Таблица стандартных разложений. Разложение в ряд маклорена на примерах

В теории функциональных рядов центральное место занимает раздел, посвященный разложению функции в ряд.

Таким образом, ставится задача: по заданной функции требуется найти такой степенной ряд

который на некотором интервале сходился и его сумма была равна
, т.е.

= ..

Эта задача называется задачей разложения функции в степенной ряд.

Необходимым условием разложимости функции в степенной ряд является её дифференцируемость бесконечное число раз – это следует из свойств сходящихся степенных рядов. Такое условие выполняется, как правило, для элементарных функций в их области определения.

Итак, предположим, что функция
имеет производные любого порядка. Можно ли её разложить в степенной ряд, если можно, то как найти этот ряд? Проще решается вторая часть задачи, с неё и начнем.

Допустим, что функцию
можно представить в виде суммы степенного ряда, сходящегося в интервале, содержащем точкух 0 :

= .. (*)

где а 0 1 2 ,...,а п ,... – неопределенные (пока) коэффициенты.

Положим в равенстве (*) значение х = х 0 , тогда получим

.

Продифференцируем степенной ряд (*) почленно

= ..

и полагая здесь х = х 0 , получим

.

При следующем дифференцировании получим ряд

= ..

полагая х = х 0 , получим
, откуда
.

После п -кратного дифференцирования получим

Полагая в последнем равенстве х = х 0 , получим
, откуда

Итак, коэффициенты найдены

,
,
, …,
,….,

подставляя которые в ряд (*), получим

Полученный ряд называется рядом Тейлора для функции
.

Таким образом, мы установили, что если функцию можно разложить в степенной ряд по степеням (х - х 0 ), то это разложение единственно и полученный ряд обязательно является рядом Тейлора.

Заметим, что ряд Тейлора можно получить для любой функции, имеющей производные любого порядка в точке х = х 0 . Но это еще не означает, что между функцией и полученным рядом можно поставить знак равенства, т.е. что сумма ряда равна исходной функции. Во-первых, такое равенство может иметь смысл только в области сходимости, а полученный для функции ряд Тейлора может и расходиться, во-вторых, если ряд Тейлора будет сходиться, то его сумма может не совпадать с исходной функцией.

3.2. Достаточные условия разложимости функции в ряд Тейлора

Сформулируем утверждение, с помощью которого будет решена поставленная задача.

Если функция
в некоторой окрестности точки х 0 имеет производные до (n + 1)-го порядка включительно, то в этой окрестности имеет место формула Тейлора

где R n (х )-остаточный член формулы Тейлора – имеет вид (форма Лагранжа)

где точка ξ лежит между х и х 0 .

Отметим, что между рядом Тейлора и формулой Тейлора имеется различие: формула Тейлора представляет собой конечную сумму, т.е. п - фиксированное число.

Напомним, что сумма ряда S (x ) может быть определена как предел функциональной последовательности частичных сумм S п (x ) на некотором промежутке Х :

.

Согласно этому, разложить функцию в ряд Тейлора означает найти такой ряд, что для любого х X

Запишем формулу Тейлора в виде, где

Заметим, что
определяет ту ошибку, которую мы получаем, заменяй функцию f (x ) многочленом S n (x ).

Если
, то
,т.е. функция разлагается в ряд Тейлора. Инаоборот, если
, то
.

Тем самыммы доказали критерий разложимости функции в ряд Тейлора.

Для того, чтобы в некотором промежутке функция f (х) разлагалась в ряд Тейлора, необходимо и достаточно, чтобы на этом промежутке
, где R n (x ) - остаточный член ряда Тейлора.

С помощью сформулированного критерия можно получить достаточные условия разложимости функции в ряд Тейлора.

Если в некоторой окрестности точки х 0 абсолютные величины всех производных функции ограничены одним и тем же числом М 0, т.е.

, т о в этой окрестности функция разлагается в ряд Тейлора.

Из вышеизложенного следует алгоритм разложения функции f (x ) в ряд Тейлора в окрестности точки х 0 :

1. Находим производные функции f (x ):

f(x), f’(x), f”(x), f’”(x), f (n) (x),…

2. Вычисляем значение функции и значения её производных в точке х 0

f(x 0 ), f’(x 0 ), f”(x 0 ), f’”(x 0 ), f (n) (x 0 ),…

3. Формально записываем ряд Тейлора и находим область сходимости полученного степенного ряда.

4. Проверяем выполнение достаточных условий, т.е. устанавливаем, для каких х из области сходимости, остаточный член R n (x ) стремится к нулю при
или
.

Разложение функций в ряд Тейлора по данному алгоритму называют разложением функции в ряд Тейлора по определению или непосредственным разложением.

Как вставить математические формулы на сайт?

Если нужно когда-никогда добавлять одну-две математические формулы на веб-страницу, то проще всего сделать это, как описано в статье : математические формулы легко вставляются на сайт в виде картинок, которые автоматически генерирует Вольфрам Альфа. Кроме простоты, этот универсальный способ поможет улучшить видимость сайта в поисковых системах. Он работает давно (и, думаю, будет работать вечно), но морально уже устарел.

Если же вы постоянно используете математические формулы на своем сайте, то я рекомендую вам использовать MathJax - специальную библиотеку JavaScript, которая отображает математические обозначения в веб-браузерах с использованием разметки MathML, LaTeX или ASCIIMathML.

Есть два способа, как начать использовать MathJax: (1) при помощи простого кода можно быстро подключить к вашему сайту скрипт MathJax, который будет в нужный момент автоматически подгружаться с удаленного сервера (список серверов ); (2) закачать скрипт MathJax с удаленного сервера на свой сервер и подключить ко всем страницам своего сайта. Второй способ - более более сложный и долгий - позволит ускорить загрузку страниц вашего сайта, и если родительский сервер MathJax по каким-то причинам станет временно недоступен, это никак не повлияет на ваш собственный сайт. Несмотря на эти преимущества, я выбрал первый способ, как более простой, быстрый и не требующий технических навыков. Следуйте моему примеру, и уже через 5 минут вы сможете использовать все возможности MathJax на своем сайте.

Подключить скрипт библиотеки MathJax с удаленного сервера можно при помощи двух вариантов кода, взятого на главном сайте MathJax или же на странице документации :

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Любой фрактал строится по определенному правилу, которое последовательно применяется неограниченное количество раз. Каждый такой раз называется итерацией.

Итеративный алгоритм построения губки Менгера достаточно простой: исходный куб со стороной 1 делится плоскостями, параллельными его граням, на 27 равных кубов. Из него удаляются один центральный куб и 6 прилежащих к нему по граням кубов. Получается множество, состоящее из 20 оставшихся меньших кубов. Поступая так же с каждым из этих кубов, получим множество, состоящее уже из 400 меньших кубов. Продолжая этот процесс бесконечно, получим губку Менгера.

Если функция f(x) имеет на некотором интервале, содержащем точку а , производные всех порядков, то к ней может быть применена формула Тейлора:

где r n – так называемый остаточный член или остаток ряда, его можно оценить с помощью формулы Лагранжа:

, где число x заключено между х и а .

Если для некоторого значения х r n ®0 при n ®¥, то в пределе формула Тейлора превращается для этого значения в сходящийся ряд Тейлора :

Таким образом, функция f(x) может быть разложена в ряд Тейлора в рассматриваемой точке х , если:

1) она имеет производные всех порядков;

2) построенный ряд сходится в этой точке.

При а =0 получаем ряд, называемый рядом Маклорена :

Пример 1 f(x)= 2 x .

Решение . Найдем значения функции и ее производных при х =0

f(x) = 2 x , f(0) = 2 0 =1;

f¢(x) = 2 x ln2, f¢(0) = 2 0 ln2= ln2;

f¢¢(x) = 2 x ln 2 2, f¢¢(0) = 2 0 ln 2 2= ln 2 2;

f (n) (x) = 2 x ln n 2, f (n) (0) = 2 0 ln n 2= ln n 2.

Подставляя полученные значения производных в формулу ряда Тейлора, получим:

Радиус сходимости этого ряда равен бесконечности, поэтому данное разложение справедливо для -¥