Урок "амфотерные гидроксиды". Амфотерные гидроксиды - вещества двойственной природы

Существует три основных класса неорганических химических соединений: оксиды, гидроксиды и соли. Первые делятся на две группы: несолеобразующие (к ним относятся угарный газ, закись азота, монооксид азота и т. д.) и солеобразующие, которые, в свою очередь, бывают основными, кислотными и амфотерными. Гидроксиды делятся на кислоты, основания и амфотерные. Соли существуют основные, кислые, средние и двойные. Ниже будут более подробно описаны амфотерные оксиды и гидроксиды.

Что такое амфотерность?

Это способность неорганического химического вещества проявлять как кислотные, так и основные свойства, в зависимости от условий реакции. К веществам, которые обладают такого рода особенностью, могут относиться оксиды и гидроксиды. Среди первых можно назвать оксид и диоксид олова, бериллия, марганца, цинка, железа (ІІ), (ІІІ). Амфотерные гидроксиды представлены такими веществами: гидроксид бериллия, алюминия, железа (ІІ), метагидроксид железа, алюминия, дигидроксид-оксид титана. Самыми распространенными и часто используемыми из перечисленных выше соединений являются оксид железа и алюминия, а также гидроксиды этих металлов.

Химические свойства амфотерных оксидов

Амфотерные оксиды имеют одновременно как свойства кислотных, так и основных соединений. Как кислотные, они могут взаимодействовать со щелочами. При такого типа реакциях образуются соль и вода. Также они вступают в химическую реакцию с основными оксидами. Проявляя свои основные свойства, они вступают во взаимодействиескислотами, вследствие чего образуются соль и вода, а также с кислотными оксидами, благодаря чему можно получить соль.

Примеры уравнений реакций, в которых участвуют амфотерные оксиды

АІ 2 О 3 + 2КОН = 2КАІО 2 + Н 2 О — данная реакция показывает кислотные свойства амфотерных оксидов. 2АІ 2 О 3 + 6НСІ = 4АІСІ 3 + 3Н 2 О; АІ 2 О 3 + 3СО 2 = АІ2(СО 3) 3 — эти уравнения служат примером основных химических свойств таких оксидов.

Химические свойства амфотерных гидроксидов

Они способны вступать в химическое взаимодействие как с сильными кислотами, так и со щелочами, а некоторые из них реагируют также со слабыми кислотами. Все они при воздействии высоких температур распадаются на оксид и воду. При реакции амфотерного гидроксида с кислотой образуются соль и вода. Все такие гидроксиды нерастворимы в воде, поэтому могут реагировать только с растворами определенных соединений, но не с сухими веществами.

Физические свойства амфотерных оксидов, способы их получения и применение

Оксид ферума (ІІ) — пожалуй, самый распространенный амфотерный оксид. Способов его получения существует довольно много. Он широко используется в промышленности. Другие амфотерные оксиды также применяются во многих отраслях: от металлургии до пищевой промышленности.

Внешний вид, получение и использование ферум (ІІ) оксида

Он представляет собой твердое вещество черного цвета. Его кристаллическая решетка схожа с решеткой пищевой соли. В природе его можно найти в виде минерала вюстита.
Данное химическое соединение получают четырьмя различными способами. Первый — восстановление оксида железа (ІІІ) с использованием угарного газа. При этом, смешав одинаковое количество этих двух веществ, можно получить две части оксида железа (ІІ) и одну — углекислого газа. Второй метод получения — взаимодействие железа с его оксидами, к примеру, ферум (ІІІ) оксидом, при этом не образуется никаких побочных продуктов.

Однако для такой реакции необходимо создать условия в виде высокой температуры — 900-1000 градусов по Цельсию. Третий способ — реакция между железом и кислородом, в этом случае образуется только оксид железа (ІІ). Для осуществления данного процесса также понадобится нагревание исходных веществ. Четвертым методом получения является оксалата двухвалентного железа. Для такой реакции необходима высокая температура, а также вакуум. В результате образуются ферум (ІІ) оксид, углекислый и угарный газ в соотношении 1:1:1. Из написанного выше можно сделать вывод, что самым простым и не требующим специальных условий является первый способ получения данного вещества. Применяют оксид железа (ІІ) для выплавки чугуна, также он является одной из составляющих некоторых красителей, используется в процессе чернения стали.

Оксид железа (ІІІ)

Это не менее распространенный амфотерный оксид, чем описанный выше. При нормальных условиях он представляет собой твердое вещество, имеющее красно-коричневый цвет. В природе может встретиться в виде минерала гематита, который используется в изготовлении украшений. В промышленности данное вещество получило широкое применение: его используют для окрашивания некоторых строительных материалов, таких как кирпич, тротуарная плитка и т. д., в изготовлении красок, в том числе полиграфических, и эмалей. Также рассматриваемое вещество служит пищевым красителем под названием Е172. В химической отрасли его применяют при производстве аммиака в качестве катализатора.

Оксид алюминия

Амфотерные оксиды также включают в свой список и оксид алюминия. Данное вещество при нормальных условиях имеет твердое состояние. Цвет этого оксида белый. В природе его часть можно встретить в виде глинозема, а также сапфира и рубина. Используется в основном в химической промышленности в качестве катализатора. Но также его применяют и в изготовлении керамики.

Оксид цинка

Это химическое соединение также обладает амфотерностью. Это твердое вещество, не имеющее цвета, в воде не растворяется. Получают его в основном посредством разложения различных соединений цинка. К примеру, его нитрата. При этом выделяется оксид цинка, диоксид азота и кислород. Также можно добыть данное вещество посредством разложения карбоната цинка. При такой реакции, кроме нужного соединения, выделяется еще и углекислый газ. Также возможен распад гидроксида цинка на его оксид и воду. Для того чтобы осуществить все три выше перечисленных процесса, требуется воздействие высокой температуры. Применяют оксид цинка в различных отраслях промышленности, например, в химической (в качестве катализатора) для изготовления стекла, в медицине для лечения кожных дефектов.

Оксид бериллия

Получают его в основном путем термического разложения гидроксида данного элемента. При этом также образуется вода. Он имеет вид твердого бесцветного вещества. Применение свое данный оксид находит в различных отраслях промышленности в качестве термостойкого материала.

Оксид олова

Имеет темный цвет, обладает твердым состоянием при нормальных условиях. Получить его возможно, как и многие другие амфотерные оксиды, посредством разложения его гидроксида. В результате образуется рассматриваемое вещество и вода. Для этого также нужно воздействие высокой температуры. Используется данное соединение в химической промышленности в качестве восстановителя в окислительно-восстановительных реакциях, реже применяется как катализатор.

Свойства, получение и применение амфотерных гидроксидов

Амфотерные гидроксиды используются не менее широко, нежели оксиды. Благодаря своему разностороннему химическому поведению, они в основном применяются для получения всевозможных соединений. Кроме того, гидроксид железа (бесцветное твердое вещество) используется в изготовлении аккумуляторов; гидроксид алюминия — для очистки воды; гидроксид бериллия — для получения оксида.

Основания - Это химическое соединение, способное образовывать ковалентную связь с протоном (основание Бренстеда) либо с вакантной орбиталью другого химического соединения (основание Льюиса)

Химические свойства оснований

Щелочи

Нерастворимые основания

Изменение окраски индикторов

фенолфталеин - малиновый

метилоранж - оранжевый

лакмус- синий

универсальный индикатор - от синего до фиолетового

не меняют

Взаимодействие с кислотами (реакция нейтрализации)

2NaOH+H2SO4=Na2SO4+2H2O2NaOH+H2SO4=Na2SO4+2H2O

Cu(OH)2+2HNO3=Cu(NO3)2+2H2OCu(OH)2+2HNO3=Cu(NO3)2+2H2O

Взаимодействие с кислотными оксидами

SO2+2KOH=K2SO3+H2O4SO2+2KOH=K2SO3+H2O4

Взаимодействие с амфотерными оксидами

Al2O3+6NaOH+3H2O=2Na3Al2O3+6NaOH+3H2O=2Na3 в растворе

Al2O3+2NaOH=2NaAlO2+H2OAl2O3+2NaOH=2NaAlO2+H2O в расплаве

Взаимодействие с солями

средними (правило Бертолле): 2NaOH+MgSO4=Mg(OH)2↓+Na2SO42NaOH+MgSO4=Mg(OH)2↓+Na2SO4

NaHCO3+NaOH=Na2CO3+H2ONaHCO3+NaOH=Na2CO3+H2O

Разложение при нагревании

не разлагаются, кроме LiOH:

2LiOH−→−−−−−800∘C,H2Li2O+H2O2LiOH→800∘C,H2Li2O+H2O

Cu(OH)2=CuO+H2OCu(OH)2=CuO+H2O

Взаимодействие с неметаллами

2NaOH(конц., хол.)+Cl2=NaClO+NaCl+H2O2NaOH(конц., хол.)+Cl2=NaClO+NaCl+H2O

6NaOH(конц., гор.)+3Cl2=NaClO3+5NaCl+3H2O6NaOH(конц., гор.)+3Cl2=NaClO3+5NaCl+3H2O

Методы получения оснований

1 . электролиз водных растворов солей активных металлов:

2NaCl+2H2O=2NaOH+H2+Cl22NaCl+2H2O=2NaOH+H2+Cl2

В ходе электролиза солей металлов, стоящих в ряду напряжения до алюминия, на катоде происходит восстановление воды с выделением газообразного водорода и гидроксид-ионов. Катионы металла, образованные в ходе диссоциации соли, образуют с полученными гидроксид-ионами основания.

2 . взаимодействие металлов с водой: 2Na+2H2O=2NaOH+H22Na+2H2O=2NaOH+H2 Этот метод не находит практического применения ни в лаборатории, ни в промышленности

3 . взаимодействие оксидов с водой: CaO+H2O=Ca(OH)2CaO+H2O=Ca(OH)2

4 . обменные реакции (можно получать и растворимые и нерастворимые основания): Ba(OH)2+K2SO4=2KOH+BaSO4↓Ba(OH)2+K2SO4=2KOH+BaSO4↓ CuCl2+2NaOH=Cu(OH)2↓+2NaNO3

Амфотерные соединения – это вещества, которые в зависимости от условий реакций проявляют кислотные или основные свойства.

Ам­фо­тер­ные гид­рок­си­ды – нерас­тво­ри­мые в воде ве­ще­ства, и при на­гре­ва­нии они раз­ла­га­ют­ся на оксид ме­тал­ла и воду:

Zn(OH) 2 = ZnO + H 2 O

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

2Al(OH) 3 = Al 2 O 3 + 3H 2 O

При­ме­ром ам­фо­тер­но­го гид­рок­си­да может слу­жить гид­рок­сид цинка. Фор­му­ла этого гид­рок­си­да в ос­нов­ной форме – Zn(OH) 2 . Но можно за­пи­сать фор­му­лу гид­рок­си­да цинка в кис­лот­ной форме, по­ста­вив на пер­вое место атомы во­до­ро­да, как в фор­му­лах неор­га­ни­че­ских кис­лот: H 2 ZnO 2 (Рис. 1). Тогда ZnO 2 2- будет кис­лот­ным остат­ком с за­ря­дом 2-.

Осо­бен­но­стью ам­фо­тер­но­го гид­рок­си­да яв­ля­ет­ся то, что в нем мало раз­ли­ча­ют­ся по проч­но­сти связи О-Н и Zn-O. От­сю­да и двой­ствен­ность свойств. В ре­ак­ци­ях с кис­ло­та­ми, го­то­вы­ми от­дать ка­ти­о­ны во­до­ро­да, гид­рок­си­ду цинка вы­год­но раз­ры­вать связь Zn-O, от­да­вая ОН-груп­пу и вы­сту­пая в роли ос­но­ва­ния. В ре­зуль­та­те таких ре­ак­ций об­ра­зу­ют­ся соли, в ко­то­рых цинк яв­ля­ет­ся ка­ти­о­ном, по­это­му их на­зы­ва­ют со­ля­ми ка­ти­он­но­го типа:

Zn(OH) 2 + 2HCl = ZnCl 2 + 2H 2 O

Амфотерные оксиды - солеобразующие оксиды, проявляющие в зависимости от условий либо осно́вные, либо кислотные свойства (то есть проявляющие амфотерность). Образуются переходными металлами. Металлы в амфотерных оксидах обычно проявляют степень окисления от III до IV, за исключением ZnO, BeO, SnO, PbO.

Амфотерные оксиды обладают двойственной природой: они могут взаимодействовать с кислотами и с основаниями (щелочами):

Al 2 O 3 + 6HCl = 2AlCl 3 + 3 H 2 O,

Al 2 O 3 + 2NaOH + 3H 2 O = 2Na.

Типичные амфотерные оксиды: H 2 O, BeO, Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 и др.

9. Химическая термодинамика. Понятия системы, энтропия, энтальпия, тепловой эффект химической реакции, закон Гесса и его следствие. Эндотерм и Экзотерм реакции, 1 и 2 законы термодинамики, Скорость химической реакции (факторы влияющие), правило Вант- Гоффа, уравнение Вант- Гоффа.

Химическая термодинамика – наука, изучающая условия устойчивости систем и законы.

Термодинамика – наука о макросистемах.

Термодинамическая система – макроскопическая часть окружающего мира, в которой протекают различные физические и химические процессы.

Дисперсной системой называется гетерогенная система, в которой мелкие частицы одной фазы равномерно распределены в объеме другой фазы.

Энтропия (От греческого entropia) - поворот, превращение. Понятие энтропии впервые было введено в термодинамике для определения меры необратимого рассеяния энергии. Энтропия широко применяется и в других областях науки: в статистической физике как мера вероятности осуществления какого -- либо макроскопического состояния; в теории информации -- мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Все эти трактовки энтропии имеют глубокую внутреннюю связь.

Энтальпия (тепловая функция, теплосодержание) - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенном постоянном давлении.

Тепловые эффекты принято указывать в термохимических уравнениях химических реакций, используя значения энтальпии (теплосодержания) системы ΔН.

Если ΔН < 0, то теплота выделяется, т.е. реакция является экзотермической.

Для эндотермических реакций ΔН > 0.

Тепловой эффект химической реакции - это выделенная или поглощенная теплота при данных количествах реагирующих веществ.

Тепловой эффект реакции зависит от состояния веществ.

Рассмотрим термохимическое уравнение реакции водорода с кислородом:

2H 2 (г )+ O 2 (г )= 2H 2 O (г ), ΔH =−483.6 кДж

Эта запись означает, что при взаимодействии 2 моль водорода с 1 моль кислорода образуются 2 моль воды в газообразном состоянии. При этом выделяется 483.6(кДж) теплоты.

Закон Гесса - Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.

Следствия из закона Гесса:

Тепловой эффект обратной реакции равен тепловому эффекту прямой реакции с обратным знаком, т.е. для реакций

отвечающие им тепловые эффекты связаны равенством

2. Если в результате ряда последовательных химических реакций система приходит в состояние, полностью совпадающее с исходным (круговой процесс), то сумма тепловых эффектов этих реакций равна нулю, т.е. для ряда реакций

сумма их тепловых эффектов

Под энтальпией образования понимают тепловой эффект реакции образования 1 моля вещества из простых веществ. Обычно используют стандартные энтальпии образования. Их обозначают или (часто один из индексов опускают; f – от англ. formation).

Первое начало термодинамики - Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе

Согласно первому началу термодинамики, работа может совершаться только за счет теплоты или какой-либо другой формы энергии. Следовательно, работу и количество теплоты измеряют в одних единицах -джоулях (как и энергию).

где ΔU - изменение внутренней энергии, A - работа внешних сил, Q - количество теплоты, переданной системе.

Второе начало термодинамики - Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему

Правило Вант-Гоффа гласит, что при повышении температуры на каждые 10 о скорость химической реакции увеличивается в 2-4 раза.

Уравнение, которое описывает это правило, следующее:{\displaystyle ~V_{2}=V_{1}\cdot \gamma ^{\frac {T_{2}-T_{1}}{10}}}

где V 2 – скорость протекания реакции при температуре t 2 , а V 1 – скорость протекания реакции при температуре t 1 ;

ɣ - температурный коэффициент скорости реакции. (если он равен 2, например, то скорость реакции будет увеличиваться в 2 раза при повышении температуры на 10 градусов).

Эндотерми́ческие реа́кции - химические реакции, сопровождающиеся поглощением теплоты. Для эндотермических реакций изменение энтальпии и внутренней энергии имеют положительные значения{\displaystyle \Delta H>0}{\displaystyle \Delta U>0}, таким образом, продукты реакции содержат больше энергии, чем исходные компоненты.

К эндотермическим реакциям относятся:

    реакции восстановления металлов из оксидов,

    электролиза (поглощается электрическая энергия),

    электролитической диссоциации (например, растворение солей в воде),

    ионизации,

    взрыв воды-подводимое к малому количеству воды большое количество тепла тратится на мгновенный нагрев и фазовый переход жидкости в перегретый пар,при этом внутреняя энергия увеличивается и проявляется в виде двух энергий пара-внутримолекулярной тепловой и межмолекулярной потенциальной.

    фотосинтеза.

Экзотермическая реакция - химическая реакция, сопровождающаяся выделением теплоты. Противоположна эндотермической реакции.

Видеоурок 2: Амфотерные гидроксиды. Опыты

Лекция: Характерные химические свойства оснований и амфотерных гидроксидов


Гидроксиды и их классификация


Как вы уже знаете основания образуются атомами металлов и гидроксогруппой (ОН -), поэтому иначе их называют гидроксидами. Существует несколько классификаций оснований.

1. По отношению к воде они подразделяются на:

    растворимые,

    нерастворимые.

К растворимым основаниям относятся гидроксиды щелочных и щелочноземельных металлов, поэтому их называют щелочами. В эту же группу можно отнести и гидроксид аммония, но он в отличии от первых, является более слабым электролитом. Основания, образованные остальными металлами в воде не растворяются. Щелочи в водном р-ре диссоциируются полностью до катионов металла и анионов гидроксид - ионов ОН - . К примеру: NaOH → Na + + OH - .


2. По взаимодействию с иными химическими веществами гидроксиды делятся на:

    основные гидроксиды,

    кислотные гидроксиды (кислородсодержащие кислоты),

    амфотерные гидроксиды.

Данное деление зависит от заряда катиона металла. Когда заряд катиона равен +1 или +2, то гидроксид будет обладать основными свойствами. Амфотерными основаниями считаются гидроксиды, катионы металла которых имеют заряд, равный +3 и +4.

Но существует ряд исключений:

    La(OH) 3 , Bi(OH) 3 , Tl(OH) 3 – основания;

    Be (OH) 2 , Sn (OH) 2 , Pb(OH) 2 , Zn(OH) 2 , Ge(OH) 2 - амфотерными основания.

Химические свойства оснований

Основания способны реагировать с кислотами и кислотными оксидами. В ходе взаимодействия происходит образование солей и воды:

    Ва(ОН) 2 + СО 2 → ВаСО 3 + Н 2 О;

    КОН + HCl → KCl + Н 2 О.

Щелочи, гидроксид аммония всегда реагируют с растворами солей, только в случае образования нерастворимых оснований:

    2КОН + FeCl 2 → 2КCl + Fe(ОН) 2 ;

    6NH 4 OH + Al 2 (SO 4) 3 → 2Al(OH) 3 + 3(NH 4)2SO 4 .

Реакция кислоты с основанием именуется нейтрализацией. В ходе данной реакции, катионы кислот Н+ и анионы оснований ОН- образуют молекулы воды. После чего, среда раствора становится нейтральной. В результате начинается выделение тепла. В растворах, это ведет к постепенному нагреву жидкости. В случае крепких растворов, тепла более чем достаточно, чтобы жидкость начала кипеть. Необходимо помнить, что реакция нейтрализации происходит достаточно быстро.


Химические свойства амфотерных гидроксидов


Амфотерные основания реагируют и с кислотами и со щелочами. В ходе взаимодействия происходит образование соли и воды. При прохождении какой - либо реакции с кислотами, амфотерные основания всегда проявляют свойства типичных оснований:

    Cr(OH) 3 + 3HCl → CrCl 3 + 3H 2 O .

В ходе реакции со щелочами, амфотерные основания способны проявлять свойства кислот. В процессе сплавления со щелочами, образуется соль и вода.

Ступень обучения: III (X класс).

Характер ориентации: средний уровень.

Ведущий принцип: деятельностный, коммуникативный.

Метод–доминанта: проблемно-поисковый.

Триединая цель урока:

1) Образовательный аспект

  • Актуализировать и обобщить ранее полученные учащимися знания об основных классах неорганических соединений.
  • Закрепить умения учащихся составлять уравнения химических реакций с участием амфотерных гидроксидов.
  • Продолжить формирование у учащихся понятия «амфотерности».

2) Развивающий аспект

  • Показать возможность применения своих знаний при решении качественных задач и выполнении упражнений.
  • Продолжить формирование навыков познавательной деятельности, путем объяснения поставленного перед учащимися проблемного опыта.
  • Продолжить формирование умения сравнивать, анализировать и сопоставлять результаты проведенных опытов;
  • Формирование умения проводить аналогии между различными объектами;
  • Развитие внимания и памяти.
  • Развитие экспериментальных навыков.

3) Воспитывающий аспект

  • Формирование научного мировоззрения.
  • Формирование культуры учебного труда.
  • Обратить внимание на эстетику учебной и трудовой деятельности при выполнении опытов.
  • Воспитание культуры общения, умения взаимодействовать в паре;
  • Формирование у учащихся культуры умственного труда, аккуратности в выполнении заданий и написании формул.
  • Воспитание человека как части природы и общества, подчиняющегося их законам.

Оборудование и реактивы: растворы хлорида цинка, гидроксида натрия, аммиака, хлорида алюминия, соляной кислоты, хлорида магния, хлорида натрия; пробирки.

Ход урока

1. Организационный момент

2. Повторение пройденного материала

Индивидуальный опрос у доски:

Первый ученик – « Химические свойства кислот»
- второй ученик – « Химические свойства оснований».

В это время класс выполняет задание: с какими из перечисленных веществ будет реагировать гидроксид натрия, а с какими соляная кислота?

Написать возможные уравнения реакций.

Вещества: HNO 3 , CaO , CO 2 , СuSO 4 , Cu(OH) 2 , P 2 O 5 , ZnO, AgNO 3 .

Затем один ученик выполняет это задание на доске, а остальные проверяют.

На доске:

1.

NaOH + HNO 3 = NaNO 3 + H 2 O
2 NaOH + CO 2 = Na 2 CO 3 + H 2 O
2 NaOH + CuSO 4 = Na 2 SO 4 + Cu(OH) 2

2 NaOH + ZnO Na 2 ZnO 2 + H 2 O
6 NaOH + P 2 O 5 = 2Na 3 PO 4 + 3H 2 O

2. 2HCl + CaO = CaCl 2 + H 2 O
2HCl + Cu(OH) 2 = CuCl 2 + 2H 2 O
2HCl + ZnO = ZnCl 2 + H 2 O
HCl + AgNO 3 = AgCl + HNO 3

3. Изучение нового материала

Тема урока: «Амфотерные гидроксиды».

Девиз урока: «Химия – наука полутонов».
Э.Е. Нифантьев.

Актуализация знаний

Учитель: Тема нашего урока «Амфотерные гидроксиды». Наша задача знать, какие соединения называют амфотерными гидроксидами и каковы их химические свойства; понять, в чем причина амфотерности; уметь писать уравнения реакций, отражающих химические свойства амфотерных гидроксидов.

Итак, давайте вспомним, что вы уже знаете об «амфотерности».

Ученик: Амфотерные соединения проявляют одновременно и основные, и кислотные свойства.

Учитель: Мы уже познакомились с амфотерными оксидами. Скажите, пожалуйста, какие элементы образуют эти соединения?

Ученик: Металлы в степени окисления +3 и +4,а также металлы, металлические свойства которых выражены неярко (в периодической системе элементов они находятся между металлами и неметаллами, вдоль диагонали). Например: Be, Zn, Ge и др.

Физические свойства амфотерных гидроксидов

Учитель: Амфотерные гидроксиды – это нерастворимые в воде твердые вещества, как правило, белого цвета.

Получение

Учитель: Предположите способ получения амфотерных гидроксидов, помня, что они не растворимы в воде.

Ученик: Реакцией обмена между растворимой солью соответствующего металла и щелочью. (Демонстрационный эксперимент)

ZnCl 2 + 2NaOH = Zn(OH) 2 + 2NaCl
Zn 2+ + 2OH - = Zn (OH) 2

Учитель: Но! Избыток щелочи может растворить образовавшийся осадок, поэтому берут слабое основание – NH 3 * H 2 O (гидроксид аммония или гидрат аммиака).

Химические свойства

Учитель: Известная мудрость гласит: «Опыт- путь к познанию». Поэтому химические свойства амфотерных гидроксидов вы определите, выполняя лабораторный опыт в парах.

Задание : получить гидроксид алюминия и определить его химические свойства. Для этого у Вас на столах есть растворы хлорида алюминия, аммиака, соляной кислоты и гидроксида натрия. Помните о соблюдении правил техники безопасности.Запишите уравнения химических реакций.

Ученики выполняют опыт, записывают в тетрадях уравнения реакций.

Один ученик выходит к доске и записывает все уравнения и объясняет наблюдаемые явления.

AlCl 3 + 3NH 3 * H 2 O = Al(OH) 3 + 3NH 4 Cl

Вывод : гидроксид алюминия взаимодействует и с кислотами, и с основаниями, т.е. проявляет амфотерные свойства.

Учитель: В чем же причина амфотерности этих соединений?

Для того чтобы ответить на этот вопрос, рассмотрим их диссоциацию.

В водных растворах амфотерные гидроксиды практически не диссоциируют, но в растворах кислот и щелочей могут диссоциировать двумя способами.

Учитель. Нужно отметить, что соли анионного типа, образующиеся при взаимодействии амфотерного гидроксида со щелочью, устойчивы в щелочной среде, но разрушаются при подкислении растворов.

Na + 4HCl = NaCl + AlCl 3 + 4H 2 O

Амфотерные гидроксиды, как и нерастворимые основания, при нагревании разлагаются:

2Al(OH) 3 Al2O 3 + 3H 2 O

4. Закрепление

Экспериментальная задача. Даны три пробирки с растворами хлоридов натрия, магния и алюминия. Как определить, в какой пробирке какое вещество?

Один участник выходит к демонстрационному столу и выполняет опыт.

5. Подведение итогов урока

Учитель: Итак, подводя итоги нашего урока, я хотела бы сказать, что амфотерность - категория не только химическая, но и философская: с греческого языка слово «amphoteros» переводится как « тот и другой », то есть это понятие означает единство противоположностей.

А это уже один из основных законов природы – закон единства и борьбы противоположностей, который проявляется практически в каждой химической реакции: кислота и основание, окислитель и восстановитель, донор и акцептор и так далее.

Этот закон объективен, его нельзя отменить, можно только воспользоваться им для объяснения явлений.

Мы часто в жизни сталкиваемся с проявлениями этого закона: в технике – противоположно заряженные частицы притягиваются; в человеческих отношениях – часто очень разные люди сближаются, они как будто дополняют друг друга. В жизни всегда борются добро и зло, в каждом человеке обязательно присутствуют плохие и хорошие черты. Поэтому не бывает человека идеального, только хорошего, а в самом падшем, плохом человеке всегда можно найти что-то доброе, светлое. Об этом надо всегда помнить и относиться к окружающим нас людям с пониманием, терпимостью к чужим недостаткам.

Тема нашего сегодняшнего урока является еще одним подтверждением связи химии с нашей жизнью. И теперь давайте вернемся к девизу этого урока: « Химия – это наука полутонов ». Как вы можете объяснить это выражение?

Ученик: Это значит, что нельзя провести четкую границу между простыми веществами металлами и неметаллами, разными классами соединений, органическими и неорганическими веществами. Все подчиняется единству материального мира.

6. Домашнее задание

Параграф 28.3, задания: 1,2,3 (учебник «Химия 10 класс» авторы: И.И.Новошинский, Н.С.Новошинская)

Дополнительное задание к уроку (если останется время)

Осуществить превращения:

Al- 1 - Al 2 O 3 - 2 -- NaAlO 2 - 3 -- Al (OH) 3 - 4 -- Al 2 O 3

1. 4Al + 3O 2 = 2Al 2 O 3

2. Al 2 O 3 + Na 2 O 2NaAlO 2

3. NaAlO 2 + HCl + H 2 O = NaCl + Al(OH) 3

4. 2Al(OH) 3 Al 2 O 3 +3H 2 O

AlCl 3 -- 1 -- Al(OH) 3 - 2 --- Na -- 3 -- AlCl 3

1. AlCl 3 + 3NaOH = 3NaCl + Al(OH) 3 |

2. Al(OH) 3 + NaOH = Na[ Al(OH) 4 ]

3. Na[ Al(OH) 4 ]+ 4HCl = NaCl + AlCl 3 + 4H 2 O

Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?

1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH) 2 . Однако существуют исключения. Так, гидроксиды Zn(OH) 2 , Be(OH) 2 , Pb(OH) 2 , Sn(OH) 2 к основаниям не относятся.

2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH) 2 , Be(OH) 2 , Pb(OH) 2 , Sn(OH) 2 . Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.

Химические свойства оснований

Все основания подразделяют на:

Напомним, что бериллий и магний к щелочноземельным металлам не относятся.

Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.

Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.

Взаимодействие оснований с кислотами

Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:

Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:

Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH) 2 могут образовывать основные соли при недостатке кислоты, например:

Взаимодействие с кислотными оксидами

Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:

Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P 2 O 5 , SO 3 , N 2 O 5 , с образованием средних соле1:

Нерастворимые основания вида Me(OH) 2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:

Cu(OH) 2 + CO 2 = (CuOH) 2 CO 3 + H 2 O

С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:

Взаимодействие оснований с амфотерными оксидами и гидроксидами

Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:

Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:

В случае алюминия при действии избытка концентрированной щелочи вместо соли Na образуется соль Na 3 :

Взаимодействие оснований с солями

Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:

1) растворимость исходных соединений;

2) наличие осадка или газа среди продуктов реакции

Например:

Термическая устойчивость оснований

Все щелочи, кроме Ca(OH) 2 , устойчивы к нагреванию и плавятся без разложения.

Все нерастворимые основания, а также малорастворимый Ca(OH) 2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000 o C:

Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 o C:

Химические свойства амфотерных гидроксидов

Взаимодействие амфотерных гидроксидов с кислотами

Амфотерные гидроксиды реагируют с сильными кислотами:

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH) 3, не реагируют с такими кислотами, как H 2 S, H 2 SO 3 и H 2 СO 3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:

Взаимодействие амфотерных гидроксидов с кислотными оксидами

Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO 3 , P 2 O 5 , N 2 O 5):

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH) 3 , не реагируют с кислотными оксидами SO 2 и СO 2 .

Взаимодействие амфотерных гидроксидов с основаниями

Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:

А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:

Взаимодействие амфотерных гидроксидов с основными оксидами

Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:

Термическое разложение амфотерных гидроксидов

Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду.