За экзоскелетами будущее. Экзоскелеты будущего будут плотно прилегающими костюмами Экзоскелеты будущего

Не так давно дети с редкой неврологической болезнью впервые получили возможность ходить, благодаря новому роботизированному экзоскелету. Эти устройства — которые по сути являются роботизированными костюмами, придающими искусственное движение конечностям пользователя, — становятся все более распространенным способом помощи людям, не имеющим возможности использовать ноги для ходьбы. Но в то время как современные экзоскелеты в основном неуклюжие, тяжелые устройства, новые технологии могут сделать их куда более простыми в использовании и более естественными. Вы уже, наверное, догадались, к чему все идет: к искусственной коже.

Экзоскелеты разрабатываются с 1960-х годов. Первый экзоскелет был громоздким набором ног и когтистых перчаток, лишь отдаленно напоминающий костюм «Железного человека». Он должен был использовать силу гидравлики в помощь промышленным работникам, чтобы те поднимали сотни килограммов веса. Тот проект был неудачным и не работал, но последующие варианты становились все лучше и лучше. Сегодня люди, наконец, могут использовать экзоскелеты для частичного усиления собственных возможностей, заново учиться ходить с их помощью или даже взаимодействовать с компьютерами, используя прикосновения или «тактильную» отдачу.

Обычно эти устройства состоят из цепи звеньев и силовых суставов, которые работают в паре с собственными костями и суставами человека. Искусственные конечности надежно крепятся к конечностям человека и продолжают его движения. Управление экзоскелетом может осуществляться с помощью компьютера — например, если он выполняет подпрограмму физиотерапии — или за счет мониторинга электрической активности в мышцах пользователя и поддержки силы, которую они создают.

Тяжелый и болезненный
Несмотря на полвека исследований, экзоскелеты до сих пор не используются повсеместно. Во многом это потому, что их было неудобно носить в течение длительных периодов времени, ведь тела людей отличаются от костюмов, которые делаются как одно прокрустово ложе. Некоторые экзоскелеты лучше подходят к телу человека, но если роботизированные суставы и реальные суставы пользователя не будут поворачиваться синхронно, может возникнуть дискомфорт или боль. Все это усугубляется еще и жесткостью каждой части костюма.

Еще одна проблема, особенно у экзоскелетов для верхней части тела, заключается в их весе, поскольку их делают из прочных материалов, способных удерживать тяжелые веса и поддерживать тело. Современные костюмы также не очень хорошо справляются с изменениями температуры или дождем, что усложняет их использование в реальном мире. А с их внешним видом люди до сих пор не могут свыкнуться.

Чтобы сделать экзоскелеты более практичными и приятными на вид, нам понадобятся инновации: нам придется сделать их «второй кожей», а не гигантским роботизированным костюмом. Обычно экзоскелеты используют тяжелые электромоторы, но в качестве пневматических мускулов можно использовать и легковесные приводы. Они могут прикладывать подобные усилия, что и электромоторы, только весить будут в разы меньше. Такие мускулы состоят из резиновой камеры, окруженной тканым рукавом. Под давлением они увеличиваются в диаметре и сокращаются в длине, толкая сустав. И хоть сделаны они из легких материалов, они могут прикладывать силу, которой хватит для подъема многих сотен килограммов.

Мягкая робототехника
И все же даже эти легкие приводы должны крепиться к жесткой механической конструкции на теле пользователя. Ученые из Центра автономных систем и робототехники Университета Солфорда разрабатывают другую альтернативу: мягкую робототехнику. Эта технология использует физически мягкие продвинутые материалы для тех же задач, которые выполняют традиционные жесткие роботизированные устройства. Они особенно хорошо подходят для взаимодействия с людьми, поскольку мягкое зачастую означает легкое и при столкновении с человеком будет меньше шансов пораниться.

Недавно они разработали новый «мягкий континуумный привод», который изгибается подобно хоботу слона. В отличие от традиционного жесткого роботизированного сустава, встречая сопротивление в одной части тела, он будет изгибаться во всех направлениях по всей своей длине. Надев костюм из плотно прилегающего к телу материала с такими приводами, мы могли бы получить мягкий экзоскелет, который сгибается точно в местах нахождения суставов носителя. Следовательно, костюм вполне подойдет разным пользователям без необходимости механически подгонять или калибровать его. Плюс к этому система легкая, и ее можно носить как одежду вместо громоздкой механической рамы.

Экзоскелеты начинают продаваться на коммерческой основе, и мы, вероятно, увидим много новенького в грядущие годы. В 2012 году парализованная женщина Клэр Ломас даже завершила Лондонский марафон в экзоскелете. Но остается много инженерных проблем, которые придется решить, прежде чем мы увидим широкое применение таких систем. Как минимум нам нужен способ подпитывать эти костюмы без необходимости подключать к сети через каждые полчаса.

Человек, от природы обделенный защитными приспособлениями, на протяжении многих веков старался восполнить этот пробел эволюции. Со времен самых первых военных конфликтов он защищал себя от вражеского оружия дублеными шкурами, бронзовыми панцирями, а затем кольчугой и латами. Но реалии современной войны диктуют свои условия. Помимо легкости и прочности новые виды защиты должны обладать рядом свойств, которые до этого считались лишь плодом воображения писателей-фантастов.

    Впервые идея экзоскелета, что в переводе с греческого означает «внешний скелет», возникла во второй половине XIX века. Эдвард Сильвестер Эллис в своем романе 1868 года «Паровой человек в прериях» описал изобретение, по форме напоминающее человеческое тело и работающее на паровой тяге. Гениальный создатель этой чудо-машины Джонни Брейнерд, разместившись внутри такого костюма, мог с легкостью разгоняться до скорости в 100 км/ч. Чем он, собственно, и пользовался, охотясь на буйволов и распугивая дикарей.

  1. Благодаря комиксу «Железный человек» в 1961 году, когда персонаж Стэна Ли набирал популярность, Пентагон понял, чего им не хватает для успешного ведения боевых действий. Все просто. Им нужен костюм, превращающий человека в танк. Боец, облачившись в чудо-костюм, должен становиться быстрым, маневренным, выдерживать высокий уровень радиации, защищать от химического и биологического оружия. Но самое главное позволять переносить сверхтяжелые грузы.
  1. «Hardiman» экзоскелет, созданный в 60-х, благодаря совместным усилиям инженеров из General Electric и United States military. Оператор такого костюма мог при усилии в 4,5 кг поднять вес в 110 кг. Однако сам «Hardiman» весил 680 кг, а при стыковке всех частей в полный экзоскелет костюм начинал производить интенсивные и абсолютно неконтролируемые движения, которые, испытывайся он на живом человеке, могли бы разорвать оператора на части.

    В начале 2000-х годов, после того как Пентагон выделил 75 миллионов долларов на разработку чуда-костюма, экзоскелет перестал быть фантастикой. Американская компания Sarcos разработала костюм «XOS», который удовлетворяет большей части требований Пентагона. Он улавливает сокращения мускулов оператора и переводит их в электрические сигналы, которые, в свою очередь, осуществляют движение устройства. По приблизительным подсчетам экзокостюм увеличивает силу человека в 20 раз. Но у него нет аккумуляторов, поэтому работает он исключительно от сети. Дальнейшее развитие XOS (которых уже, кстати, существует два вида) проводит компания Raytheon, поглотившая Sarcos.

    Японцы, чья поп-культура просто пронизана всевозможными гаджетами и робототехникой, в конце прошлого десятилетия активно приступили к разработкам своего экзоскелета. И первый костюм, представленный ими, получил название «HAL». Он был разработан фирмой Cyberdyne и, в отличие от американского «XOS», считывает сигналы с кожи человека при помощи сенсоров, отправляет их в компьютер, который уже определяет, какие сервоприводы активировать. «HAL» легче американского аналога и питается от подвешенного на поясе аккумулятора на 100 вольт, но физическую силу он увеличивает всего в пять раз.

    Основной проблемой солдата, за исключением, конечно, огня противника, является повышенная нагрузка на спину. Озаботившись этим, Lockheed Martin (основной подрядчик Пентагона) совместно с Parker Hannifin разрабатывают экзоскелет HULC (Human Universal Load Carrier), который призван увеличить мобильность солдата на поле боя. Отличительными особенностями этой разработки станет возможность носить ее под одеждой. Солдат, облаченный в «HULC», сможет переносить груз в 100 кг без особых трудностей на расстояние до 20 км. На данный момент разработка Human Universal Load Carrier находится на второй стадии развития.

    Lockheed планирует выпускать экзоскелет Mantis (Богомол). Он будет предназначен для применения в отраслях, где работникам нужно держать тяжелое оборудование продолжительное время. Он будет иметь специальную механическую руку, поглощающую всю тяжесть инструментов. Испытания уже показали 30% увеличения производительности. Американский военпром уже заинтересовался данным изделием.

    В феврале 2014 года президент США Барак Обама в одном из своих выступлений намекнул на то, что удалось создать настоящий костюм Железного человека (Iron man). Это заявление оказалось шуткой, однако лишь наполовину. Еще в мае прошлого года было заявлено о начале разработок сверхлегкого тактического атакующего экзокостюма TALOS (Tactical Assault Light Operator Suit). Он предназначен для повышения эффективности и защиты солдат, участвующих в спецоперациях. Облаченный в него солдат сможет видеть ночью и будет обладать большой физической силой. Также, благодаря ученым из Массачусетсткого технологического университета, новый экзокостюм будет оснащен «жидкой броней». Такая броня затвердевает за долю секунды из-за созданного вокруг нее силового поля. Теоретически это означает, что в TALOS можно передвигаться непосредственно под градом вражеских пуль.

    Бортовые компьютеры будущих экзокостюмов будут не только оказывать помощь в принятии решений на поле боя, но и контролировать физическое состоянии оператора. Благодаря встроенным датчикам жизнеобеспечения командование всегда будет знать, кому из бойцов нужна срочная помощь.

    Также, помимо шагающих экзоскелетов, разрабатываются и летающие версии. Компания Trek Aerospace разработала устройство Springtail. С помощью него солдат сможет подниматься в воздух и развивать скорость до 100 км/ч, а также зависать в воздухе на высоте нескольких тысяч метров.

  1. Если вы считаете, что подобные разработки ведутся только за рубежом, то вы глубоко заблуждаетесь. 20 августа 2013 года на «Дне инноваций Министерства обороны РФ» был представлен первый действующий образец экзоскелета для штурмовых отрядов. Данная модификация получила название ExoAtlet P-1 и создана для снятия нагрузки при переносе штурмового щита. Экзоатлет оснащен устройствами для фиксации и быстрого снятия 35-килограммового щита. При использовании этого экзокостюма у бойца освобождаются руки для ведения боя.

    На данный момент в России ведутся разработки экзоскелета для медицинских целей. В «ЭкзоАтлет Мед» сейчас открыт набор пилотов для ускорения реализации программы. Им может стать любой желающий с нарушениями опорно-двигательного аппарата и локомоторных функций. Просто нужно заполнить соответствующую анкету на официальном сайте.

    По-настоящему боевой экзоскелет еще так и не создан, а ученые уже придумали, чем его можно дополнить. Geckskin – это особая ткань, которая разработана по принципу лапок геккона и позволяет осуществлять сверхпрочное сцепление с любой поверхностью. Кусочек такой ткани размером с тетрадный лист может удержать более 300 кг. Следовательно солдат, облаченный в экзокостюм, сможет не только быть сильным, высоко прыгать и быстро бегать, но еще и карабкаться по отвесным стенам.

    Если вы, дочитав до этого момента, задались вопросом: «Почему до сих пор нет ни одного полностью рабочего и удовлетворяющего всем требований экзоскелета?» то задумайтесь, сколько стоит собрать хотя бы один такой прототип? Такая же схема, как с сотовыми телефонами, эволюционировавшими за 20 лет до смартфонов, здесь не пройдет. Слишком много технологий, механизмов, а также особых физических материй, которые не упростить за пару десятилетий.

  1. Самой главной проблемой всех экзоскелетов является аккумулятор. Сейчас не существует более надежного и экономного способа хранения энергии, чем литиево-ионные батареи. Но у них тоже есть свой максимальный рубеж емкости, после которого они превращаются в бомбу. Поэтому до тех пор, пока не будет найден альтернативный и безопасный источник хранения большого количества энергии, экзокостюмы будут сильно ограничены в возможностях.

По ходу своего развития человечество всегда воплощало в реальность то, что до этого считалось лишь плодом фантазии, особенно если это касается средств ведения войны. Поэтому нет никаких сомнений, что в обозримом будущем боевые действия будут вестись небольшими группами суперсолдат в экзокостюмах. Тем более что, с точки зрения многих фантастов, это безопаснее, чем создавать сверхумных роботов, которые в итоге могут стать причиной уничтожения всего живого на Земле.

Проект PISCES (Performance Improving Self Contained Exoskeleton for Swimming) посвящен созданию костюма, который поможет человеку плавать так же легко и непринужденно, как это делают пингвины, морские черепахи, дельфины и прочие животные, свободно чувствующие себя в этой стихии.
Военный исследователи давно проектируют механические костюмы(экзоскелеты), которые обеспечивают сверхсилу и сверхчеловеческую выносливость:

XOS от Sarcos(Raytheon)

HULC от Lockheed Martin

Следующий шаг: подводные экзоскелет, который превращает владельца в гигантскую рыбу или пингвина киборга.
Причем подводный вариант может предложить больше выгод в краткосрочной перспективе.

Если верить военным инженерам, то данный экзоскелет действительно окажется чем-то из ряда вон выходящим. В настоящее время существуют две версии этого аппарата: для «нижней» и для «верхней» частей тела. Первая версия питается от серебряно-цинковой аккумуляторной батареи массой 2,4 кг и позволяет достичь скорости 1 м/с, в то время как источником энергии для «верхнего» экзоскелета является собственно мышечная сила человека.

Потенциальные преимущества принципа биологических движителей (пингвины,рыбы,черепахи) в водной среде очевидны.

Значительно повышается скрытность (в отличие от винтовых устройств, демаскирующие факотры ничем не отличаются от фоновых шумов),
Этот проект, несомненно, кардинально изменит порядок проведения подводных военных операций, будь они связаны с наблюдением за объектами или прямыми диверсиями. В данный момент проект находится на стадии разработки, поэтому говорить о стоимости одного такого костюма, как и о том, когда они появятся на вооружении, пока рано.

Peter Neuhaus говорит, что их подводный экзоскелет еще находится в стадии разработки, в последнее время он был сосредоточен на нижней части тела экзоскелет, который позволит инвалидам ходить.

Cyberdyne Inc. эта японская фирма,которая стремится использовать достижения профессора Санкай и его лаборатории в университете Цукуба. "HAL" : Hybrid Control System. "HAL" имеет две системы управления, которые работают в тесном взаимодействии.

Когда человек пытается пройти, мозг посылает электрические импульсы в мышцы. когда они достигают мышц, слабые био-электрические сигналы появляются на поверхности кожи.

Слабые био-электрические сигналы, наблюдаемые на поверхности кожи,считываются системой управления, передаются в анлизатор и на основании этих сигналов блоки питания(привод) генерируют крутящий момент и приводят конечности в действие.

Движения человека могут рассматриваться как совокупность нескольких элементарных движений, как например предложение,которое
которое состоит из нескольких слов. Для данного движения (например встать со стула).

"HAL" собирает небольшие движения из базы данных, затем объединяет их, чтобы сформировать передвижение.
Использование базы данных (которая также автоматически дополняется информацией, которую датчики собирают из организма) "HAL" автономно координирует каждое движение с помощь плавного энергопривода.

HAL-5 Type-B
Спецификация Тип: Носимый робот
Высота 1600 мм Вес Полный около 23 кг (нижней части ок. 15 кг)
Аккумулятор (AC100V) Время непрерывной работы Примерно 2 часа 40 минут
Применение: Ежедневная деятельность (стоя со стула, ходьба, подъем по лестнице),
удержания и поднимать тяжелые предметы и многое другое... способен увеличить вашу силу до 10 раз от нормы.
Гибридная система управления Условия эксплуатации в помещении и на открытом воздухе

Экзоскелеты уже готовы:

Компания предназначает устройство для реабилитации и физических тренировок в медицинских целях, для содейсвия инвалидам, облегчения тяжёлого труда на заводах, для проведения спасательных работ в районах бедствия, а так же в развлекательных целях (прокат $2,200/сутки+ залог).
В 2012 г. на рынках Японии появится роботизированный костюм в помощь престарелым фермерам (собирать урожай из фруктов и овощей, избавляя от болей в спине и спазмов).

PAS находился в разработке почти 15 лет, и в конце концов он увидит реальный мир в 2012 году, после запуска в производство в этом году. Его цена составит $11 000.Разработан профессором Шигеки Тойама и его командой из Токийского университета сельского хозяйства.

Упоминание о подводном экзоскелете в романе Дэвид Брин Sundiver 1979 ,персонаж кит Waldoes
Впервые концепция брони с экзоскелетом была изложена в романе «Tom Swift and His Jetmarine», опубликованном в 1954 году.
Наиболее известным произведением, описывающим военное применение экзоскелета, является роман Роберта Хайнлайна «Звёздный десант» (1959 год).
Экзоскелет можно увидеть в таких компьютерных играх как StarCraft, Fallout, STALKER, Crysis; в фильмах Звёздный десант, Бросок Кобры, Железный человек, Район №9

Разорвать воздух на скорости звука и устремиться к горизонту, вытянув руки по швам в своём железном костюме. В мгновение ока оказаться в любой точке земного шара без необходимости стоять в пробке. Летать без крыльев, не будучи на борту самолёта или чего покрепче. Пусть бросит в меня камень тот, кто не хотел оказаться на месте Тони Старка в его звёздные моменты (конечно, в костюме «Железного человека»). Частично эти мечты сумеет реализовать экзоскелет - устройство, который может увеличить способности человека (по большей части физические, мускульную силу) за счет внешнего каркаса. О том, что собой представляет это устройство, какие наработки уже имеются и как технологии будут развиваться в будущем, мы расскажем в этом материале.

От эластипеда до «железного человека»

Наука и технологии - это без преувеличений самая лютая гонка изобретательности человека и природы. Всю свою историю человек пытается переделать мир вокруг себя под свои нужды. Где-то это ему удаётся, часто не без вреда для природы. Где-то приходится подглядывать у неё. И если у большинства беспозвоночных в том или ином виде есть внешний скелет, у человека его нет. Но ведь и крыльев не было? В наше время под экзоскелетом подразумевается механический костюм или его часть до 2–2,5 метра высотой. Дальше идут «мобильные костюмы», меха и другие гигантские человекоподобные роботы. Как и многое другое в нашей жизни, экзоскелеты постепенно перешагивают границу, разделяющую смелые мечты и повседневную жизнь. Будучи изначально просто идеями, концептами, мифами и легендами научной фантастики, сегодня чуть ли не каждую неделю появляются новые варианты экзоскелетов. Первым изобретателем экзоскелета считается русский «инженеръ-механикъ» Николай Фердинандович Ягн, который ещё в 1890-х годах зарегистрировал ряд патентов на эту тему. Он жил в Америке, где, собственно, и патентовал свои чудеса, показывал их на выставках, а по возвращении на родную землю снова изобретал. Его экзоскелет должен был облегчить ходьбу, бег и прыжки в первую очередь, солдат. Уже тогда русский гений предвидел потенциальную военную мощь подобных устройств.

НИКОЛАЙ Фердинандович ЯГН Кроме экзоскелета Ягн разработал охлаждающие занавески, гидромотор, качающийся винт, самовар-стерилизатор и другие устройства

Hardiman

Не будем отрицать, гигантский и необъятный вклад в развитие экзоскелетов внесли фантасты. В 1959 году после нашумевшего романа Роберта Хайнлайна «Звёздный десант» всем стало понятно, что за внешними каркасными костюмами - будущее военных действий и не только. И понеслось. Первый экзоскелет был создан компанией General Electric при поддержке Министерства обороны США в 1960-х годах. Hardiman весил 680 килограммов и мог поднимать грузы весом до 110 килограммов. При всех гигантских амбициях - а его хотели использовать и под водой, и в космосе, и боеголовки таскать, и ядерные стержни - показал он себя не лучшим образом. О нём благополучно забыли.

отдалённо напоминающее экзорскелеты устройство «педомотор» изобретателя Лесли С. Келли, разработанное в 1917 году

Девять лет спустя Миомир Вукобратович из югославского Белграда показал первый силовой шагающий экзоскелет, задача которого была давать людям с параличом нижних конечностей возможность шагать. В основе устройства лежал пневмопривод. Советские учёные из Центрального института травматологии и ортопедии имени Н. Н. Приорова проявили первые инициативы по разработке экзоскелетов совместно с югославскими коллегами на основе работ именно Вукобратовича. Но с началом перестройки проекты были закрыты, а о секретных подпольных разработках экзоскелетов данных нет. Зато с освоением космоса всё было хорошо. В разное время в разных странах умельцы пытались сделать экзоскелеты самого разного назначения, но в силу самых разных препятствий (о которых мы ещё поговорим) удавалось это в край плохо. Нехватка энергоносителей, медленный рост научно-технического прогресса, развития материаловедения и прочих смежных наук, а также развитие компьютерных вычислений и кибернетики, волна которых поднялась только лет 30 назад, - всё это тормозило развитие экзоскелетов. Без всяких сомнений, это сложнейшие технологии, которые людям ещё предстоит освоить.

Проблемы экзоскелетов

На этой планете не так много материалов, из которых можно сделать жесткий каркас и который не усугубит дело своим весом. Во всяком случае, их было не много, но с учетом космических полетов, военных наработок, развития материаловедения, нанотехнологий и еще десятка-другого интересных сфер, человечество постепенно берет один барьер за другим. В начале 21 века интерес к экзоскелетам разгорелся с недюжинной силой и продолжает гореть до сих пор. Но сначала поговорим об основных проблемах, с которыми сталкиваются создатели экзоскелетов. Если разложить гипотетический экзоскелет на составляющие, у нас будут: источник питания, механический скелет и программное обеспечение. И если с двумя последними пунктами вроде бы все ясно и проблем почти не осталось, то источник питания - это серьезная проблема. Имея нормальный источник питания, инженеры могли бы не просто создать экзоскелет, а еще и объединить его со скафандром и реактивным ранцем. Получился бы костюм «Железного человека», наверное, но новый Тони Старк пока не явился.

Питание Любой из компактных источников питания на сегодняшний день может обеспечить экзоскелету лишь несколько часов автономной работы. Дальше - зависимость от провода. У неперезаряжаемых и аккумуляторных батарей есть свои ограничения вроде необходимости замены или медленной зарядки, соответственно. Двигатели внутреннего сгорания должен быть слишком надежным, но не особо компактным. К тому же, в последнем случае понадобится дополнительная система охлаждения, а сам двигатель внутреннего сгорания сложно настроить на моментальный выброс большого количества энергии. Электрохимические топливные элементы могут быстро заправляться жидким топливом (например, метанолом) и давать нужный и моментальный выброс энергии, но работают при крайне высоких температурах. 600 градусов по Цельсию - относительно низкая температура для такого источника питания. С ним «железный человек» превратится в хот-дог. Как ни странно, наиболее возможным вариантом решения топливного вопроса для экзоскелетов будущего может стать самый невозможный: беспроводная передача энергии. Она могла бы решить массу вопросов, ведь ее можно передавать из сколь угодно большого реактора (и ядерного, в том числе). Но как? Вопрос открыт.

Каркас Первые экзоскелеты делались из алюминия и стали, недорогих и простых в использовании. Но сталь слишком тяжелая, а экзоскелет обязательно должен работать и над тем, чтобы поднять свой собственный вес. Соответственно, при большом весе костюма его эффективность упадет. Алюминиевые сплавы - достаточно легкие, но накапливают усталость, а значит не особо подходят для высоких нагрузок. Инженеры находятся в поисках легких и прочных материалов, вроде титана или углеродного волокна. Они неизбежно будут дорогими, но обеспечат эффективность экзоскелета. Особую проблему представляют приводы. Стандартные гидравлические цилиндры достаточно мощные и могут работать с высокой точностью, но тяжелые и требуют наличия кучи шлангов и трубок. Пневматика, напротив, слишком непредсказуема в плане обработки движений, поскольку сжатый газ пружинит, а реактивные силы будут толкать приводы. Впрочем, разрабатываются новые сервоприводы на электронной основе, которые будут использовать магниты и обеспечивать отзывчивые движения, потребляя минимум энергии и будучи небольшими. Можете сравнить это с переходом от паровозов к поездам. Отметим еще гибкость, которая должна быть у суставов, но здесь проблемы экзоскелетов могут решить разработчики скафандров. Они же помогут разобраться с адаптацией костюма к размерам носителя.

Управление Особую проблему при создании экзоскелета представляет управление и регулировка чрезмерных и нежелательных движений. Нельзя просто так взять и сделать экзоскелет с одной скоростью реакции каждого из членов. Такой механизм может быть слишком быстрым для пользователя, а слишком медленным его не сделаешь - неэффективно. С другой стороны, нельзя положиться на пользователя и доверить датчикам считывать намерения по движениям тела: рассинхронизация движений пользователя и костюма приведет к увечьям. Нужно ограничивать обе действующих стороны. Над решением этого вопроса и ломают головы инженеры. Кроме того, нужно заранее обнаружить непреднамеренное или нежелательное движение, чтобы случайный чих или кашель не привел к вызову скорой.

Экзоскелеты и будущее

В 2010 году компании Sarcos и Raytheon совместно с Министерством обороны США показала боевой экзоскелет XOS 2. Первый прототип вышел за два года до этого, но не вызвал переполоха. А вот XOS 2 оказался настолько крутым, что журнал Time включил экзоскелеты в список пяти лучших военных инноваций года. С тех пор ведущие инженеры мира, ломают головы над созданием экзоскелетов, которые смогут обеспечить преимущество на поле боя. И за пределами него тоже.

Что мы имеем на сегодняшний день?

ReWalk Этот экзоскелет был представлен в 2011 году и был предназначен для людей с ограниченными возможностями. В январе 2013 года вышла обновленная версия - ReWalk Rehabilitation, а уже в июне 2014 года FDA одобрило использование экзоскелета на публике и дома, тем самым открыв ему дорогу в коммерческом плане. Система весит около 23,3 кг, работает на базе Windows и работает в трех режимах: идти, сидеть и стоять. Стоимость: от 70 до 85 тысяч долларов.

XOS Серия этих военных экзоскелетов находится в активной разработке (на очереди XOS 3). Весит около 80 кг и позволяет владельцу с легкостью поднимать 90 лишних кг. Последние модели костюма настолько подвижны, что позволяют играть с мячом. Как отмечают производители, один XOS может заменить трех солдат. Возможно, третье поколение экзоскелета будет уже ближе к тому, что мы видим на экранах фантастических фильмов последних лет. Увы, пока он привязан к внешнему источнику питания.

HULC. Human Universal Load Carrier - творение известной компании Lockheed Martin совместно с Berkeley Bionics. Этот экзоскелет также предназначен для военных. Основа - гидравлика и литий-полимерные батареи. Правильно загрузив внешний каркас, с его помощью можно переносить до 140 кг лишнего груза. Предполагается, что солдаты смогут использовать HULC а-ля «я и друг мой грузовик» в течение 72 часов. Разработка идет полным ходом, поэтому неудивительно, что именно HULC могут первыми поступить на вооружение США.

ExoHiker, ExoClimber и eLEGS (Ekso). Прототипы, опять же, Berkeley Bionics, предназначенные для выполнения различных задач. Первый должен помочь путешественникам переносить груз до 50 кг, был представлен в феврале 2005 года и весит около 10 кг. Учитывая небольшую солнечную панель, может работать очень и очень долго. ExoClimber - это десятикилограммовое дополнение к ExoHiker, позволяющее носителю прыгать и взбираться по ступенькам. В 2010 году наработки Berkeley Bionics вылились в eLEGS. Эта система - полноценный гидравлический экзоскелет, который позволяет парализованным людям ходить и стоять. В 2011 году eLEGS был переименован в Ekso. Он весит 20 кг, передвигается с максимальной скоростью в 3,2 км/ч и работает в течение 6 часов.

HAL. Очередной нашумевший экзоскелет от японского производителя роботов Cyberdyne. Его назначение - обеспечить возможность ходить людям с ограниченными возможностями. Есть два основных варианта: HAL-3 и HAL-5. С момента презентации в 2011 году, меньше чем за год HAL приняли «на вооружение» более 130 медицинских институтов по всей стране. Однако испытания будут продолжаться весь 2014 и, возможно, 2015 год. В августе 2013 года HAL получил карт-бланш на использование в качестве медицинского робота в Европе. Новейшая модель костюма весит около 10 кг.

Cредняя стоимость медицинского экзоскелета - 90 тысяч долларов.

Помимо серьезных экзоскелетов на все тело, все большей популярностью пользуются ограниченные экзоскелеты, предназначенные для выполнения специфических задач. Например, в августе этого года был показан экзостул Chairless Chair, позволяющий сидеть стоя. Компании Daewoo и Lockheed Martin независимо друг от друга показали экзоскелеты для работников судостроительных верфей. Эти устройства позволяют рабочим удерживать груз или инструмент весом до 30 кг, особо не напрягаясь. В России разработкой экзоскелета под названием «ЭкзоАтлет» занимается команда ученых, собранная на базе НИИ Механики МГУ. Они продолжают начатые еще в СССР разработки Вукобратовича, о которых мы упоминали выше. Первый рабочий пассивный экзоскелет этой команды был разработан для сотрудников МЧС, пожарных и спасателей.

При весе в 12 кг конструкция позволяет без особых усилий переносить до 100 кг груза. В планах компании - разработка силовой модели ExoAtler-A, которая позволит переносить до 200 кг, а также медицинского экзоскелета для реабилитации людей с ограниченными возможностями. Объединяет все эти костюмы то, что представлены они по большей части в качестве прототипов. Значит, будут совершенствоваться. Значит, их ждут полевые испытания. Значит, будут новые модели. Значит, за ними будущее. Пока говорить о том, что рабочий и полезный экзоскелет можно пойти и купить на черном рынке, рановато. Но начало положено, а развитие этого направления уверенно входит в широкое русло. До костюма Тони Старка нам еще далековато, но что мешает радоваться зрелищным фильмам?

Любителям зрелищных разборок с участием экзоскелетов всегда будет что посмотреть: «Чужие» (1986), «Железный человек» (2008), «Аватар» (2009), «Район №9» (2009), «Мстители» (2012), «Элизиум» (2013), «Грань будущего» (2014). Одно известно наверняка: экзоскелеты в будущем будут повсюду. Они помогут нашим космонавтам освоить Марс, построить первые колонии и с удобством управляться в космосе. Они станут на вооружение в военном сегменте, поскольку по умолчанию наделяют солдат сверхчеловеческой силой. Они дадут возможность полноценно передвигаться тем, кто ее потерял. Костюм «Железного человека» однажды станет реальным, как и все, что вы видите вокруг.

Боевые зкзоскелеты позволяют выдерживать колоссальные физические нагрузки, защищать бойца от осколков, а также использовать тяжелое вооружение. Фантастика? Отнюдь. Такая амуниция появится уже в ближайшие годы. Предлагаем вам познакомиться с последними разработками в этой области.

Помните экипировку и амуницию космических рейнджеров в фантастическом экшене 90-х годов прошлого века «Звездный десант»? Бесстрашные пехотинцы в футуристических экзоскилетах, вооруженные крупнокалиберными пулеметами крушили все на своем пути, не давая пощады мерзким жучкам и паучкам. Фантастика? Отнюдь, такие костюмы уже существуют и вот-вот появятся у спецназа США, России и Японии.

Экзоскелет - как все начиналось

Еще в середине прошлого столетия инженерам-конструкторам General Electric, работающим на потребности оборонки и реабилитационной медицины, пришла в голову смелая идея – разработать внешний каркас, который позволил бы оператору свободно переносить грузы весом в 500-700 кг. Причем, рабочие механизмы и система рычагов должна была приводиться в движение от электрического двигателя, запитываемого от переносных аккумуляторов.

Предполагалось, что бойцы, одетые в такие экзоскелеты, смогут выполнять боевые задачи с применением тяжелого вооружения, разворачивать мобильные базы и оперативно переносить большие грузы практически без помощи вспомогательной техники.

Боевой экзоскелет HULC от Lockheed Martin

После серии неудач в 2012 году американцы представили на строгий суд общественности антропоморфный гидравлический экзоскелет HULC . Модель фактически готова к применению в боевых условиях, во всяком случае, в том же 2012 году несколько комплектов HULC якобы отправили в горячие точки для активных испытаний.

Последние модели HULC оснащены механической рукой, способной справляться на отлично с тяжелым 12,7-мм пулеметом. Из защиты отметим бронещит, крепящийся к титановому каркасу конструкции. Механика и батарея позволяет легко переносить 70-кг грузы в течение 7-8 часов без подзарядки. И все это при максимальной скорости передвижения в 18 км/ч!

Медицинский экзоскелет Cyberdyne HAL от Cyberdyne Systems

Один из лучших на сегодняшний день концептов экзоскелета от неутомимых японцев. Общий вес модуля составляет всего 23 кг, в рабочем режиме конструкция может работать 2 часа 40 минут без подзарядки от лития-ионного аккумулятора. Cyberdyne HAL предназначен для повышения мускульных усилий оператора и может успешно использоваться для помощи престарелым, реабилитации раненных или же для переноски тяжестей во время разгрузо-погрузочных операциях. О военных испытаниях модели пока не сообщалось, но такой сценарий использования Cyberdyne HAL в близлежащей перспективе не исключается.


Экзоскелет уже есть в открытой продаже, его рыночная стоимость – 4200 тысяч долларов США.

Экзоскелет «Боец-21» от оборонки РФ

«Боец-21» - отечественный ответ на наиболее успешные западные разработки HULC и Cyberdyne HAL. Концепт этого боевого экзоскелета обещают представить уже в 2015 году. Согласно заявлениям разработчиков, «Боец-21» поможет снять основную мышечную нагрузку с пехотинца, защитит его от осколков и нарезного оружия.