Железная руда происхождение для детей. Состав и свойства железной руды

Когда о чём-нибудь говорят «железный», имеют в виду - прочный, крепкий, несокрушимый. Не удивительно услышать: «железная воля», железное здоровье» и даже «железный кулак». Что же такое железо?

История названия

Железо в чистом виде - металл серебристого цвета, по латыни оно называется Fe (феррум). О происхождении русского названия учёные спорят. Одни считают, что оно возникло от слова «джальджа», что в переводе с санскрита значит металл, другие уверяют, что это слово «жель», означающее «блестеть».

Как люди получили железо?

Впервые железо очутилось в руках человека, обрушившись с неба. Ведь многие метеориты были почти полностью железными. Поэтому в изображали предметы из этого металла синими - цвета неба. Многие народы имеют мифы о небесном происхождении железных орудий - якобы их дали боги.

Что такое «железный век»?

Когда человек открыл бронзу, начался «бронзовый век». Позже ему на смену пришел «железный». Так назвали время, когда халибы, народ, живший на берегу Чёрного моря, научились плавить в специальных печах особый песок. Полученный метал был красивого серебристого цвета и не ржавел.

Всегда ли золотые изделия ценились выше?

В те времена, когда железо выплавлялось из метеоритов, из него в основном делали украшения, носить которые могли лишь люди знатного рода. Часто эти украшения имели золотую оправу, а в Древнем Риме даже обручальные кольца были железными. Сохранилось письмо, написанное одним из фараонов Египта царю хеттов, где тот просил выслать ему железо, обещая заплатить золотом в любом количестве.

Мировые чудеса, сделанные из железа

В Индии, в Дели, стоит древняя колонна высотой больше семи метров. Она сделана из чистого железа ещё в 415 году нашей эры. Но и сейчас на ней нет ни следа ржавчины. По легенде, прикосновение к колонне спиной дает исполнение заветного желания. Ещё одно грандиозное железное сооружение - Эйфелева башня. Для изготовления символа Парижа потребовалось более семи тысяч тонн металла.

Откуда берется железо?

Чтобы получить железо, нужна железная руда. Это минералы, камни, в которых железо соединено с разными другими веществами. Очищая железо от примесей, и получают нужный металл. Например, сырьём может быть магнитный железняк, в котором содержится до 70% железа. Железняк - чёрный или тёмно-серый камень. В России его добывают на Урале, например, в недрах горы, которая так и называется - Магнитная.

Как добывают руду?

Месторождения железной руды имеются не только в России, но также на Украине, в Швеции, в Норвегии, в Бразилии, в США и некоторых других странах. Запасы этого ископаемого не везде одинаковые, его начинают добывать только в том случае, если это представляется выгодным, ведь разработка стоит дорого и не окупится, если железа окажется слишком мало.

Чаще всего железную руду добывают открытым методом. Копают огромную яму, которая называется карьер. Она очень глубокая - полкилометра в глубину. А ширина зависит от того, много ли вокруг руды. Специальные машины вычерпывают руду, отделяя её от ненужной породы. Затем грузовики отвозят её на заводы.

Однако не любое месторождение можно разрабатывать таким способом. Если руда глубоко, приходится для её добычи делать шахты. Для шахты сначала роют глубокий колодец, который называется ствол, а внизу от него отходят коридоры - штреки. Вниз спускаются шахтеры. Это отважные люди, они находят руду и взрывают её, а потом по кускам переправляют на поверхность. Работа шахтёров очень опасна, ведь шахта может обрушиться, а ещё внизу бывают опасные газы, да и при взрыве люди могут пострадать, хотя они очень осторожны и соблюдают правила техники безопасности.

Как из руды получается железо?

Но добыть руду - это еще не все! Ведь получение железа из руды - тоже непростой процесс. Хотя выплавлять железо из руды научились уже давно. В древности выплавкой его занимались кузнецы, они были очень уважаемыми людьми. В специальную печь, которая называется горн, клали руду и древесный уголь, а затем поджигали. Однако обычная температура горения недостаточно высока для выплавки, поэтому огонь раздували, используя мехИ - приспособление, выдувающее воздух с большой силой. Сначала их двигали руками, а позже научились использовать силу воды. В результате нагревания получалась спекшаяся масса, которую потом кузнец ковал, придавая железу нужную форму.

Сплавы

Чаще использовалось (да и сейчас используется) не чистое железо, а сталь или чугун. Это сплав железа с углекислым газом. Если в сплаве более 2% углерода, то получается чугун. Он непрочный, зато легко плавится и ему можно придать любую форму. Если углерода меньше 2%, то . Она очень прочная и используется для изготовления множества нужных вещей, машин, оружия.

Сейчас, конечно, применяются другие методы, хотя принцип их тот же: выплавка с добавлением углекислоты при высокой температуре. В настоящее время для этой цели используют электричество.

Зачем железо человеческому организму?

Если человеку не хватает железа, он болеет. Этот металл нужен для образования гемоглобина, который доставляет кислород каждой клеточке тела. Поэтому надо есть продукты, богатые железом - печень, бобовые, яблоки.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Железные руды - природные минеральные образования, содержащие железо и его соединения в таком объёме, когда промышленное извлечение железа из этих образований целесообразно. Несмотря на то, что железо входит в большем или меньшем количестве в состав всех горных пород, под названием железных руд понимают только такие скопления железистых соединений, из которых с выгодой в экономическом отношении можно получить металлическое железо.

Железные руды представляют собой особые минеральные образования, в состав которых входит железо и его соединения. Данный тип руды считается железной, если доля этого элемента содержаться в таком объеме, чтобы в ее промышленное извлечение было экономически выгодным.

В черной металлургии используются три основных вида железорудной продукции:

— сепарированная железная руда (низкое содержание железа);

— аглоруда (среднее содержание железа);

— окатыши (сырая железосодержащая массы)

Залежи железной руды считаются богатыми, если доля железа в них составляет более 57%. Бедные железные руды могут содержать минимум 26% железа. Ученные выделяют два основных морфологических типа железной руды; линейные и плоскоподобные.

Линейные залежи железной руды представляют собой клиновидные рудные тела в зонах земных разломов, изгибов в процессе метаморфоза. Данный тип железных руд отличается особо высоким содержанием железа (54-69%) с низким содержанием серы и фосфора.

Плоскоподобные залежи можно найти на вершинах пластов железистых кварцитов. Они относятся к типовым корам выветривания.

Богатые железные руды, в основном, отправляют на выплавку в мартеновское и конверторное производство или же на прямое восстановление железа.

Основные промышленные типы месторождений железной руды:

  • — пластовые осадочные месторождения;
  • — комплексные титаномагнетитовые месторождения;
  • — месторождения железистых кварцитов и богатых руд;
  • — скарновые железорудные месторождения;

Второстепенные промышленные типы месторождений железной руды:

  • — железорудные сидеритовые месторождения;
  • — железорудные пластообразные латеритные месторождения;
  • — комплексные карбопатитовые апатит-магнетитовые месторождения;

Мировые запасы разведанных месторождений железной руды составляют 160 миллиардов тонн, в них содержится около 80 миллиардов тонн чистого железа. Крупнейшие месторождения железной руды найдены в Украине, а крупнейшие запасы чистого железа расположены на территории России и Бразилии.

Объем мировой добычи железной руды с каждым годом растет. В 2010 году было добыто более 2,4 млрд тонн железной руды, при этом, Китай, Австралия и Бразилия обеспечили две трети добычи. Если прибавить к ним Россию и Индию, то их суммарная доля на рынке составит более 80%.

Как добывают руду

Рассмотрим несколько основных вариантов добычи железной руды. В каждом конкретном случае выбор в пользу той или иной технологии делается с учетом расположения полезных ископаемых, экономической целесообразности использования того или иного оборудования и т.п.

В большинстве случаев, добыча руды происходит карьерным способом. То есть для организации добычи, сначала вырывается глубокий карьер приблизительно 200-300 метров в глубину. После этого прямо из его дна на больших машинах вывозится железная руда. Которая сразу же после добычи на тепловозах переправляется на различные комбинаты, где из нее изготавливается сталь. На сегодняшний день многие крупные предприятия производят добычу руды, в том случае если у них есть все необходимо оборудование для проведения таких работ.

Рыть карьер следует с использованием больших экскаваторов, однако следует учесть то, что данный процесс может отнять у вас достаточно много лет. После того как экскаваторы дороют до самого первого пласта железной руды, необходимо сдать ее на анализ экспертам, чтобы они смогли определить какой именно процент железа в ней содержится. Если этот процент будет не менее 57, то в таком случае будет экономически выгодным решение о добычи руды в этой местности. Такую руда можно смело перевозить на комбинаты, ведь после переработки из нее обязательно получится сталь высокого качества.

Однако это еще не все, следует очень тщательно проверять сталь, которая появляется в результате переработки железной руды. Если качество добываемой руды не будет соответствовать европейским стандартам, то следует понять, как улучшить качество производства.

Недостаток открытого метода состоит в том, что он позволяет добывать железную руду только на сравнительно небольшой глубине. Поскольку нередко она лежит гораздо глубже – на расстоянии в 600-900 м от поверхности земли – приходится строить шахты. Сначала делают ствол шахты, который напоминает очень глубокий колодец с надежно укрепленными стенками. От ствола в разные стороны отходят коридоры, которые называются штреками. Найденную в них железную руду взрывают, а затем ее куски с помощью специального оборудования поднимают на поверхность. Этот способ добычи железной руды эффективен, но в то же время связан с серьезной опасностью и затратен.

Есть и еще один способ, позволяющий добывать железную руду. Он называется СГД или скважинная гидродобыча. Руду извлекают из-под земли следующим образом: бурят глубокую скважину, опускают туда трубы с гидромонитором и с помощью очень сильной водной струи дробят породу, а затем поднимают ее на поверхность. Этот способ безопасен, однако, к сожалению, он пока неэффективен. Благодаря этому методу удается добыть только около 3% железной руды, в то время как с помощью шахт добывается примерно 70%. Тем не менее, разработкой метода скважинной гидродобычи занимаются специалисты, а потому есть надежда, что в будущем именно этот вариант станет основным, вытеснив карьеры и шахты.


Железную руду человек начал добывать еще в конце II тысячелетия до нашей эры, уже тогда определив для себя преимущества железа по сравнению с камнем. С тех времен люди стали различать виды железных руд, хотя они еще не имели тех названий, что сегодня.

В природе железо - один из самых распространенных элементов, и в земной коре его содержится по разным данным от четырех до пяти процентов. Это четвертое место по содержанию после кислорода, кремния и алюминия.

Железо представлено не в чистом виде, оно в большем или меньшем количестве содержится в разного вида горных породах. И если по расчетам специалистов добывать железо из такой породы целесообразно и выгодно экономически, ее называют железной рудой.

За последние несколько столетий, на протяжении которых очень активно выплавляется сталь и чугун, железные руды истощаются - ведь металла требуется все больше и больше. Например, если в XVIII веке, на заре промышленной эры руды могли содержать и 65% железа, то сейчас нормальным считается содержание в руде 15 процентов элемента.

Из чего состоит железная руда.

В состав руды входит рудный и рудообразующий минералы, различные примеси и пустая порода. Соотношение этих составляющих отличается от месторождения к месторождению.

Рудный материал содержит главную массу железа, а пустая порода - это минеральные отложения, содержащие железо в очень малых количествах или не содержащие вовсе.

Оксиды, силикаты и карбонаты железа - самые часто встречающиеся рудные минералы железных руд.

Виды железной руды по содержанию железа и по местообразованию.

  • С низким содержанием железа или сепарированную железную руду, ниже 20%
  • Со средним содержанием железа или аглоруду
  • Железосодержащая масса или окатыши - породы с высоким содержанием железа, выше 55%

Железные руды могут быть линейными - то есть залегающие в местах разломов и изгибов земной коры. Именно они наиболее богаты железом и содержат мало фосфора и серы.

Другой вид железных руд - плоскоподобные, которые содержатся на поверхности железосодержащих кварцитов.

Красные, бурые, желтые, черные железняки.

Самым распространенным видом руды является красный железняк, который образуется безводным оксидом железа гематитом, имеющим химическую формулу Fe 2 O 3 . В гематите содержится очень высокий процент железа (до 70 процентов) и мало посторонних примесей, в частности серы и фосфора.

Красные железняки могут находиться в разном физическом состоянии - от плотного до пылевого.

Бурый железняк - это водная окись железа Fe 2 O 3 *nH 2 O. Число n может изменяться в зависимости от основы, составляющей руду. Чаще всего это лимониты. Бурые железняки, в отличие от красных, содержат меньше железа - 25-50 процентов. Их структура рыхлая, пористая, а в руде много других элементов, среди которых - фосфор и марганец. В бурых железняках содержится много адсорбированной влаги, пустая же порода - глинистая. Свое название этот вид руды получил из-за характерного бурого или желтоватого цвета.

Но несмотря на довольно низкое содержание железа, из-за легкой восстановимости перерабатывать такую руду легко. Из них часто выплавляют высокачественный чугун.

Бурый железняк чаще всего нуждается в обогащении.

Магнитными рудами называют те, которые образованы магнетитом, являющимся магнитным оксидом железа Fe 3 O 4. Название подсказывает, что эти руды имеют магнитные свойства, которые утрачиваются при нагревании.

Магнитные железняки реже встречаются, чем красные. Но железа в них может содержаться даже свыше 70 процентов.

По своей структуре он может быть плотным и зернистым, может выглядеть как кристаллы, вкрапленные в породу. Цвет магнетита - черно-синий.

Еще один вид руды, который называется шпатовым железняком. Ее рудосодержащей составляющей является карбонат железа с химическим составом FeCO 3 под названием сидерит. Другое название - глинистый железняк - это если в руде содержится значительное количество глины.

Шпатовые и глинистые железняки встречаются в природе реже других руд и содержат относительно немного железа и много пустой породы. Сидериты могут преобразовываться в бурые железняки под влиянием кислорода, влаги и осадков. Поэтому залежи выглядят так: в верхних слоях это бурый железняк, а в нижних - шпатовый железняк.

Железная руда стала добываться человеком много веков назад. Уже тогда стали очевидными преимущества использования железа.

Найти минеральные образования, содержащие железо, довольно легко, так как этот элемент составляет около пяти процентов земной коры. В целом, железо является четвертым по распространенности элементом в природе.

В чистом виде найти его невозможно, железо содержится в определенном количестве во многих типах горных пород. Наибольшее содержание железа имеет железная руда, добыча металла из которой является наиболее экономично выгодным. От ее происхождения зависит количество содержащегося в ней железа, нормальная доля которого в составе около 15%.

Химический состав

Свойства железной руды, ее ценность и характеристики напрямую зависят от ее химического состава. Железная руда может содержать различное количество железа и других примесей. В зависимости от этого выделяют ее несколько типов:

  • очень богатые, когда содержание железа в рудах превышает 65%;
  • богатые, процент железа в которой варьируется в диапазоне от 60% до 65%;
  • средние, от 45% и выше;
  • бедные, в которых процент полезных элементов не превышает 45%.

Чем больше побочных примесей в составе железной руды, тем больше необходимо энергии на ее переработку, и тем менее эффективным является производство готовой продукции.

Состав породы может представлять собой совокупность различных минералов, пустой породы и других побочных примесей, соотношение которых зависит от ее месторождения.

Магнитные руды отличаются тем, что в их основе заложен оксид, имеющий магнитные свойства, но при сильном нагреве они теряются. Количество этого типа породы в природе ограничено, но содержание железа в нем может не уступать красному железняку. Внешне он выглядит как твердые кристаллы черно-синего цвета.

Шпатовый железняк представляет собой рудную породу, в основе которой лежит сидерит. Очень часто имеет в составе значительное количество глины. Этот тип породы относительно тяжело найти в природе, что на фоне малого количества содержимого железа делает его редко используемым. Поэтому отнести их к промышленным типам руд невозможно.

Кроме оксидов в природе содержаться другие руды на основе силикатов и карбонатов. Количество содержимого железа в породе очень важно для ее промышленного использования, но также важно наличие полезных побочных элементов, таких как никель, магний, и молибден.

Отрасли применения

Сфера применения железной руды практически полностью ограничена металлургией. Ее используют, в основном, для выплавки чугуна, который добывают с помощью мартеновских или конверторных печей. На сегодняшний день чугун используется в различных сферах жизнедеятельности человека, в том числе в большинстве видов промышленного производства.

Не в меньшей степени используются различные сплавы на основе железа – наиболее широкое применение обрела сталь благодаря своим прочностным и антикоррозийным свойствам.

Чугун, сталь и различные другие сплавы железа используются в:

  1. Машиностроении, для производства различных станков и аппаратов.
  2. Автомобилестроении, для изготовления двигателей, корпусов, рам, а также других узлов и деталей.
  3. Военной и ракетной промышленности, при производстве спецтехники, оружия и ракет.
  4. Строительстве, в качестве армирующего элемента или возведения несущих конструкций.
  5. Легкой и пищевой промышлености, в качестве тары, производственных линий, различных агрегатов и аппаратов.
  6. Добывающей промышленности, в качестве спецтехники и оборудования.

Месторождения железной руды

Мировые запасы железной руды ограничены в количестве и своем местоположении. Территории скопления запасов руд называют месторождениями. На сегодняшний день месторождения железных руд делят на:

  1. Эндогенные. Они характеризуются особым расположением в земной коре, обычно в виде титаномагнетитовых руд. Формы и расположения таких вкраплений разнообразны, могут быть в форме линз, пластов, расположенных в земной коре в виде залежей, вулканообразовных залежей, в виде различных жил и других неправильных форм.
  2. Экзогенные. К этому типу относятся залежи бурых железняков и других осадочных пород.
  3. Метаморфогенные. К которым относятся залежи кварцитов.

Месторождения таких руд можно встретить на территории всей нашей планеты. Наибольшее количество залежей сконцентрировано на территории постсоветских республик. В особенности Украины, России и Казахстана.

Большие запасы железа имеют такие страны как Бразилия, Канада, Австралия, США, Индия и ЮАР. При этом практически в каждой стране на земном шаре имеются свои разрабатываемыми месторождения, в случае дефицита которых, порода импортируется из других стран.

Обогащения железных руд

Как было указано, существует несколько типов руд. Богатые можно перерабатывать непосредственно после извлечения из земной коры, другие необходимо обогатить. Кроме процесса обогащения, переработка руды включает в себя несколько этапов, таких как сортировка, дробление, сепарация и агломерация.

На сегодняшний день существует несколько основных способов обогащения:

  1. Промывка.

Применяется для очистки руд от побочных примесей в виде глины или песка, вымывание которых проводят с помощью струй воды под высоким давлением. Такая операция позволяет увеличить количество содержимого железа в бедной руде примерно на 5%. Поэтому его используют только в комплексе с другими типами обогащения.

  1. Гравитационная очистка.

Выполняется с помощью специальных типов суспензий, плотность которых превышает плотность пустой породы, но уступает плотности железа. Под воздействием гравитационных сил побочные компоненты поднимаются на верх, а железо опускается на низ суспензии.

  1. Магнитная сепарация.

Наиболее распространенный способ обогащения, который основывается на различном уровне восприятия компонентами руды воздействия магнитных сил. Такую сепарацию могут проводить с сухой породой, мокрой, или в поочередном сочетании двух ее состояний.

Для переработки сухой и мокрой смеси используют специальные барабаны с электромагнитами.

  1. Флотация.

Для этого метода раздробленную руду в виде пыли опускают в воду с добавлением специального вещества (флотационный реагент) и воздуха. Под действием реагента железо присоединяется к воздушным пузырькам и поднимается на поверхность воды, а пустая порода опускается на дно. Компоненты, содержащие железо, собираются с поверхности в виде пены.

ГЛАВА 7. ГРУППЫ РУДНЫХ МИНЕРАЛОВ ПО ФИЗИЧЕСКИМ СВОЙСТВАМ. ДИАГНОСТИЧЕСКИЕ СВОЙСТВА ЭТАЛОННЫХ МИНЕРАЛОВ. ТАБЛИЦЫ-ОПРЕДЕЛИТЕЛИ.

СТАНДАРТНЫЕ СХЕМЫ ИССЛЕДОВАНИЯ

РУДНОГО МИНЕРАЛА И АНШЛИФА

Из большого числа рудных минералов можно выделить характерные соединения трех типов: самородные элементы (металлы), сульфиды и подобные им соединения и окислы – соединения металлов с кислородом. Они значительно отличаются по физическим свойствам, что облегчает диагностику.

1. Самородные элементы, такие как, Au, Ag, Fe, Cu, Pt обладают физическими свойствами идеальных металлов, т.е. ковкостью, тягучестью, металлическим блеском (непрозрачностью для света), проводимостью тепла и электричества, высокой плотностью. Свойства их обусловлены, прежде всего, металлическим типом электронной связи между атомами. Тип связи определяет строение кристаллических решеток и оптические свойства. Для рудных минералов важными свойствами являются отражательная способность и твердость. Самородные металлы являются, как правило, наиболее высокоотражающими объектами и имеют низкую твердость. К числу типичных рудных минералов относится также гексагональная модификация самородного углерода – графит, отличающийся низким отражением.

2. Сульфиды, такие как: галенит – PbS, сфалерит – ZnS, миллерит –NiS, киноварь – HgS, пирротин – FeS, ковеллин – CuS – не обладают свойствами металлов. Они в основном хрупкие, слабо проводят электрический ток, обладают средней отражательной способностью, некоторые частично пропускают свет. Электронные связи между химическими элементами, входящими в кристаллические решетки сульфидов, имеют ионный или смешанный типы, что и обусловливает резкое различие их оптических свойств. Многие сульфиды обладают широкой анизотропией физических свойств, в том числе твердости и отражательной способности. В эту группу рудных минералов относятся также многочисленные селенистые, теллуристые, мышьяковистые и сурьмянистые соединения, среди которых много важных в промышленном отношении минералов.

3. Окислы, например магнетит – Fe 2+ Fe 3+ 2 O 4 , гематит – Fe 2 O 3 , рутил – TiO 2 , куприт – Cu 2 O, ильменит – FeTiO 3 , хромит – FeCr 2 O 4 , еще больше отличаются от металлов отсутствием пластичности, электропроводности. Окислы, как правило, отличаются низкой отражательной способностью и высокой твердостью. Многие окислы пропускают свет. Типы химических связей в окислах различны, что обусловливает их широкие различия в физических свойствах.

Роль самородных металлов, сульфидов и окислов в образовании месторождений различна. Самородные металлы исключительно редко образуют месторождения, а сульфиды и окислы являются главными компонентами многочисленных месторождений.

Наиболее важные рудные минералы, образующие месторождения:

Самородные элементы:

Кобальтин – CoAsS

Лëллингит –FeAs 2

Серебро – Ag

Арсенопирит – FeAsS

Золото – Au

Платина – Pt

Блеклые руды: теннантит – Cu 12 As 4 S 13 – тетраэдрит – Cu 12 Sb 4 S 13

Углерод – С (Графит)

Прустит – Ag 3 AsS 3

Пираргирит – Ag 3 SbS 3

Буланжерит – Pb 5 Sb 4 S 11

Сульфиды и подобные им соединения:

Окислы и другие кислородные соединения:

Халькозин – Cu 2 S

Куприт – Cu 2 O

Галенит – PbS

Гематит – α-Fe 2 O 3

Сфалерит – ZnS

Ильменит – FeTiO 3

Киноварь – HgS

Браунит – Mn 2 O 3

Пирротин – Fe 1-x S

Шпинель – MgAl 2 O 4

Никелин – NiAs

Магнетит – FeFe 2 O 4

Миллерит – NiS

Хромшпинелиды – (Mg,Fe)(Cr,Al,Fe) 2 O 4

Пентландит – (FeNi) 9 S 8

Рутил – TiO 2

Халькопирит – CuFeS 2

Касситерит – SnO 2

Борнит – Cu 5 FeS 4

Колумбит – (Fe,Mn)Nb 2 O 6 – танталит – (Fe,Mn)Ta 2 O 6

Кубанит – CuFe 2 S 3

Пиролюзит – MnO 2

Ковеллин – CuS

Лопарит – (Na,Ce,Ca)(Nb,Ti)O 3

Аурипигмент – As 2 S 3

Гетит – гидрогетит

– HFeO 2 ,- HFeO 2 ž ag

Стибнит – Sb 2 S 3

Псиломелан – mMnO ž MnO 2 ž nH 2 O

Висмутин – Bi 2 S 3

Малахит – Cu 2 2

Молибденит – MoS 2

Вольфрамит – (Mn,Fe)WO 4

Пирит – FeS 2

Шеелит – CaWO 4

Сперрилит – PtAs 2

Циркон – ZrSiO 4

К эталонным минералам относятся: пирит, галенит, блеклые руды, сфалерит. Диагностические свойства их приведены в табл. 1.

Таблица 1

Диагностические свойства эталонных минералов

Химический состав

Сингония

Отражение

Серо-белый с оливково-коричневым оттенком

Светло-желтый

Анизотропия

Изотропен

Изотропен

Изотропен

Изотропен

Внутренние рефлексы

Бесцветные, желтые, буро-красные

Коричнево-красные

Отсутствуют

Отсутствуют

Твердость

153–270 кГ/мм 2

308-397 кГ/мм 2

64-110 кГ/мм 2

1374 кГ/мм 2

Полируемость

Посредствен-ная, при длительном полировании хорошая.

Формы зерен, внутреннее строение

Зернистые агрегаты, но индивиды не видны, можно выявить травлением. Характерны полисинтетиче-ские двойники.

Зернистые агре-

гаты, травлением можно выявить зональность в кристаллах.

Зернистые агрегаты, совершенная спайность, треугольные выколки.

Зернистые агрегаты, кристаллы кубических и пентагон-додекаэдрич форм.

Часто встречающиеся совместно минералы

Халькопирит, галенит, блеклые руды, пирротин

Халькопирит, сфалерит, галенит, арсенопирит

Сфалерит, пирит, халькопирит, минералы серебра и др.

Марказит, халькопирит, сфалерит, золото и др.

Магнитность

Немагнитен

Немагнитен

Немагнитен

Немагнитен

Важно усвоить свойства этих минералов, для того чтобы на практике легко их узнавать и использовать для диагностики других минералов. Главное достоинство предлагаемой группы эталонов заключается в широкой распространенности в различных месторождениях, устойчивости их свойств, стандартных цветах, силе отражения и др. Например, уменьшение коэффициента отражения в ряду: пирит-галенит-блеклая руда-сфалерит происходит в интервале 10–15 %, что соответствует интервалу восприимчивости глаза. Это позволяет легко по «методу контакта» ориентироваться в справочных таблицах. Также закономерно возрастает микротвердость в ряду: галенит-сфалерит-блеклая руда-пирит, (от 2.5 до 6.5), что позволяет использовать примитивную схему определения групп твердости по «методу царапания». На примере эталонов усваиваются такие диагностические свойства как эталонные цвета: белый (галенит) и серый (сфалерит), «внутреннее строение» (треугольники выкрошивания у галенита) и «внутренние рефлексы» (сфалерит и блеклая руда) и др.

Свойства других минералов, включенных в курс «Рудная минераграфия» приведены в форме стандартных таблиц-определителей.

Пример работы с таблицей-определителем

В качестве примера рассмотрим таблицу С.А. Юшко и В.В. Иванова (Приложение 4), приведенную в работе С.А. Юшко «Методы лабораторного исследования руд» (1984). Таблица составлена с использованием основных физических свойств рудных минералов, которые студент определяет в лабораторных условиях. Представленные в таблице минералы разбиты на 36 групп в зависимости от свойств.

Рекомендуется, прежде всего, определить характер анизотропии минерала. По этому признаку минералы делятся на две большие группы. Точное определение анизотропности позволит резко ограничить круг поиска минерала.

Далее следует определить степень отражения. В каждой группе как изотропных, так и анизотропных минералов, первая вертикальная графа слева имеет обозначение: «Отражение». Она разделена на три подраздела (снизу вверх): «равная сфалериту и меньше», «равная галениту и меньше» и «больше галенита». Примерное определение коэффициента отражения по эталонам позволяет ограничить поиск минерала до 3-7 групп.

Определение цвета минерала в отраженном свете не представляет большой трудности, но решает еще одну задачу - отделяет «ясно окрашенные» минералы, которых, к примеру, среди анизотропных минералов, не так много. Это свойство обозначено во второй вертикальной графе таблицы: «Окраска минерала».

Следующая вертикальная графа – «Внутренние рефлексы в порошке», позволяет выделить минералы с ясно выраженными внутренними рефлексами, что особено важно в группах бесцветных минералов.

Последняя графа перед определение номера диагностической группы – «Твердость». Определение твердости студентами выполняется в

кабинетных условиях быстро двумя способами. По методу царапания медной и стальной иглами определяется класс твердости: «высокая», «средняя» и «низкая». На микротвердометре МПТ-3 уточняется значение микротвердости.

Определение диагностической группы сужает поиск минерала, но еще не решает окончательно задачу определения. Некоторые группы являются весьма сложными по набору минералов, например №№ 7, 10, 15, 22 и др. Далее следует использовать все дополнительные свойства по справочникам: морфология зерен, внутреннее строение, парагенетические ассоциации, цветовые оттенки, и др. Большую помощь могут оказать микрохимические реации, при наличии набора стандартных реактивов. Определение некоторых минералов может быть уверенным только путем анализа химического состава и рентгенограммы.

Стандартные схемы исследования рудного минерала и аншлифа

Схема исследования минерала :

1. Оценивается коэффициент отражения (относительно эталонов) или измеряется на спектрофотометре.

2. Определяются: цвет, анизотропия, двуотражение, цветные эффекты, наличие внутренних рефлексов, микротвердость методом царапания.

3. Проверяется наличие магнитности.

4. Изучается форма и внутреннее строение зерен.

5. По таблице свойств определяется минерал и группа аналогов.

6. По справочникам уточняются признаки и делается выбор.

7. Если определение затруднено, то уточняется микротвердость на приборе ПМТ-3 и по таблице твердости минералов еще раз определяется минерал.

8. В случае если минерал не удалось определить по табличным данным:

– готовят образец для микрозондового анализа для уточнения химического состава;

– готовят препарат для рентгеновского изучения.

Схема описания аншлифа:

1. Определяется макроскопически текстура образца.

2. Определяется полный минеральный состав под микроскопом.

3. Количество минеральных фаз и их объем:

– главные минералы (> 1 %);

– второстепенные минералы(< 1 %);

– редкие минералы (единичные зерна).

4. Измеряются размеры зерен всех минералов.

5. Выделяются закономерные срастания парагенезисы и ассоциации.

6. Анализируются возрастные взаимоотношения между минералами и ассоциациями.

7.Определяется последовательность образования, составляется ее схема.

8.Определяется структура, тип оруденения.

9.Делается заключение о генезисе.

10. Намечаются места для иллюстрации доказательств.