Из чего состоит ракета для полета. Способы безракетного космического запуска

Терри Эдмондс продолжает публикацию серии статей о методах доставки наживки и прикормки на дальние расстояния. На сей раз речь пойдет о нюансах прикармливания с помощью кормушки-ракеты. Оригинал статьи находится на сайте www.mainline-baits.co.uk.

В наши дни ракетное удилище, должно быть, самый распространенный способ прикармливания на карповых водоемах. Это очень эффективный способ доставки всех видов корма в участок ловли на расстояниях от нескольких до 150 ярдов. И я хочу помочь вам прикормить эти дальние участки ловли. Для эффективного исполнения этого требуются правильные снасти и методы, но, однажды приобретя это, можно добиться убедительных результатов и практически ничего не менять. Рыболовы-спортсмены также знают, что такое предельная дистанция.

Требования к снастям

Первое требование, которому должно соответствовать удилище для прикармливания на дальних дистанциях, - это качественный бланк с тестовой кривой не менее 4.5 lb, поскольку сложные условия заброса ракеты весом до 7 унций могут очень быстро выявить слабые места бланка. Это неоднократно видели люди, наблюдающие за моими показательными забросами. Сейчас для выполнения всей работы, связанной с прикармливанием, я отдаю предпочтение бланкам Harrison, поскольку они действительно доказали свою надежность. Я также без каких-либо проблем пользовался Fox Horizon, и много раз бросал им ракеты на расстояние до 150 ярдов. Если в процессе покупки ракетного удилища вы примете решение остановиться на изделии, выполненном на заказ, тем лучше, поскольку оно может быть сделано в соответствии с вашими личными требованиями. Многие ракетные удилища, представленные на рынке, имеют слишком короткую рукоятку, что приводит к тому, что во время заброса ось вращения сильно смещена к низу бланка. Это приводит к увеличению нагрузки в процессе прикармливания ракетой. Я рекомендовал бы поместить комель удилища подмышку, протянув руку вдоль бланка. То место бланка, в котором окажется ваша кисть, является идеальным для размещения катушкодержателя. Это смещает ось вращения удилища, облегчая заброс тяжелых ракет.

Наилучший набор колец для ракетного удилища начинается с нижнего кольца диаметром 50 мм и заканчивается тюльпаном диаметром 16 мм. Нижнее кольцо диаметром 50 мм действительно способствует увеличению дистанции заброса с катушками типа биг пит, независимо от того, что кто-либо говорит по этому поводу. На соревнованиях, в которых я боролся с лучшими кастингистами мира, все они пользовались нижними кольцами диаметром не менее 50 мм. Я также использовал такие кольца, чтобы побить некоторые британские рекорды, что кое-что говорит в пользу их влияния на дальность заброса.

На рынке представлено много катушек, подходящих для дальнего прикармливания с помощью ракетных удилищ. К важным характеристикам таких катушек следует отнести высокую скорость обратной подмотки, большое тяговое усилие, хорошую укладку лески и удобную клипсу шпули. Катушки, которыми я пользуюсь, и которые никогда не подводили меня - Shimano Biomaster. Эти катушки делают все необходимое и не стоят целого состояния - превосходные катушки.

Я считаю, что использование шнура Whiplash 20 lb с лидером Whiplash 65 lb, связанных встречными 5-и оборотными гриннерами - очень эффективный способ прикормить с помощью ракеты на большом расстоянии. Шнур Whiplash облегчает прикармливание при помощи ракеты по нескольким причинам:

  1. Поскольку плетенка плавает, это облегчает выматывание ракеты. Моно может тонуть, что делает выматывание более утомительным.
  2. Узлы, соединяющие шок-лидер с основной леской, очень маленькие, поэтому они легче пролетают сквозь кольца и не будут цеплять витки лески на шпуле в процессе заброса, что фактически устраняет вероятность обрыва.
  3. При забросах с леской, зажатой в клипсу, нерастяжимость плетенки способствует значительному повышению точности, особенно учитывая, на сколько растянется моно леска на длине более 100 ярдов.

Для беспрепятственной работы ракетным удилищем я окунаю катушку в воду перед первым забросом, чтобы намочить шнур - это помогает избежать образования "бороды". Во избежание обрезания лески о клипсу я помещаю немного изоляционной ленты вокруг той части шнура, которая заходит под клипсу. Моно также можно использовать без проблем, в этом случае я бы посоветовал остановиться на диаметре от 0.26 до 0.28 мм с лидером Whiplash 65 lb. Я также много пользуюсь моно леской, поскольку ее совсем не накладно заменять, и она не подвержена образованию "бород".

При выполнении всех дальних забросов не забывайте пользоваться напалечником, поскольку в противном случае палец можно порезать очень сильно. Я чаще всего пользуюсь напалечниками MCF.

Техника заброса

Если вы вернетесь к моей статье о забросе над головой, техника для заброса ракетным удилищем в точности такая же.

После того как ракета отправится в полет, направьте удилище таким образом, чтобы совместить его с линией, по которой движется сходящая леска. В конце заброса поднимите удилище вверх почти вертикально, Как только шнур/моно натянется, и вы почувствуете ракету, опустите вершинку удилища в горизонтальное положение. Это поможет амортизировать удар лески о клипсу и предотвратит обрезание лески, а ракета приводнится с меньшим всплеском.

Пока леска зажата в клипсе, дистанция заброса будет соответствовать расстоянию, на котором находится маркерный поплавок или нужный участок, точно выполняйте все необходимые действия для заброса над головой (см. статью о забросе над головой), и необходимая точность будет достигнута.

Типы кормушек-ракет

На рынке представлен широкий ассортимент ракет, и я пользовался многими из них, но остановился на тех, которые считаю лучшими в настоящее время. Я пользуюсь разными ракетами для доставки различных видов прикормки.

Первая ракета, которой я пользуюсь чаще всего, - это Korda Skyliner. Она действительно хорошо забрасывается, устойчива в полете и великолепно выматывается. В основном я пользуюсь ею для доставки тяжелых смесей на расстояние до 150 ярдов - большие отверстия действительно хорошо помогают выгружаться этим смесям.

Для прикармливания бойлами на больших дистанциях я использую бойловую ракету MCF, потому что она сделана из по-настоящему толстого пластика и довольно тяжелая для ракеты, что делает ее очень прочной и устойчивой даже при боковом ветре. Она хорошо выматывается если приподнять ее заднюю часть и может донести бойлы диаметром до 16 мм так далеко, как это может потребоваться. Я часто загружаю в ракету сначала коноплю, а уже затем бойлы и всегда окунаю ракету в воду перед забросом.

Другая хорошая ракета, которой я пользуюсь - небольшая ракета MCF без отверстий. Эта ракета прекрасно подходит для прикармливания опарышами и сухими смесями на расстоянии до 130 ярдов. Она имеет устройство, отстегивающееся после заброса, и позволяющее развернуть ракету носом к берегу перед выматыванием. Это превосходная идея для ракет без отверстий, значительно облегчающая процесс прикармливания. Ракеты выпускаются нескольких типоразмеров.

Последний вид ракет, которыми я пользуюсь - это изделия Gardner, размером от карманной ракеты до XXL, в зависимости от того, сколько корма я хочу забросить. Я пользуюсь ими для жидких смесей. Они летят превосходно, но выматывать их тяжело. Они обладают очень высокой плавучестью, что помогает вытекать жидким смесям.

Загружайте ракету только на 3/4 ее полного объема, в противном случае она не будет лететь ровно, а дальность и точность очень сильно пострадают.

Смеси для ракет

Существует бесчисленное множество смесей для ракет, и у каждого есть свои фавориты. Мои смеси остаются очень простыми. Я отдаю им предпочтение, поскольку главным образом выезжаю на короткие рыбалки и не хочу брать с собой несметное количество различных прикормок. Я просто предпочитаю пользоваться тем, в чем уверен.

Моя стандартная смесь на 60% состоит из зерен конопли или зерновой смеси, которые хорошо привлекают карпа, а также способствуют лучшей выгрузке прикормки из ракеты, и на 40% из пеллетса различных размеров, крошеных бойлов и некоторого количества применяемой насадки, какой бы она ни была. Затем я добавляю жидкие аттрактанты, например, превосходную патоку Mainline и немного соли и сахара.

Жидкие смеси - это просто переувлажненные смеси, предназначенные для создания в воде столба мути. Они часто используются при ловле на оснастки зиг риг для создания привлекающего эффекта без риска перекормить или в кристально чистых местах, где облако мути может привести к тому, что рыба будет более уверенно кормиться. Это отличный способ максимального привлечения с подачей минимального количества корма, что особенно эффективно зимой.

Моя обычная смесь - это прекрасно работающая донная прикормка из линейки Active от Mainline, дробленая конопля и много жидких аттрактантов, таких как кокосовое молоко и кленовая патока Maple 8 Mainline, которые дают много мути и обладают сильным привлекающим эффектом. Донная прикормка очень активна и будет подниматься сквозь слои воды с различной скоростью.

В процессе прикармливания с помощью ракеты на большой дистанции старайтесь держать все необходимое под рукой и войти в ритм, это поможет в плане точности и равномерности, а следовательно, и эффективности прикармливания.

Испытайте вашу прикормочную смесь у берега, чтобы увидеть, как она будет взаимодействовать с водой. Просто загрузите ракету и бросьте ее в воду у берега, это позволит вам увидеть, чего вы сможете добиться на расстоянии более 100 ярдов. Это также позволит понять, какое время требуется для выгрузки содержимого ракеты. После приводнения ракеты поддерните ее несколько раз - это поможет выгрузить прикормочную смесь на участке ловли, что является очень важным, если вы не хотите выматывать обратно ракету с прикормкой, рассыпая ее где ни попадя.

Пока ракета летит к прикармливаемому участку, некоторое количество смеси часто вылетает из ее задней части, в результате прикормка будет рассыпана на большой площади. Во избежание этого можно посоветовать запечатать конец ракеты недоувлажненной донной прикормкой, после чего снова убедитесь в том, что ракета заполнена не более чем на 3/4 своего объема.

Прикармливание с помощью ракеты на больших расстояниях может быть тяжелой работой, но если вы обладаете правильной техникой, снастями и прикормкой, это может стать приятной и выполнимой задачей.

Удачи и удачных забросов.

Я помогу любому, кто обратится за помощью в области совершенствования своих методов ловли рыбы на большом расстоянии.
Пишите мне по адресу:

Использование самолётов в качестве первой ступени на атмосферном участке полётной траектории является очень перспективным, имеющим существенные преимущества перед классическими методами вывода грузов на орбиту. Но и есть существенные недостатки, которые и мешают внедрению этой технологии в жизнь и её развитию.

К достоинствам следует отнести:

Отсутствие необходимости в сложном комплексе сооружений для закуска ракет - нужна просто подготовленная взлётная полоса, а кроме того эта полоса не обязана находится на экваторе для наиболее эффективного вывода полезной нагрузки (самолёт вполне может долететь до экватора, а там уже отделять от себя вторую ступень). Но наиболее оптимальным и энергоэффективным вариантом конечно является дозаправка и взлёт с полосы на экваторе. Можно использовать уже существующую инфраструктуру;

Первая ступень (самолёт) является многоразовой (при этом многоразовость ограничивается не десятками раз, как у Falcon 9, а тысячами раз) и очень дешёвой в обслуживании;

Возможно создание на этой базе уже не самолётов, а SSTO (single-stage-to-orbit) одноступенчатых космических кораблей, которые имеют двигатели, которые могут использовать воздух в качестве окислителя на атмосферном участке, а только потом переходить на запасённый в баках кислород. Эти аппараты выглядят перспективнее, но они дороги в обслуживании и им приходится возить на орбиту лишний вес в виде пустых баков, крыльев, двигателей и прочего.

Недостатки, которые и определяют недостаточную развитость этого направления космической техники:

Для вывода сопоставимых с выводимыми обычными ракетами-носителя грузами на орбиту требуется огромная подъёмная сила и потребное крыло получается очень огромным, сами самолёты соответственно тоже получаются огромными и дорогими в производстве (от 100 метров и до 300 метров размах крыла, а взлётная масса от 500 до 2000 тонн);

Высота, на которую может поднять ракету самолёт ограничена 10-15 километрами, да и скорость, которая сообщается отделяемой второй системе не превышает скорости звука, что достаточно мало в масштабах необходимой первой космической скорости на высоте нескольких сот километров. Да, есть некоторая экономия, связанная со значительным снижением аэродинамических потерь и применение на второй ступени ЖРД такого типа, которые наиболее эффективны в условиях вакуума, но эта экономия не слишком велика (ориентировочные расчёты сейчас делать не берусь);

В случае SSTO дороговизна обслуживания, дороговизна разработки и производства совершенно нового типа разнорежимных двигателей; неэффективный вывод на орбиту лишней массы в виде всего огромного запускаемого с Земли аппарата (например, наиболее реалистичный на сегодняшний день проект «Skylon» () без топлива весит 41 тонну).

Но в некоторой узкой области вывода на орбиту малых грузов (а также для других целей) самолёты используются в качестве первой ступени уже сейчас:

2. Многоразовый космический корабль SpaceShipTwo () с поправкой на то, что он суборбитальный и предназначен не для вывода грузов, а для космического туризма.

Не построили еще таких самолетов, которые могли бы одновременно разгоняться до нужной скорости и нести на себе такую махину (даже за вычетом массы лишнего топлива). Но проекты такие разрабатываются.

Всё что здесь написали это полный абсурд. Пишу как выпускник МГТУ им Баумана кафедры "Аэрокосмические системы".

  • Для каких-нибудь нано-спутников и мини-носителей воздушный старт может оказаться дешёвым, но чтобы вывести приличный вес на геостационарную орбиту требуется носитель массой в сотни тонн - следовательно, и самолёт должен быть не меньше Ан-225 "Мрiя". А уж если он, вдобавок, и сверхзвуковой... Такие самолёты по определению дешёвыми не будут.
  • Обывателю кажется что для запуска ракеты важна высота. На самом деле для выхода на орбиту и в реальный космос важна скорость, а вовсе не высота. Цель ракеты - достичь первой космической скорости (8 км/с, около 28 тысяч км/ч) причём почти неважно в каком направлении - вверх или вбок. Грузовые самолёты максимум что могут дать - это 900 км/ч, а это 3% от необходимого, в пределах погрешности измерения. Есть, конечно, сверхзвуковые самолёты которые могут развивать большую скорость, но у них ничтожная грузоподъёмность. Если цель - покататься пару минут в стратосфере, то самолёт может помочь, но для реального космоса нужно что-то посерьёзнее.
  • У ракет отделение первой ступени происходит на высотах более 40 км и на скорости 2-3 км/с, а самолет поднимает на высоту порядка 10-12 км и сообщает скорость около 200 м/с. Получается, что по сути дела самолет заменяет собой не первую ступень (как обычно пишут в рекламных буклетах на подобные системы), а где-то 1/4 (а то и 1/5) от первой ступени.
  • Разделение. Представьте себе самолёт на высоте 10 км летящий со скоростью 900 км/ч у которого внутри как-то находится ракета которая тяжелее чем сам самолёт. Нужно её как-то безопасно пустить, при этом чтобы не задеть сам самолёт и не создать ему возмущений - это нетривиальная техническая задача. Ракета рассчитана на сдавливающие нагрузки, а при старте с самолёта у неё будут нагрузки изгибающие. (Самолёт же не может лететь носом вверх?). Т.е. если любую существующую орбитальную ракету сбросить с самолёта она сразу же переломится. Т.е. нужно делать более прочную ракету - а значит более тяжёлую - а значит масса выводимой нагрузки будет меньше.
  • Стартовать ракету. Вы когда нибудь видели фотографии пускового комплекса? Там стоят мачты, механизмы удержания, газоотводы, цистерны с жидким топливом, системы термостатирования. А теперь это всё тоже нужно уместить в самолёте. Реально как в анекдоте "а теперь со всей этой фигнёй мы попытаемся взлететь".
  • Помните видео "что-то пошло не так" ? Это произошло в казахской степи, людей при пуске отвозят на десятки километров. У ракет примерно каждый 20-й полёт что-то идёт не так. А теперь представьте, что это произошло в самолёте, вам пилотов не жалко?

Резюме: возможно в будущем, на каких-то других технологиях возникнут аэрокосмические системы. Это может быть водородный сверхзвуковой беспилотный самолёт или что-то в этом роде, но на существующих технологиях авиастроения самолёт только мешает ракете.

мы разбирали важнейший компонент полета в глубокий космос – гравитационный маневр. Но в силу своей сложности такой проект, как космический полет, всегда можно разложить на большой ряд технологий и изобретений, которые делают его возможным. Таблица Менделеева, линейная алгебра, расчеты Циолковского, сопромат и еще целые области науки внесли свою лепту в первый, да и все последующие полеты человека в космос. В сегодняшней статье мы расскажем, как и кому пришла в голову идея космической ракеты, из чего она состоит и как из чертежей и расчетов ракеты превратились в средство доставки людей и грузов в космос.

Краткая история ракет

Общий принцип реактивного полета, который лег в основу всех ракет, прост - от тела отделяется какая-то часть, приводящая все остальное в движение.

Кто первым реализовал этот принцип – неизвестно, но различные догадки и домыслы доводят генеалогию ракетостроения аж до Архимеда. Доподлинно о первых подобных изобретениях известно, что ими активно пользовались китайцы, которые заряжали их порохом и за счет взрыва запускали в небо. Таким образом они создали первые твердотопливные ракеты. Большой интерес к ракетам появился у европейских правительств в начале

Второй ракетный бум

Ракеты ждали своего часа и дождались: в 1920-х годах начался второй ракетный бум, и связан он в первую очередь с двумя именами.

Константин Эдуардович Циолковский - ученый-самоучка из Рязанской губернии, невзирая на трудности и препятствия, сам дошел до многих открытий, без которых невозможно было бы даже говорить о космосе. Идея использования жидкого топлива, формула Циолковского, которая рассчитывает необходимую для полета скорость, исходя из соотношения конечной и начальной масс, многоступенчатая ракета - все это его заслуга. Во многом под влиянием его трудов создавалось и оформлялось отечественное ракетостроение. В Советском Союзе начали стихийно возникать общества и кружки по изучению реактивного движения, в числе которых ГИРД - группа изучения реактивного движения, а в 1933 году под патронажем властей появился Реактивный институт.

Константин Эдуардович Циолковский.
Источник: Wikimedia.org

Второй герой ракетной гонки - немецкий физик Вернер фон Браун. Браун имел отличное образование и живой ум, а после знакомства с другим светилом мирового ракетостроения, Генрихом Обертом, он решил приложить все свои силы к созданию и усовершенствованию ракет. В годы Второй Мировой фон Браун фактически стал отцом «оружия возмездия» Рейха - ракеты «Фау-2», которую немцы начали применять на поле боя в 1944 году. «Крылатый ужас», как называли её в прессе, принес разрушение многим английским городам, но, к счастью, на тот момент крах нацизма был уже делом времени. Вернер фон Браун вместе со своим братом решил сдаться в плен к американцам, и, как показала история, это был счастливый билет не только и не столько для ученых, сколько для самих американцев. С 1955 года Браун работает на американское правительство, и его изобретения ложатся в основу космической программы США.

Но вернемся в 1930-е. Советское правительство по достоинству оценило рвение энтузиастов на пути к космосу и решило употребить его в своих интересах. В годы войны себя отлично показала «Катюша» - система залпового огня, которая стреляла реактивными ракетами. Это было во многом инновационное оружие: «Катюша» на базе легкого грузовика «Студебеккер» приезжала, разворачивалась, обстреливала сектор и уезжала, не давая немцам опомниться.

Окончание войны подкинуло нашему руководству новую задачу: американцы продемонстрировали миру всю мощь ядерной бомбы, и стало совершенно очевидно, что на статус сверхдержавы может претендовать только тот, у кого есть нечто похожее. Но здесь была проблема. Дело в том, что, помимо самой бомбы, нам нужны были средства доставки, которые бы смогли обойти ПВО США. Самолеты для этого не годились. И СССР решил сделать ставку на ракеты.

Константин Эдуардович Циолковский умер в 1935 году, но ему на смену пришло целое поколение молодых ученых, которое и отправило человека в космос. Среди этих ученых был Сергей Павлович Королев, которому суждено было стать «козырем» Советов в космической гонке.

СССР принялся за создание своей межконтинентальной ракеты со всем усердием: были организованы институты, собраны лучшие ученые, в подмосковных Подлипках создается НИИ по ракетному вооружению, и работа кипит вовсю.

Только колоссальное напряжение сил, средств и умов позволило Советскому Союзу в кратчайшие сроки построить свою ракету, которую назвали Р-7. Именно её модификации вывели в космос «Спутник» и Юрия Гагарина, именно Сергей Королев и его соратники дали старт космической эре человечества. Но из чего состоит космическая ракета?

Каково устройство многоступенчатой ракеты разберем на классическом примере ракеты для полета в космос, описанном в трудах Циолковского, родоначальника ракетостроения. Именно им первым была опубликована принципиальная идея изготовления ракеты многоступенчатой.

Принцип действия ракеты.

Для того чтобы преодолеть земное притяжение, ракете необходим большой запас топлива, при этом, чем больше топлива мы берем, тем больше получается масса ракеты. Поэтому для уменьшения массы ракеты их строят на принципе многоступенчатости. Каждую ступень можно рассматривать как отдельную ракету с собственным ракетным двигателем и запасом топлива для полета.

Устройство ступеней космической ракеты.


Первая ступень космической ракеты
самая большая, в ракете для полета космос двигателей 1ой ступени может быть до 6 и более чем тяжелей груз необходимо вывести в космос, тем больше двигателей в первой ступени ракеты.

В классическом варианте их три, расположены симметрично по краям равнобедренного треугольника как бы опоясывающего ракету по периметру. Эта ступень самая большая и мощная, именно она отрывает ракету . Когда топливо в первой ступени ракеты израсходовано вся ступень отбрасывается.

После этого движением ракеты управляют двигатели второй ступени. Их иногда называют разгонными, поскольку именно с помощью двигателей второй ступени ракета достигает первой космической скорости, достаточной для выхода на околоземную орбиту.

Так может повторяться несколько раз, при этом каждая ступень ракеты весит меньше предыдущей, поскольку с набором высоты сила притяжения Земли уменьшается.

Сколько раз повторяется этот процесс столько и ступеней содержит космическая ракета. Последняя ступень ракеты предназначена для маневрирования (маршевые двигатели для коррекции полета имеются в каждой ступени ракеты) и доставки полезного груза и космонавтов к месту назначения.

Мы рассмотрели устройство и принцип действия ракеты , точно также устроены и принципиально не отличаются от космических ракет баллистические многоступенчатые ракеты, страшное оружие несущее ядерное оружие. Они способны полностью уничтожить как жизнь на всей планете, так и саму .

Многоступенчатые баллистические ракеты выходят на околоземную орбиту и уже оттуда поражают наземные цели разделившимися боеголовками с ядерными зарядами. При этом чтобы долететь до самой удаленной точки им достаточно 20-25 минут.