Упрощения выражения раскрыть скобки. Как раскрыть скобки

На этом уроке вы узнаете, как из выражения, содержащего скобки, путем преобразования получить выражение, в котором скобок нет. Вы научитесь раскрывать скобки, перед которыми стоит знак плюс и знак минус. Мы вспомним, как раскрывать скобки, используя распределительный закон умножения. Рассмотренные примеры позволят связать новый и ранее изученный материал в единое целое.

Тема: Решение уравнений

Урок: Раскрытие скобок

Как раскрыть скобки, перед которыми стоит знак «+». Использование сочетательного закона сложения.

Если к числу нужно прибавить сумму двух чисел, то можно к этому числу прибавить сначала первое слагаемое, а затем второе.

Слева от знака равно выражение со скобками, а справа - выражение без скобок. Значит, при переходе от левой части равенства к правой произошло раскрытие скобок.

Рассмотрим примеры.

Пример 1.

Раскрыв скобки, мы изменили порядок действий. Считать стало удобнее.

Пример 2.

Пример 3.

Заметим, что во всех трех примерах мы просто убирали скобки. Сформулируем правило:

Замечание.

Если первое слагаемое в скобках стоит без знака, то его надо записать со знаком «плюс».

Можно выполнить пример по действиям. Сначала к 889 прибавить 445. Это действие в уме выполнить можно, но это не очень просто. Раскроем скобки и увидим, что изменённый порядок действий значительно упростит вычисления.

Если следовать указанному порядку действий, то нужно сначала из 512 вычесть 345, а затем к результату прибавить 1345. Раскрыв скобки, мы изменим порядок действий и значительно упростим вычисления.

Иллюстрирующий пример и правило.

Рассмотрим пример: . Найти значение выражения можно, сложив 2 и 5, а затем взять полученное число с противоположным знаком. Получим -7.

С другой стороны, тот же самый результат можно получить, сложив числа, противоположные исходным.

Сформулируем правило:

Пример 1.

Пример 2.

Правило не изменяется, если в скобках не два, а три или более слагаемых.

Пример 3.

Замечание. Знаки меняются на противоположные только перед слагаемыми.

Для того чтобы раскрыть скобки, в данном случае нужно вспомнить распределительное свойство.

Сначала умножим первую скобку на 2, а вторую - на 3.

Перед первой скобкой стоит знак «+», значит, знаки нужно оставить без изменения. Перед второй стоит знак «-», следовательно, все знаки нужно поменять на противоположные

Список литературы

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. - Гимназия, 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс - ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. - ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. Библиотека учителя математики. - Просвещение, 1989.
  1. Онлайн тесты по математике ().
  2. Можно скачать указанные в п. 1.2. книги ().

Домашнее задание

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012. (ссылка см. 1.2)
  2. Домашнее задание: № 1254, № 1255, № 1256 (б,г)
  3. Другие задания: № 1258(в), № 1248

П родолжаю цикл методических статей на тему преподавания. Пришло время рассмотреть особенности индивидуальной работы репетитора по математике с учащимися 7-х классов . С великим удовольствием поделюсь своими соображениями о формах подачи одной из важнейших тем курса алгебры в 7 классе — «раскрытие скобок». Дабы не пытаться объять необъятное, остановимся на ее начальной ступени и разберем методику работы репетитора с умножением многочлена на многочлен. Как репетитор по математике действует в сложных ситуациях, когда слабый ученик не воспринимает классическую форму объяснения? Какие задания нужно готовить для сильного семиклассника? Рассмотрим эти и другие вопросы.

Казалось бы, ну что здесь сложного? «Скобки — это проще простого», — скажет любой отличник. «Есть распределительный закон и свойства степеней для работы с одночленами, общий алгоритм для любого количества слагаемых. Умножай каждое на каждое и приводи подобные». Однако, не все так просто в работе с отстающими. Вопреки стараниям репетитора по математике, учащиеся умудряются допускать ошибки самого разного калибра даже в простейших преобразованиях. Характер ошибок поражает своей разноплановостью: от мелких пропусков букв и знаков, до серьезных тупиковых «стоп-ошибок».

Что мешает школьнику правильно выполнить преобразования? Почему возможно непонимание?

Индивидуальных проблем существует огромное множество и одним из главных препятствий на пути усвоения и закрепления материала является затруднения в своевременном и быстром переключении внимания, сложность в обработке большого объема информации. Возможно, кому-то покажется странным, что я говорю о большом объеме, но слабому ученику 7 класса может не хватить ресурсов памяти и внимания даже для четырех слагаемых. Мешают коэффициенты, переменные, степени (показатели). Ученик путает очередность операций, забывает какие одночлены уже перемножены, а какие остались не тронутыми, не может вспомнить как их умножают и т. д.

Числовой подход репетитора по математике

Конечно же, нужно начинать с объяснений логики построения самого алгоритма. Как это сделать? Нужно поставить задачу: как изменить порядок действий в выражении , чтобы не поменялся результат? Я довольно часто привожу примеры, объясняющие работу тех или иных правил, на конкретных числах. А уже затем заменяю их буквами. Техника использования числового подхода будет описана ниже.

Проблемы мотивации .
В начале урока репетитору по математике трудно собрать ученика, если он не понимает актуальности изучаемого. В рамках программы за 6 — 7 класс сложно найти примеры использования правила умножения многочленов. Я бы сделал упор на необходимость учиться менять порядок действий в выражениях То, что это помогает решать задачи, ученик должен знать по опыту сложения подобных слагаемых. Ему же приходилось их складывать в при решении уравнений. Например, в 2х+5х+13=34 он использует, что 2х+5х=7х. Репетитор по математике просто должен акцентировать на этом внимание школьника.

Учителя математики часто называют прием раскрытия скобок правилом «фонтанчика» .

Этот образ хорошо запоминается и его обязательно нужно использовать. Но как это правило доказывается? Напомним классическую форму, использующую очевидные тождественные преобразования:

(a+b)(c+d)=(a+b) c+(a+b) d=ac+bc+ad+bd

Репетитору по математике трудно что-либо здесь комментировать. Буквы говорят сами за себя. Да и не нужны сильному ученику 7 класса подробные объяснения. Однако, что делать со слабым, который в упор не видит в этой «буквенной мешанине» какого-либо содержания?

Основной проблемой, мешающей восприятию классического математического обоснования «фонтанчика», является непривычная форма записи первого множителя. Ни в 5 классе, ни 6 классе школьнику не приходилось перетаскивать первую скобку к каждому слагаемому второй. Дети имели дело только с числами (коэффициентами), расположенными, чаще всего, слева от скобок, например:

К окончанию 6 класса у школьника формируется визуальный образ объекта – определенное сочетание знаков (действий), связанных со скобками. И любое отклонение от привычного вида в сторону чего-то нового может дезориентировать семиклассника. Именно визуальный образ пары «число+скобка» репетитор по математике берет в оборот при объяснениях.

Можно предложить следующее объяснение. Репетитор рассуждает: «Если бы перед скобкой стояло какое-нибудь число, например 5, то смогли бы мы изменить порядок действий в этом выражении? Конечно. Тогда сделаем это . Подумай, изменится ли его результат, если вместо числа 5 мы вписать сумму 2+3, заключенную в скобки? Любой ученик скажет репетитору: «Какая разница, как писать: 5 или 2+3». Прекрасно. Получится запись . Репетитор по математике берет небольшую паузу, чтобы ученик зрительно запомнил картинку-образ объекта. Затем обращает его внимание на то, что скобка, как и число, «распределилась» или «прыгнула» к каждому слагаемому. Что это означает? Это означает, что данную операцию можно выполнять не только с числом, но и со скобкой. Получились две пары множителей и . С ними большая часть учеников легко справляется самостоятельно и выписывает репетитору результат . Важно сопоставить получившиеся пары с содержанием скобок 2+3 и 6+4 и станет понятно как они открываются.

Если необходимо, то после примера с числами репетитор по математике проводит буквенное доказательство. Оно оказывается легкой прогулкой по тем же самым частям предыдущего алгоритма.

Формирование навыка раскрытия скобок

Формирование навыка умножения скобок — один из важнейших этапов работы репетитора по математике с темой. И даже более важный чем этап объяснения логики правила «фонтанчика». Почему? Обоснования преобразований забудутся уже на следующий день, а навык, если он вовремя сформирован и закреплен, останется. Ученики выполняют операцию механически, как будто извлекают из памяти таблицу умножения. Этого и нужно добиваться. Почему? Если каждый раз при раскрытии скобок школьник будет вспоминать о том, почему раскрывается так, а не иначе, он забудет о задаче, которую решает. Именно поэтому оставшееся время урока репетитор по математике бросает на то, чтобы трансформировать понимание в механическое запоминание. Эта стратегия часто используется и в других темах.

Как репетитору сформировать у школьника навык раскрытия скобок? Для этого ученик 7 класса должен выполнить ряд упражнений в достаточном для закрепления количестве. При этом возникает другая проблема. Слабый семиклассник не справляется с возросшим количеством преобразований. Пусть даже мелких. И ошибки сыплются одна за другой. Что должен предпринять репетитор по математике? Во-первых, нужно рекомендовать подрисовывать стрелки от каждого слагаемого к каждому. Если ученик очень слабый и не способен быстро переключаться с одного вида работы на другой, теряет концентрацию при выполнении несложных команд преподавателя, то репетитор по математике сам рисует эти стрелки. Причем не все сразу. Сначала репетитор соединяет первое слагаемое левой скобки с каждым слагаемым правой скобки и просит выполнить соответствующее умножение. Только после этого стрелки направляются от второго слагаемого в ту же правую скобку. Иными словами репетитор разделяет процесс на два этапа. Лучше выдерживать небольшую временную паузу (5-7 секунд) между первой и второй операцией.

1) Один набор стрелок нужно рисовать над выражениями, а другой под ними.
2) Важно пропускать между строчками хотя бы пару клеток . Иначе запись будет очень плотной, а стрелки залезут не только на предыдущую строку, но и смешаются со стрелками от следующего упражнения.

3) В случае умножения скобок в формате 3 на 2 стрелки проводятся от короткой скобки к длинной. Иначе этих «фонтанчиков» будет не два, а три. Реализация третьего заметно усложняется в виду отсутствия для стрелок свободного пространства.
4) стрелки всегда направляются из одной точки. Один мой ученик все время порывался их поставить рядом и вот, что у него получалось:

Такое расположение не позволяет выделять и фиксировать текущее слагаемое, с которым ученик работает на каждом из этапов.

Работа пальцев репетитора

4) Для удержания внимания на отдельной паре умножаемых слагаемых, репетитор по математике прикладывает к ним два пальца. Это надо делать так, чтобы не закрывать ученику обзор. Для наиболее невнимательных школьников можно использовать метод «пульсации». Репетитор по математике подводит первый палец к началу стрелки (к одному из слагаемых) и фиксирует его, а вторым «стучит» по ее концу (по второму слагаемому). Пульсация помогает собрать внимание на том слагаемом, на которое ученик умножает. После того, как выполнено первое умножение на правую скобку, репетитор по математике говорит: «Теперь работаем с другим слагаемым». Репетитор передвигает к нему «неподвижный палец», а «пульсирующим» пробегает по слагаемым из другой скобки. Пульсация работает словно «поворотник» в автомобиле и позволяет собирать внимание рассеянного ученика на проводимой им операции. Если ребенок пишет мелко, то вместо пальцев используются два карандаша.

Оптимизация повторения

Как и при изучении любой другой темы курса алгебры умножение многочленов можно и нужно интегрировать с ранее пройденным материалом. Для этого репетитор по математике использует специальные задания-мостики, позволяющие найти применение изучаемого в различных математических объектах. Они не только соединяют темы в единое целое, но и весьма эффективно организуют повторение всего курса математики. И чем больше мостиков построит репетитор, тем лучше.

Традиционно в учебниках алгебры для 7 класса расскрытие скобок интегрируется с решением линейных уравнений. В конце cписка номеров всегда имеются задания такого порядка: решить уравнение . При раскрытии скобок квадраты сокращаются и уравнение легко решается средствами 7 класса. Однако, почему-то про построение графика линейной функции авторы учебников благополучно забывают. Дабы исправить этот недостаток я бы посоветовал репетиторам по математике включать скобоки в аналитические выражения линейных функций, например . На таких упражнениях ученик не только тренирует навыки проведения тождественных преобразований, но еще и повторяет графики. Можно попросить найти точку пересечения двух «монстров», определить взаимное расположение прямых, найти точки их пересечения с осями и т.д.

Колпаков А.Н. Репетитор по математике в Строгино. Москва

В данной статье мы подробно рассмотрим основные правила такой важной темы курса математики, как раскрытие скобок. Знать правила раскрытия скобок нужно для того, чтобы верно решать уравнения, в которых они используются.

Как правильно раскрывать скобки при сложении

Раскрываем скобки, перед которыми стоит знак « + »

Эта самый простой случай, ибо если перед скобками стоит знак сложения, при раскрытии скобок знаки внутри них не меняются. Пример:

(9 + 3) + (1 - 6 + 9) = 9 + 3 + 1 - 6 + 9 = 16.

Как раскрыть скобки, перед которыми стоит знак « - »

В данном случае нужно переписать все слагаемые без скобок, но при этом сменить все знаки внутри них на противоположные. Знаки меняются только у слагаемых из тех скобок, перед которыми стоял знак « - ». Пример:

(9 + 3) - (1 - 6 + 9) = 9 + 3 - 1 + 6 - 9 = 8.

Как раскрыть скобки при умножении

Перед скобками стоит число-множитель

В данном случае нужно умножить каждое слагаемое на множитель и раскрыть скобки, не меняя знаков. Если множитель имеет знак « - », то при перемножении знаки слагаемых меняются на противоположные. Пример:

3 * (1 - 6 + 9) = 3 * 1 - 3 * 6 + 3 * 9 = 3 - 18 + 27 = 12.

Как раскрыть две скобки со знаком умножения между ними

В данном случае нужно каждое слагаемое из первых скобок перемножить с каждым слагаемым из вторых скобок и затем сложить полученные результаты. Пример:

(9 + 3) * (1 - 6 + 9) = 9 * 1 + 9 * (- 6) + 9 * 9 + 3 * 1 + 3 * (- 6) + 3 * 9 = 9 - 54 + 81 + 3 - 18 + 27 = 48.

Как раскрыть скобки в квадрате

В случае, если сумма или разность двух слагаемых возведена в квадрат, скобки следует раскрывать по следующей формуле:

(х + у) ^ 2 = х ^ 2 + 2 * х * у + у ^ 2.

В случае с минусом внутри скобок формула не меняется. Пример:

(9 + 3) ^ 2 = 9 ^ 2 + 2 * 9 * 3 + 3 ^ 2 = 144.

Как раскрыть скобки в другой степени

Если сумма или разность слагаемых возводится, например, в 3 или 4-ю степень, то нужно просто разбить степень скобки на «квадраты». Степени одинаковых множителей складываются, а при делении из степени делимого вычитается степень делителя. Пример:

(9 + 3) ^ 3 = ((9 + 3) ^ 2) * (9 + 3) = (9 ^ 2 + 2 * 9 * 3 + 3 ^ 2) * 12 = 1728.

Как раскрыть 3 скобки

Бывают уравнения, в которых перемножаются сразу 3 скобки. В таком случае нужно сначала перемножить между собой слагаемые первых двух скобок, и затем сумму этого перемножения умножить на слагаемые третьей скобки. Пример:

(1 + 2) * (3 + 4) * (5 - 6) = (3 + 4 + 6 + 8) * (5 - 6) = - 21.

Данные правила раскрытия скобок одинаково распространяются для решения как линейных, так и тригонометрических уравнений.

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.