабли и космические аппараты. В отечественной космонавтике это транспортные грузовые корабли «Прогресс» и пилотируемые корабли «Союз», отправляемые к МКС. Из космических аппаратов в этом году на российских ракетах-носителях отправились в космос американский КА Intelsat DLA2 и французский КА Eutelsat 9B, отечественный навигационный КА «Глонасс-М» №53 и, конечно, КА «ЭкзоМарс-2016», предназначенный для поиска метана в атмосфере Марса.

Возможности по выводу полезной нагрузки у ракет разные. Масса полезной нагрузки РН легкого класса «Рокот», предназначенной для выведения космических аппаратов на низкие околоземные орбиты (200 км), – 1,95 т. РН «Протон-М» относится к тяжелому классу. На низкую орбиту он выводит уже 22,4 т, на геопереходную – 6,15 т, а на геостационарную – 3,3 т. «Союз-2» в зависимости от модификации и космодрома способен вывести на низкую околоземную орбиту от 7,5 до 8,7 т, на геопереходную орбиту – от 2,8 до 3 т и на геостационарную – от 1,3 до 1,5 т. Ракета предназначена для запусков со всех площадок Роскосмоса: Восточного, Плесецка, Байконура и Куру, используемого в рамках совместного российско-европейского проекта. Применяемая для запуска транспортных и пилотируемых кораблей к МКС, РН «Союз-ФГ» имеет массу полезного груза от 7,2 т (с пилотируемым кораблем «Союз») до 7,4 т (с грузовым кораблем «Прогресс»). В настоящее время это единственная ракета, применяемая для доставки космонавтов и астронавтов на МКС.

Полезная нагрузка, как правило, находится в самой верхней части ракеты. Для того чтобы преодолеть аэродинамическое сопротивление, космический аппарат или корабль помещается внутрь головного обтекателя ракеты, который после прохождения плотных слоев атмосферы сбрасывается.

Вошедшие в историю слова Юрия Гагарина: «Вижу Землю… Красота-то какая!» были им сказаны именно после сброса головного обтекателя ракеты-носителя «Восток».

Установка головного обтекателя РН «Протон-М», полезная нагрузка КА «Экспресс-АТ1» и «Экспресс-АТ2»

Система аварийного спасения

Ракету, которая выводит на орбиту космический корабль с экипажем, практически всегда можно отличить по внешнему виду от той, которая выводит грузовой корабль или космический аппарат. Чтобы в случае возникновения аварийной ситуации на ракете-носителе экипаж пилотируемого корабля остался жив, применяется система аварийного спасения (САС). По сути, это еще одна (правда, небольшая) ракета в головной части ракеты-носителя. Со стороны САС выглядит как башенка необычной формы на вершине ракеты. Ее задача – в экстренной ситуации вытянуть пилотируемый корабль и увести его от места аварии.

В случае взрыва ракеты на старте или в начале полета основные двигатели системы спасения отрывают ту часть ракеты, в которой находится пилотируемый корабль, и уводят ее в сторону от места аварии. После чего осуществляется парашютный спуск. В случае же если полет проходит нормально, после достижения безопасной высоты система аварийного спасения отделяется от ракеты-носителя. На больших высотах роль САС не так важна. Здесь экипаж уже может спастись благодаря отделению спускаемого аппарата космического корабля от ракеты.

РН «Союз» с САС в верхней части ракеты

Принцип реактивного движения находит широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости. Поэтому для космических полётов могут быть использованы только реактивные летательные аппараты, т.е. ракеты.

Кто же придумал ракету?

Ракета была известна давно. Очевидно, она появилась много веков назад на Востоке, возможно, в Древнем Китае - родине пороха. Ракеты (см. ниже) использовали во время народных празднеств, устраивали фейерверки, зажигали в небе огненные дожди, фонтаны, колёса.

Древнекитайская ракета:

1 - ствол-направляющая;

2 - пороховой заряд орудия;

3 - пыж;

4 - ракета;

5 - пороховой заряд ракеты.

Ракеты применяли в военном деле. Долгое время ракета была одновременно и оружием, и игрушкой. При Петре I была создана и применялась однофунтовая сигнальная ракета образца 1717 года (см. ниже), остававшаяся на вооружении до конца XIX века. Она поднималась на высоту до \(1\) километра.

Некоторые изобретатели предлагали использовать ракету для воздухоплавания. Научившись подниматься на воздушных шарах, люди были беспомощны в воздухе. Первым, кто предложил использовать ракету как средство передвижения, был российский изобретатель, революционер Николай Иванович Кибальчич, осуждённый на казнь за покушение на царя.

За десять дней до смерти в Петропавловской крепости он завершил работу над своим изобретением и передал адвокату не просьбу о помиловании или жалобу, а «Проект воздухоплавательного прибора» (чертежи и математические расчёты ракеты). Именно ракета, считал он, откроет человеку путь в небо.

Про свой аппарат (см. выше) он написал: «Если цилиндр поставлен закрытым дном кверху, то при известном давлении газов... цилиндр должен подняться наверх».

Какая же сила применима к воздухоплаванию? - ставит вопрос Н.И. Кибальчич и отвечает. - Такой силой, по моему мнению, является медленно горящие взрывчатые вещества... Применить энергию газов, образующихся при воспламенении взрывчатых веществ к какой-либо продолжительной работе возможно только под тем условием, если та громадная энергия, которая образуется при горении взрывчатых веществ, будет образовываться не сразу, а в течение более или менее продолжительного промежутка времени. Если мы возьмём фунт зернистого пороху, вспыхивающего при зажигании мгновенно, спрессуем его под большим давлением в форму цилиндра, то увидим, что горение не сразу охватит цилиндр, а будет распространяться довольно медленно от одного конца к другому и с определённой скоростью... На этом свойстве прессованного пороха основано устройство боевых ракет.

Изобретатель имеет здесь в виду старинные (первой половины XIX века) ракеты, которые перекидывали 50-килограммовые бомбы на \(2-3\) километра при заряде в \(20\) кг. Н.И. Кибальчич вполне ясно и совершенно правильно представлял себе механизм действия ракеты.

Конструкцию космической ракеты с жидкостным реактивным двигателем впервые предложил в \(1903\) году русский учёный Константин Эдуардович Циолковский.

Он разработал теорию движения космических ракет и вывел формулу для расчёта их скорости.

Рассмотрим вопрос об устройстве и запуске так называемых ракет-носителей, т.е. ракет, предназначенных для вывода в космос искусственных спутников Земли, космических кораблей, автоматических межпланетных станций и других полезных грузов.

В любой ракете, независимо от её конструкции, всегда имеется оболочка и топливо с окислителем. Оболочка ракеты включает в себя полезный груз (в данном случае это космический корабль), приборный отсек и двигатель (камера сгорания, насосы и пр.).

Основную массу ракеты составляет топливо с окислителем (окислитель нужен для поддержания горения топлива, поскольку в космосе нет кислорода).

Топливо и окислитель с помощью насосов подаются в камеру сгорания. Топливо, сгорая, превращается в газ высокой температуры и высокого давления, который мощной струёй устремляется наружу через раструб специальной формы, называемый соплом. Назначение сопла состоит в том, чтобы повысить скорость струи.

С какой целью увеличивают скорость выхода струи газа? Дело в том, что от этой скорости зависит скорость ракеты. Это можно показать с помощью закона сохранения импульса.

Поскольку до старта импульс ракеты был равен нулю, то по закону сохранения суммарный импульс движущейся оболочки и выбрасываемого из неё газа тоже должен быть равен нулю. Отсюда следует, что импульс оболочки и направленный противоположно ему импульс струи газа должны быть равны по модулю:

p оболочки = p газа

m оболочки v оболочки = m газа v газа.

v оболочки = m газа v газа m оболочки.

Значит, чем с большей скоростью вырывается газ из сопла или чем меньше масса оболочки ракеты, тем больше будет скорость оболочки ракеты.

В практике космических полётов обычно используют многоступенчатые ракеты, развивающие гораздо большие скорости и предназначенные для более дальних полётов, чем одноступенчатые.

мы разбирали важнейший компонент полета в глубокий космос – гравитационный маневр. Но в силу своей сложности такой проект, как космический полет, всегда можно разложить на большой ряд технологий и изобретений, которые делают его возможным. Таблица Менделеева, линейная алгебра, расчеты Циолковского, сопромат и еще целые области науки внесли свою лепту в первый, да и все последующие полеты человека в космос. В сегодняшней статье мы расскажем, как и кому пришла в голову идея космической ракеты, из чего она состоит и как из чертежей и расчетов ракеты превратились в средство доставки людей и грузов в космос.

Краткая история ракет

Общий принцип реактивного полета, который лег в основу всех ракет, прост - от тела отделяется какая-то часть, приводящая все остальное в движение.

Кто первым реализовал этот принцип – неизвестно, но различные догадки и домыслы доводят генеалогию ракетостроения аж до Архимеда. Доподлинно о первых подобных изобретениях известно, что ими активно пользовались китайцы, которые заряжали их порохом и за счет взрыва запускали в небо. Таким образом они создали первые твердотопливные ракеты. Большой интерес к ракетам появился у европейских правительств в начале

Второй ракетный бум

Ракеты ждали своего часа и дождались: в 1920-х годах начался второй ракетный бум, и связан он в первую очередь с двумя именами.

Константин Эдуардович Циолковский - ученый-самоучка из Рязанской губернии, невзирая на трудности и препятствия, сам дошел до многих открытий, без которых невозможно было бы даже говорить о космосе. Идея использования жидкого топлива, формула Циолковского, которая рассчитывает необходимую для полета скорость, исходя из соотношения конечной и начальной масс, многоступенчатая ракета - все это его заслуга. Во многом под влиянием его трудов создавалось и оформлялось отечественное ракетостроение. В Советском Союзе начали стихийно возникать общества и кружки по изучению реактивного движения, в числе которых ГИРД - группа изучения реактивного движения, а в 1933 году под патронажем властей появился Реактивный институт.

Константин Эдуардович Циолковский.
Источник: Wikimedia.org

Второй герой ракетной гонки - немецкий физик Вернер фон Браун. Браун имел отличное образование и живой ум, а после знакомства с другим светилом мирового ракетостроения, Генрихом Обертом, он решил приложить все свои силы к созданию и усовершенствованию ракет. В годы Второй Мировой фон Браун фактически стал отцом «оружия возмездия» Рейха - ракеты «Фау-2», которую немцы начали применять на поле боя в 1944 году. «Крылатый ужас», как называли её в прессе, принес разрушение многим английским городам, но, к счастью, на тот момент крах нацизма был уже делом времени. Вернер фон Браун вместе со своим братом решил сдаться в плен к американцам, и, как показала история, это был счастливый билет не только и не столько для ученых, сколько для самих американцев. С 1955 года Браун работает на американское правительство, и его изобретения ложатся в основу космической программы США.

Но вернемся в 1930-е. Советское правительство по достоинству оценило рвение энтузиастов на пути к космосу и решило употребить его в своих интересах. В годы войны себя отлично показала «Катюша» - система залпового огня, которая стреляла реактивными ракетами. Это было во многом инновационное оружие: «Катюша» на базе легкого грузовика «Студебеккер» приезжала, разворачивалась, обстреливала сектор и уезжала, не давая немцам опомниться.

Окончание войны подкинуло нашему руководству новую задачу: американцы продемонстрировали миру всю мощь ядерной бомбы, и стало совершенно очевидно, что на статус сверхдержавы может претендовать только тот, у кого есть нечто похожее. Но здесь была проблема. Дело в том, что, помимо самой бомбы, нам нужны были средства доставки, которые бы смогли обойти ПВО США. Самолеты для этого не годились. И СССР решил сделать ставку на ракеты.

Константин Эдуардович Циолковский умер в 1935 году, но ему на смену пришло целое поколение молодых ученых, которое и отправило человека в космос. Среди этих ученых был Сергей Павлович Королев, которому суждено было стать «козырем» Советов в космической гонке.

СССР принялся за создание своей межконтинентальной ракеты со всем усердием: были организованы институты, собраны лучшие ученые, в подмосковных Подлипках создается НИИ по ракетному вооружению, и работа кипит вовсю.

Только колоссальное напряжение сил, средств и умов позволило Советскому Союзу в кратчайшие сроки построить свою ракету, которую назвали Р-7. Именно её модификации вывели в космос «Спутник» и Юрия Гагарина, именно Сергей Королев и его соратники дали старт космической эре человечества. Но из чего состоит космическая ракета?

Выбрасывающие языки пламени ракетные двигатели выводят космический корабль на орбиту вокруг Земли. Другие ракеты выводят корабли за пределы Солнечной системы.

Во всяком случае, когда мы думаем о ракетах, то представляем себе космические полеты. Но ракеты могут летать и в вашей комнате, например во время празднования вашего дня рождения.

Ракеты дома

Обычный воздушный шарик тоже может быть ракетой. Каким образом? Надуйте шарик и зажмите его горловину, чтобы воздух не выходил наружу. Теперь отпустите шарик. Он начнет летать по комнате совершенно непредсказуемо и неуправляемо, толкаемый силой вырывающегося из него воздуха.

Вот другая простенькая ракета. Поставим на железнодорожную дрезину – пушку. Направим ее назад. Допустим, что трение между рельсами и колесами очень мало и торможение будет минимальным. Выстрелим из пушки. В момент выстрела дрезина тронется вперед. Если начать частую стрельбу, то дрезина не остановится, а с каждым выстрелом будет набирать скорость. Вылетая из пушечного ствола назад, снаряды толкают дрезину вперед.

Материалы по теме:

Как спят космонавты в космосе?

Сила, которая при этом создается, называется отдачей. Именно эта сила заставляет двигаться любую ракету, как в земных условиях, так и в космосе. Какие бы вещества или предметы ни вылетали из движущегося предмета, толкая его вперед, мы будем иметь образец ракетного двигателя.

Ракета намного лучше приспособлена для полетов в космической пустоте, чем в земной атмосфере. Чтобы вывести в космос ракету, инженерам приходится конструировать мощные ракетные двигатели. Свои конструкции они основывают на универсальных законах мироздания, открытых великим английским ученым Исааком Ньютоном, работавшим в конце 17 века. Законы Ньютона описывают силу тяжести и то, что происходит с физическими телами, когда они движутся. Второй и третий законы помогают отчетливо понять, что представляет из себя ракета.

Движение ракеты и законы Ньютона

Второй закон Ньютона связывает силу движущегося предмета с его массой и ускорением (изменением скорости в единицу времени). Таким образом, для со здания мощной ракеты надо, чтобы ее двигатель выбрасывал большие массы сгоревшего топлива с большой скоростью. Третий закон Ньютона гласит, что сила действия равна силе противодействия и направлена в противоположную сторону. В случае ракеты сила действия - это раскаленные газы, вырывающиеся из сопла ракеты, сила противодействия толкает ракету вперед.