Записи с меткой "при каких значениях переменной выражение не имеет смысла". Числовые и буквенные выражения

Числовые и алгебраические выражения. Преобразование выражений.

Что такое выражение в математике? Зачем нужны преобразования выражений?

Вопрос, как говорится, интересный... Дело в том, что эти понятия - основа всей математики. Вся математика состоит из выражений и их преобразований. Не очень понятно? Поясню.

Допустим, перед вами злой пример. Очень большой и очень сложный. Допустим, вы сильны в математике и ничего не боитесь! Сможете сразу дать ответ?

Вам придётся решать этот пример. Последовательно, шаг за шагом, этот пример упрощать . По определённым правилам, естественно. Т.е. делать преобразование выражений . Насколько успешно вы проведёте эти преобразования, настолько вы и сильны в математике. Если вы не умеете делать правильные преобразования, в математике вы не сможете сделать ни-че-го ...

Во избежание такого неуютного будущего (или настоящего...), не мешает разобраться в этой теме.)

Для начала выясним, что такое выражение в математике . Что такое числовое выражение и что такое алгебраическое выражение.

Что такое выражение в математике?

Выражение в математике - это очень широкое понятие. Практически всё то, с чем мы имеем дело в математике - это набор математических выражений. Любые примеры, формулы, дроби, уравнения и так далее - это всё состоит из математических выражений .

3+2 - это математическое выражение. с 2 - d 2 - это тоже математическое выражение. И здоровущая дробь, и даже одно число - это всё математические выражения. Уравнение, например, вот такое:

5х + 2 = 12

состоит из двух математических выражений, соединённых знаком равенства. Одно выражение - слева, другое - справа.

В общем виде термин "математическое выражение " применяется, чаще всего, чтобы не мычать. Спросят вас, что такое обыкновенная дробь, например? И как ответить?!

Первый вариант ответа: "Это... м-м-м-м... такая штука... в которой... А можно я лучше напишу дробь? Вам какую?"

Второй вариант ответа: "Обыкновенная дробь - это (бодро и радостно!) математическое выражение , которое состоит из числителя и знаменателя!"

Второй вариант как-то посолидней будет, правда?)

Вот в этих целях фраза "математическое выражение " очень хороша. И правильно, и солидно. Но для практического применения надо хорошо разбираться в конкретных видах выражений в математике .

Конкретный вид- это другое дело. Это совсем другое дело! У каждого вида математических выражений есть свой набор правил и приёмов, который необходимо использовать при решении. Для работы с дробями - один набор. Для работы с тригонометрическими выражениями - второй. Для работы с логарифмами - третий. И так далее. Где-то эти правила совпадают, где-то - резко отличаются. Но не пугайтесь этих страшных слов. Логарифмы, тригонометрию и прочие загадочные вещи мы будем осваивать в соответствующих разделах.

Здесь мы освоим (или - повторим, кому как...) два основных вида математических выражений. Числовые выражения и алгебраические выражения.

Числовые выражения.

Что такое числовое выражение ? Это очень простое понятие. Само название намекает, что это выражение с числами. Да, так оно и есть. Математическое выражение, составленное из чисел, скобок и знаков арифметических действий называется числовым выражением.

7-3 - числовое выражение.

(8+3,2)·5,4 - тоже числовое выражение.

И вот этот монстр:

тоже числовое выражение, да...

Обычное число, дробь, любой пример на вычисление без иксов и прочих букв - всё это числовые выражения.

Главный признак числового выражения - в нём нет букв . Никаких. Только числа и математические значки (если надо). Всё просто, правда?

И что можно делать с числовыми выражениями? Числовые выражения, как правило, можно считать. Для этого приходится, бывает, раскрывать скобки, менять знаки, сокращать, менять местами слагаемые - т.е. делать преобразования выражений . Но об этом чуть ниже.

Здесь же мы разберёмся с таким забавным случаем, когда с числовым выражением ничего делать не надо. Ну вот совсем ничего! Эта приятная операция - ничего не делать) - выполняется, когда выражение не имеет смысла .

Когда числовое выражение не имеет смысла?

Понятное дело, если мы видим перед собой какую-то абракадабру, типа

то делать ничего и не будем. Так как непонятно, что с этим делать. Бессмыслица какая-то. Разве что, посчитать количество плюсиков...

Но бывают внешне вполне благопристойные выражения. Например такое:

(2+3) : (16 - 2·8)

Однако, это выражение тоже не имеет смысла ! По той простой причине, что во вторых скобочках - если посчитать - получается ноль. А на ноль делить нельзя! Это запретная операция в математике. Стало быть, с этим выражением тоже ничего делать не надо. При любом задании с таким выражением, ответ будет всегда один: "Выражение не имеет смысла!"

Чтобы дать такой ответ, пришлось, конечно, посчитать, что в скобочках будет. А иногда в скобочках такого понаворочено... Ну тут уж ничего не поделаешь.

Запретных операций в математике не так уж много. В этой теме - всего одна. Деление на ноль. Дополнительные запреты, возникающие в корнях и логарифмах обсуждаются в соответствующих темах.

Итак, представление о том, что такое числовое выражение - получили. Понятие числовое выражение не имеет смысла - осознали. Едем дальше.

Алгебраические выражения.

Если в числовом выражении появляются буквы - это выражение становится... Выражение становится... Да! Оно становится алгебраическим выражением . Например:

5а 2 ; 3x-2y; 3(z-2); 3,4m/n; x 2 +4x-4; (а+b) 2 ; ...

Ещё такие выражения называют буквенными выражениями. Или выражениями с переменными. Это, практически, одно и то же. Выражение 5а +с , к примеру - и буквенное, и алгебраическое, и выражение с переменными.

Понятие алгебраическое выражение - более широкое, чем числовое. Оно включает в себя и все числовые выражения. Т.е. числовое выражение - это тоже алгебраическое выражение, только без букв. Всякая селёдка - рыба, но не всякая рыба - селёдка...)

Почему буквенное - понятно. Ну, раз буквы есть... Фраза выражение с переменными тоже не сильно озадачивает. Если понимать, что под буквами скрываются числа. Всякие числа могут скрываться под буквами... И 5, и -18, и всё, что угодно. Т.е букву можно заменять на разные числа. Поэтому буквы и называются переменными .

В выражении у+5 , например, у - переменная величина. Или говорят просто "переменная" , без слова "величина". В отличие от пятёрки, которая - величина постоянная. Или просто - постоянная .

Термин алгебраическое выражение означает, что для работы с данным выражением нужно использовать законы и правила алгебры . Если арифметика работает с конкретными числами, то алгебра - со всеми числами разом. Простой пример для пояснения.

В арифметике можно записать, что

А вот если мы подобное равенство запишем через алгебраические выражения:

а + b = b + a

мы сразу решим все вопросы. Для всех чисел махом. Для всего бесконечного количества. Потому, что под буквами а и b подразумеваются все числа. И не только числа, но даже и другие математические выражения. Вот так работает алгебра.

Когда алгебраическое выражение не имеет смысла?

Про числовое выражение всё понятно. Там на ноль делить нельзя. А с буквами, разве можно узнать, на что делим?!

Возьмём для примера вот такое выражение с переменными:

2: (а - 5)

Имеет оно смысл? Да кто ж его знает? а - любое число...

Любое-то любое... Но есть одно значение а , при котором это выражение точно не имеет смысла! И что это за число? Да! Это 5! Если переменную а заменить (говорят - "подставить") на число 5, в скобочках ноль получится. На который делить нельзя. Вот и получается, что наше выражение не имеет смысла , если а = 5 . Но при других-то значениях а смысл имеется? Другие числа подставлять-то можно?

Конечно. Просто в таких случаях говорят, что выражение

2: (а - 5)

имеет смысл для любых значений а , кроме а = 5 .

Весь набор чисел, которые можно подставлять в заданное выражение, называется областью допустимых значений этого выражения.

Как видите, ничего хитрого нет. Смотрим на выражение с переменными, да соображаем: при каком значении переменной получается запретная операция (деление на ноль)?

А потом обязательно смотрим на вопрос задания. Чего спрашивают-то?

не имеет смысла , наше запретное значение и будет ответом.

Если спрашивают, при каком значении переменной выражение имеет смысл (почувствуйте разницу!), ответом будут все остальные числа , кроме запретного.

Зачем нам смысл выражения? Есть он, нет его... Какая разница?! Дело в том, что это понятие становится очень важным в старших классах. Крайне важным! Это основа для таких солидных понятий, как область допустимых значений или область определения функции. Без этого вы вообще не сможете решать серьёзные уравнения или неравенства. Вот так.

Преобразование выражений. Тождественные преобразования.

Мы познакомились с числовыми и алгебраическими выражениями. Поняли, что означает фраза "выражение не имеет смысла". Теперь надо разобраться, что такое преобразование выражений. Ответ прост, до безобразия.) Это любое действие с выражением. И всё. Вы эти преобразования делали с первого класса.

Возьмём крутое числовое выражение 3+5. Как его можно преобразовать? Да очень просто! Посчитать:

Вот этот расчёт и будет преобразованием выражения. Можно записать то же самое выражение по-другому:

Тут мы вообще ничего не считали. Просто записали выражение в другом виде. Это тоже будет преобразованием выражения. Можно записать вот так:

И это тоже - преобразование выражения. Таких преобразований можно понаделать сколько хочешь.

Любое действие над выражением, любая запись его в другом виде называется преобразованием выражения. И все дела. Всё очень просто. Но есть здесь одно очень важное правило. Настолько важное, что его смело можно назвать главным правилом всей математики. Нарушение этого правила неизбежно приводит к ошибкам. Вникаем?)

Предположим, мы преобразовали наше выражение как попало, вот так:

Преобразование? Конечно. Мы же записали выражение в другом виде, что здесь не так?

Всё не так.) Дело в том, что преобразования "как попало" математику не интересуют вообще.) Вся математика построена на преобразованиях, в которых меняется внешний вид, но суть выражения не меняется. Три плюс пять можно записать в каком угодно виде, но это должно быть восемь.

Преобразования, не меняющие сути выражения называются тождественными.

Именно тождественные преобразования и позволяют нам, шаг за шагом, превращать сложный пример в простое выражение, сохраняя суть примера. Если в цепочке преобразований мы ошибёмся, сделаем НЕ тождественное преобразование, дальше мы будем решать уже другой пример. С другими ответами, которые не имеют отношения к правильным.)

Вот оно и главное правило решения любых заданий: соблюдение тождественности преобразований.

Пример с числовыми выражением 3+5 я привёл для наглядности. В алгебраических выражениях тождественные преобразования даются формулами и правилами. Скажем, в алгебре есть формула:

a(b+c) = ab + ac

Значит, мы в любом примере можем вместо выражения a(b+c) смело написать выражение ab + ac . И наоборот. Это тождественное преобразование. Математика предоставляет нам выбор из этих двух выражений. А уж какое из них писать - от конкретного примера зависит.

Ещё пример. Одно из из самых главных и нужных преобразований - это основное свойство дроби. Подробнее можно по ссылке посмотреть, а здесь просто напомню правило: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, или неравное нулю выражение, дробь не изменится. Вот вам пример тождественных преобразований по этому свойству:

Как вы, наверняка, догадались, эту цепочку можно продолжать до бесконечности...) Очень важное свойство. Именно оно позволяет превращать всякие монстры-примеры в белые и пушистые.)

Формул, задающих тождественные преобразования, - много. Но самых главных - вполне разумное количество. Одно из базовых преобразований - разложение на множители. Оно используется во всей математике - от элементарной до высшей. С него и начнём. В следующем уроке.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Выражение - это самый широкий математический термин. По существу, в этой науке из них состоит все, и все операции проводятся тоже над ними. Другой вопрос, что в зависимости от конкретного вида применяются совершенно разнообразные методы и приемы. Так, работа с тригонометрией, дробями или логарифмами - это три различных действия. Выражение, не имеющее смысла, может относится к одному из двух видов: числовому или алгебраическому. А вот что означает это понятие, как выглядит его пример и прочие моменты будут рассмотрены далее.

Числовые выражения

Если выражение состоит из чисел, скобок, плюсов-минусов и остальных знаков арифметических действий, его смело можно называть числовым. Что довольно логично: стоит только еще разок взглянуть на первый названный его компонент.

Числовым выражением может быть что угодно: главное, чтобы в нем не было букв. А под "чем угодно" в данном случае понимается все: от простой, стоящей одиноко, самой по себе, цифры, до огромного их перечня и знаков арифметических действий, требующих последующего вычисления конечного результата. Дробь - это тоже числовое выражение, если в ней нет всяких a, b, c, d и т.д., ведь тогда это совершенно другой вид, о котором будет рассказано чуть позже.

Условия для выражения, которое не имеет смысла

Когда задание начинается со слова "вычислить", можно говорить о преобразовании. Штука в том, что это действие не всегда целесообразно: в нем не то чтобы сильно нуждаются, если на передний план выходит выражение, не имеющее смысла. Примеры бесконечно удивительны: иногда, чтобы понять, что оно-то нас и настигло, приходится долго и нудно раскрывать скобки и считать-считать-считать...

Главное, что нужно запомнить: не имеет смысла то выражения, чей конечный результат сводится к запретному в математике действию. Если уж совсем по-честному, то тогда бессмысленным становится само преобразование, но для того, чтобы это выяснить, приходится его для начала выполнить. Такой вот парадокс!

Самое знаменитое, но от того не менее важное запретное математическое действие - это деление на ноль.

Потому вот, например, выражение, не имеющее смысла:

(17+11):(5+4-10+1).

Если при помощи нехитрых вычислений свести вторую скобку к одной цифре, то она и будет нулем.

По такому же принципу "почетное звание" дается и этому выражению:

(5-18):(19-4-20+5).

Алгебраические выражения

Это то же самое числовое выражение, если в него добавить запретные буквы. Тогда оно и становится полноценным алгебраическим. Оно также может быть всех размеров и форм. Алгебраическое выражение - понятие более широкое, включающее в себя предыдущее. Но был смысл начинать разговор не с него, а с числового, чтобы было понятнее и разобраться было легче. Ведь имеет ли смысл выражение алгебраическое - вопрос не то чтобы очень сложный, но имеющий больше уточнений.

Почему так?

Буквенное выражение, или выражение с переменными - это синонимы. Первый термин объяснить просто: ведь оно, в конце концов, содержит в себе буквы! Второй тоже не загадка века: вместо букв можно подставлять разные числа, вследствие чего значение выражения будет меняться. Нетрудно догадаться, что буквы в данном случае и есть переменные. По аналогии, числа - это постоянные.

И тут мы возвращаемся к основной тематике: что такое выражение, не имеющее смысла?

Примеры алгебраических выражений, не имеющих смысла

Условие для бессмысленности алгебраического выражения - аналогичное, как и для числового, с одним лишь только исключением, а если быть точнее, дополнением. При преобразовании и вычислении конечного результата приходится учитывать переменные, поэтому вопрос ставится не как "какое выражение не имеет смысла?", а "при каком значении переменной это выражение не будет иметь смысла?" и "есть ли такое значение переменной, при котором выражение потеряет смысл?"

Например, (18-3):(a+11-9).

Вышеприведенное выражение не имеет смысла при a равном -2.

А вот насчет (a+3):(12-4-8) можно смело сказать, что это выражение, не имеющее смысла при любых a.

Точно так же, какое b ни подставишь в выражение (b - 11):(12+1), оно по-прежнему будет иметь смысл.

Типовые задачи по теме "Выражение, не имеющее смысла"

7 класс изучает эту тему по математике в числе прочих, и задания по ней встречаются нередко как непосредственно после соответствующего занятия, так и в качестве вопроса "с подвохом" на модулях и экзаменах.

Вот почему стоит рассмотреть типовые задачи и методы их решения.

Пример 1.

Имеет ли смысл выражение:

(23+11):(43-17+24-11-39)?

Необходимо произвести все вычисление в скобках и привести выражение к виду:

Конечный результат содержит деление на ноль, следовательно, выражение не имеет смысла.

Пример 2.

Какие выражения не имеют смысла?

1) (9+3)/(4+5+3-12);

2) 44/(12-19+7);

3) (6+45)/(12+55-73).

Следует вычислить конечное значение для каждого из выражений.

Ответ: 1; 2.

Пример 3.

Найти область допустимых значений для следующих выражений:

1) (11-4)/(b+17);

2) 12/ (14-b+11).

Область допустимых значений (ОДЗ) - это все те числа, при подставлении которых вместо переменных выражение будет иметь смысл.

То есть задание звучит как: найти значения, при которых не будет деления на ноль.

1) b є (-∞;-17) & (-17; + ∞), или b>-17 & b<-17, или b≠-17, что значит - выражение имеет смысл при всех b, кроме -17.

2) b є (-∞;25) & (25; + ∞), или b>25 & b<25, или b≠25, что значит - выражение имеет смысл при всех b кроме 25.

Пример 4.

При каких значениях нижеприведенное выражение не будет иметь смысла?

Вторая скобка равна нулю при игреке равном -3.

Ответ: y=-3

Пример 4.

Какие из выражений не имеют смысла только при x = -14?

1) 14:(х - 14);

2) (3+8х):(14+х);

3) (х/(14+х)):(7/8)).

2 и 3, так как в первом случае, если подставить вместо х = -14, то вторая скобка приравняется -28, а не нулю, как звучит в определении не имеющего смысла выражения.

Пример 5.

Придумайте и запишите выражение, не имеющее смысла.

18/(2-46+17-33+45+15).

Алгебраические выражения с двумя переменными

Несмотря на то что у всех выражений, которые не имеют смысла, одна суть, существуют разные уровни их сложности. Так, можно сказать, что числовые - это примеры простые, ведь они легче, чем алгебраические. Трудности для решения добавляет и количество переменных у последних. Но и они не должны сбивать с толку своим видом: главное - помнить общий принцип решения и применять его вне зависимости от того, похож ли пример на типовую задачу или имеет какие-то неизвестные дополнения.

Например, может возникнуть вопрос, как решить такое задание.

Найти и записать пару чисел, являющихся недопустимыми для выражения:

(x3 - x2y3 + 13x - 38y)/(12x2 - y).

Варианты ответов:

Но на самом деле оно только выглядит страшным и громоздким, потому что на деле содержит в себе то, что уже давно известно: возведение чисел в квадрат и куб, некоторые арифметические действия, такие как деление, умножение, вычитание и сложения. Для удобства, между прочим, можно привести задачу к дробному виду.

Числитель у получившейся дроби не радует: (x3 - x2y3 + 13x - 38y). Это факт. Зато есть другой повод для счастья: его-то для решения задания трогать даже не понадобится! Согласно определению, рассмотренному ранее, делить нельзя на ноль, а что именно на него будет делиться, совершенно неважно. Потому оставляем это выражение в неизменном виде и подставляем пары чисел из данных вариантов в знаменатель. Уже третий пункт идеально вписывается, превращая небольшую скобочку в ноль. Но останавливаться на этом - плохая рекомендация, ведь подойти может еще что-нибудь. И вправду: пятый пункт тоже неплохо вписывается и подходит условию.

Записываем ответ: 3 и 5.

В заключение

Как видно, эта тема очень интересная и не особо сложная. Разобраться в ней не составит труда. Но все-таки отработать пару примеров никогда не помешает!

Формула

Сложение, вычитание, умножение, деление - арифметические действия (или арифметические операции ). Этим арифметическим действиям соответствуют знаки арифметических действий:

+ (читаем "плюс ") - знак операции сложения,

- (читаем "минус ") - знак операции вычитания,

(читаем "умножить ") - знак операции умножения,

: (читаем "разделить ") - знак операции деления.

Запись, состоящая из чисел, связанных между собой знаками арифметических действий, называется числовым выражением. В числовом выражении могут присутствовать также скобки Например, запись 1290 : 2 - (3 + 20 ∙ 15) является числовым выражением.

Результат выполнения действий над числами в числовом выражении называется значением числового выражения . Выполнение этих действий называется вычислением значения числового выражения. Перед записью значения числового выражения ставят знак равенства «=». В таблице 1 приведены примеры числовых выражений и их значений.

Запись, состоящая из чисел и малых букв латинского алфавита, связанных между собой знаками арифметических действий называется буквенным выражением . В этой записи могут присутствовать скобки. Например, запись a + b - 3 ∙ c является буквенным выражением. Вместо букв в буквенное выражение можно подставлять различные числа. При этом значение букв может изменяться, поэтому буквы в буквенном выражении называют еще переменными .

Подставив в буквенное выражение числа вместо букв и вычислив значение получившегося числового выражения, находят значение буквенного выражения при данных значениях букв (при данных значениях переменных). В таблице 2 приведены примеры буквенных выражений.

Буквенное выражение может не иметь значения, если при подстановке значений букв получается числовое выражение, значение которого для натуральных чисел не может быть найдено. Такое числовое выражение называется некорректным для натуральных чисел. Говорят также, что значение такого выражения «не определено» для натуральных чисел, а само выражение «не имеет смысла» . Например, буквенное выражение a - b не имеет значения при a = 10 и b = 17. Действительно, для натуральных чисел, уменьшаемое не может быть меньше вычитаемого. Например, имея всего 10 яблок (a = 10), нельзя отдать из них 17 (b = 17)!

В таблице 2 (колонка 2) приведён пример буквенного выражения. По аналогии заполните таблицу полностью.

Для натуральных чисел выражение 10 -17 некорректно (не имеет смысла) , т.е. разность 10 -17 не может быть выражена натуральным числом. Другой пример: на ноль делить нельзя, поэтому для любого натурального числа b, частное b: 0 не определено.

Математические законы, свойства, некоторые правила и соотношения часто записывают в буквенном виде (т.е. в виде буквенного выражения). В этих случаях буквенное выражение называют формулой . Например, если стороны семиугольника равны a, b, c, d, e, f, g , то формула (буквенное выражение) для вычисления его периметра p имеет вид:


p = a + b + c + d + e + f + g

При a = 1, b = 2, c = 4, d = 5, e = 5, f = 7, g = 9, периметр семиугольника p = a + b + c + d + e + f + g = 1 + 2 + 4 + 5 +5 + 7 + 9 = 33.

При a = 12, b = 5, c = 20, d = 35, e = 4, f = 40, g = 18, периметр другого семиугольника p = a + b + c + d + e + f + g = 12 + 5 + 20 + 35 + 4 + 40 + 18 = 134.

Блок 1. Словарь

Составьте словарь новых терминов и определений из параграфа. Для этого в пустые клетки впишите слова из списка терминов, приведенного ниже. В таблице (в конце блока) укажите номера терминов в соответствии с номерами рамок. Рекомендуется перед заполнением клеток словаря еще раз внимательно просмотреть параграф.

  1. Операции: сложение, вычитание, умножение, деление.

2.Знаки «+» (плюс), «-» (минус), «∙» (умножить, «: » (разделить).

3.Запись, состоящая из чисел, которые связанны между собой знаками арифметических действий и в которой могут присутствовать также скобки.

4.Результат выполнения действий над числами в числовом выражении.

5. Знак, стоящий перед значением числового выражения.

6. Запись, состоящая из чисел и малых букв латинского алфавита, связанных между собой знаками арифметических действий (могут присутствовать также скобки).

7. Общее название букв в буквенном выражении.

8. Значение числового выражения, которое получается при подстановке переменных.в буквенное выражение.

9.Числовое выражение, значение которого для натуральных чисел не может быть найдено.

10. Числовое выражение, значение которого для натуральных чисел может быть найдено.

11. Математические законы, свойства, некоторые правила и соотношения, записанные в буквенном виде.

12. Алфавит, малые буквы которого используются для записи буквенных выражений.

Блок 2. Установите соответствие

Установите соответствие между заданием в левой колонке и решением в правой. Ответ запишите в виде: 1а, 2г, 3б…

Блок 3. Фасетный тест. Числовые и буквенные выражения

Фасетные тесты заменяют сборники задач по математике, но выгодно отличаются от них тем, что их можно решать на компьютере, проверять решения и сразу узнавать результат работы. В этом тесте содержится 70 задач. Но решать задачи можно по выбору, для этого есть оценочная таблица, где указаны простые задачи и посложнее. Ниже приведён тест.

  1. Дан треугольник со сторонами c, d, m, выраженными в см
  2. Дан четырехугольник со сторонами b, c, d, m , выраженными в м
  3. Скорость автомобиля в км/ч равна b, время движения в часах равно d
  4. Расстояние, которое преодолел турист за m часов, составляет с км
  5. Расстояние, которое преодолел турист, двигаясь со скоростью m км/ч, составляет b км
  6. Сумма двух чисел больше второго числа на 15
  7. Разность меньше уменьшаемого на 7
  8. Пассажирский лайнер имеет две палубы с одинаковым количеством пассажирских мест. В каждом из рядов палубы m мест, рядов на палубе на n больше, чем мест в ряду
  9. Пете m лет Маше n лет, а Кате на k лет меньше, чем Пете и Маше вместе
  10. m = 8, n = 10, k = 5
  11. m = 6, n = 8, k = 15
  12. t = 121, x = 1458

  1. Значение данного выражения
  2. Буквенное выражение для периметра имеет вид
  3. Периметр, выраженный в сантиметрах
  4. Формула пути s, пройденного автомобилем
  5. Формула скорости v, движения туриста
  6. Формула времени t, движения туриста
  7. Путь, пройденный автомобилем в километрах
  8. Скорость туриста в километрах в час
  9. Время движения туриста в часах
  10. Первое число равно…
  11. Вычитаемое равно….
  12. Выражение для наибольшего количества пассажиров, которое может перевезти лайнер за k рейсов
  13. Наибольшее количество пассажиров, которое может перевезти лайнер за k рейсов
  14. Буквенное выражение для возраста Кати
  15. Возраст Кати
  16. Координата точки В, если координата точки С равна t
  17. Координата точки D, если координата точки С равна t
  18. Координата точки А, если координата точки С равна t
  19. Длина отрезка BD на числовом луче
  20. Длина отрезка CА на числовом луче
  21. Длина отрезка DА на числовом луче

I. Выражения, в которых наряду с буквами могут быть использованы числа, знаки арифметических действий и скобки, называются алгебраическими выражениями.

Примеры алгебраических выражений:

2m -n; 3· (2a + b); 0,24x; 0,3a -b · (4a + 2b); a 2 – 2ab;

Так как букву в алгебраическом выражении можно заменить какими то различными числами, то букву называют переменной, а само алгебраическое выражение — выражением с переменной.

II. Если в алгебраическом выражении буквы (переменные) заменить их значениями и выполнить указанные действия, то полученное в результате число называется значением алгебраического выражения.

Примеры. Найти значение выражения:

1) a + 2b -c при a = -2; b = 10; c = -3,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6.

Решение .

1) a + 2b -c при a = -2; b = 10; c = -3,5. Вместо переменных подставим их значения. Получим:

— 2+ 2 · 10- (-3,5) = -2 + 20 +3,5 = 18 + 3,5 = 21,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6. Подставляем указанные значения. Помним, что модуль отрицательного числа равен противоположному ему числу, а модуль положительного числа равен самому этому числу. Получаем:

|-8| + |-5| -|6| = 8 + 5 -6 = 7.

III. Значения буквы (переменной), при которых алгебраическое выражение имеет смысл, называют допустимыми значениями буквы (переменной).

Примеры. При каких значениях переменной выражение не имеет смысла?

Решение. Мы знаем, что на нуль делить нельзя, поэтому, каждое из данных выражений не будет иметь смысла при том значении буквы (переменной), которая обращает знаменатель дроби в нуль!

В примере 1) это значение а = 0. Действительно, если вместо а подставить 0, то нужно будет число 6 делить на 0, а этого делать нельзя. Ответ: выражение 1) не имеет смысла при а = 0.

В примере 2) знаменатель х — 4 = 0 при х = 4, следовательно, это значение х = 4 и нельзя брать. Ответ: выражение 2) не имеет смысла при х = 4.

В примере 3) знаменатель х + 2 = 0 при х = -2. Ответ: выражение 3) не имеет смысла при х = -2.

В примере 4) знаменатель 5 -|x| = 0 при |x| = 5. А так как |5| = 5 и |-5| = 5, то нельзя брать х = 5 и х = -5. Ответ: выражение 4) не имеет смысла при х = -5 и при х = 5.
IV. Два выражения называются тождественно равными, если при любых допустимых значениях переменных соответственные значения этих выражений равны.

Пример: 5 (a – b) и 5a – 5b тожественно равны, так как равенство 5 (a – b) = 5a – 5b будет верным при любых значениях a и b. Равенство 5 (a – b) = 5a – 5b есть тождество.

Тождество – это равенство, справедливое при всех допустимых значениях входящих в него переменных. Примерами уже известных вам тождеств являются, например, свойства сложения и умножения, распределительное свойство.

Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Примеры.

a) преобразуйте выражение в тождественно равное, используя распределительное свойство умножения:

1) 10·(1,2х + 2,3у); 2) 1,5·(a -2b + 4c); 3) a·(6m -2n + k).

Решение . Вспомним распределительное свойство (закон) умножения:

(a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
(а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).

1) 10·(1,2х + 2,3у) = 10 · 1,2х + 10 · 2,3у = 12х + 23у.

2) 1,5·(a -2b + 4c) = 1,5а -3b + 6c.

3) a·(6m -2n + k) = 6am -2an +ak.

б) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) сложения:

4) х + 4,5 +2х + 6,5; 5) (3а + 2,1) + 7,8; 6) 5,4с -3 -2,5 -2,3с.

Решение. Применим законы (свойства) сложения:

a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
(a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).

4) х + 4,5 +2х + 6,5 = (х + 2х) + (4,5 + 6,5) = 3х + 11.

5) (3а + 2,1) + 7,8 = 3а + (2,1 + 7,8) = 3а + 9,9.

6) 6) 5,4с -3 -2,5 -2,3с = (5,4с -2,3с) + (-3 -2,5) = 3,1с -5,5.

в) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) умножения:

7) 4 · х · (-2,5); 8) -3,5 · · (-1); 9) 3а · (-3) · 2с.

Решение. Применим законы (свойства) умножения:

a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
(a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).

7) 4 · х · (-2,5) = -4 · 2,5 · х = -10х.

8) -3,5 · · (-1) = 7у.

9) 3а · (-3) · 2с = -18ас.

Если алгебраическое выражение дано в виде сократимой дроби, то пользуясь правилом сокращения дроби его можно упростить, т.е. заменить тождественно равным ему более простым выражением.

Примеры. Упростите, используя сокращение дробей.

Решение. Сократить дробь — это значит разделить ее числитель и знаменатель на одно и то же число (выражение), отличное от нуля. Дробь 10) сократим на 3b ; дробь 11) сократим на а и дробь 12) сократим на 7n . Получаем:

Алгебраические выражения применяют для составления формул.

Формула – это алгебраическое выражение, записанное в виде равенства и выражающее зависимость между двумя или несколькими переменными. Пример: известная вам формула пути s=v·t (s — пройденный путь, v — скорость, t — время). Вспомните, какие еще формулы вы знаете.

Страница 1 из 1 1

Числовое выражение – это любая запись из чисел, знаков арифметических действий и скобок. Числовое выражение может состоять и просто из одного числа. Напомним, что основными арифметическими действиями являются «сложение», «вычитание», «умножение» и «деление». Этим действиям соответствуют знаки «+», «-», «∙», «:».

Конечно же, чтобы у нас получилось числовое выражение, запись из чисел и арифметических знаков должна быть осмысленной. Так, например, такую запись 5: + ∙ нельзя назвать числовым выражением, так как это случайный набор символов, не имеющий смысла. Напротив, 5 + 8 ∙ 9 - уже настоящее числовое выражение.

Значение числового выражения.

Сразу скажем, что если мы выполним действия указанные в числовом выражении, то в результате мы получим число. Это число называется значением числового выражения .

Попробуем вычислить, что у нас получится в результате выполнения действий нашего примера. Согласно порядку выполнения арифметических действий , сначала выполним операцию умножения. Умножим 8 на 9. Получим 72. Теперь сложим 72 и 5. Получим 77.
Итак, 77 – значение числового выражения 5 + 8 ∙ 9.

Числовое равенство.

Можно это записать таким образом: 5 + 8 ∙ 9 = 77. Здесь мы впервые использовали знак «=» («Равно»). Такая запись, при которой два числовых выражения разделены знаком «=», называется числовым равенством . При этом, если значения левой и правой части равенства совпадают, то равенство называют верным . 5 + 8 ∙ 9 = 77 – верное равенство.
Если же мы напишем 5 + 8 ∙ 9 = 100, то это уже будет неверное равенство , так как значения левой и правой части данного равенства уже не совпадают.

Следует отметить, что в числовом выражении мы также можем использовать скобки. Скобки влияют на порядок выполнения действий. Так, например, видоизменим наш пример, добавив скобки: (5 + 8) ∙ 9. Теперь сначала нужно сложить 5 и 8. Получим 13. А затем умножить 13 на 9. Получим 117. Таким образом, (5 + 8) ∙ 9 = 117.
117 – значение числового выражения (5 + 8) ∙ 9.

Чтобы правильно прочитать выражение, нужно определить какое именно действие выполняется последним для вычисления значения данного числового выражения. Так, если последнее действие вычитание, то выражение называют «разностью». Соответственно, если последнее действие сумма - «суммой», деление – «частным», умножение – «произведением», возведение в степень – «степенью».

Например, числовое выражение (1+5)(10-3) читается так: «произведение суммы чисел 1 и 5 на разность чисел 10 и 3».

Примеры числовых выражений.

Приведем пример более сложного числового выражения:

\[\left(\frac{1}{4}+3,75 \right):\frac{1,25+3,47+4,75-1,47}{4\centerdot 0,5}\]


В данном числовом выражении используются простые числа, обыкновенные и десятичные дроби. Также используются знаки сложения, вычитания, умножения и деления. Черта дроби также заменяет знак деления. При кажущейся сложности, найти значение данного числового выражения довольно просто. Главное уметь выполнять операции с дробями, а также внимательно и аккуратно делать вычисления, соблюдая порядок выполнения действий.

В скобках у нас выражение $\frac{1}{4}+3,75$ . Преобразуем десятичную дробь 3,75 в обыкновенную.

$3,75=3\frac{75}{100}=3\frac{3}{4}$

Итак, $\frac{1}{4}+3,75=\frac{1}{4}+3\frac{3}{4}=4$

Далее, в числителе дроби \[\frac{1,25+3,47+4,75-1,47}{4\centerdot 0,5}\] у нас выражение 1,25+3,47+4,75-1,47. Для упрощения данного выражения применим переместительный закон сложения, который гласит: «От перемены мест слагаемых сумма не изменяется». То есть, 1,25+3,47+4,75-1,47=1,25+4,75+3,47-1,47=6+2=8.

В знаменателе дроби выражение $4\centerdot 0,5=4\centerdot \frac{1}{2}=4:2=2$

Получаем $\left(\frac{1}{4}+3,75 \right):\frac{1,25+3,47+4,75-1,47}{4\centerdot 0,5}=4:\frac{8}{2}=4:4=1$

Когда числовые выражения не имеют смысла?

Рассмотрим еще один пример. В знаменателе дроби $\frac{5+5}{3\centerdot 3-9}$ значением выражения $3\centerdot 3-9$ является 0. А, как мы знаем, деление на нуль невозможно. Следовательно, у дроби $\frac{5+5}{3\centerdot 3-9}$ нет значения. Про числовые выражения, у которых нет значения, говорят, что они «не имеют смысла».

Если мы в числовом выражении помимо чисел будем использовать буквы, то у нас получится уже