Строение питание и размножение одноклеточных водорослей. Доклад: Одноклеточные зелёные водоросли


Водоросли характеризуются большим разнообразием строе-­
ния. Они бывают одноклеточны­ми, колониальными и многокле­точными.

В условиях Беларуси широко распространены такие автотрофные и автогетеротрофные одно­клеточные водоросли, как хло­релла, эвглена зеленая и др.

Хлорелла часто встречается в пресных водоемах, на сырой зем­ле, коре деревьев. Хлорел­ла - одноклеточный организм шаровидной формы. Клетка ее покрыта плотной гладкой оболоч­кой. В цитоплазме содержатся ядро, чашевидный хлоропласт и другие органеллы.

Размножается хлорелла бес­полым путем, образуя множество спор. Споры еще внутри ма­теринской клетки покрываются собственной оболочкой и затем выходят наружу. В дальнейшем спора вырастает во взрослую особь.

Эвглена зеленая обитает в не­больших пресных водоемах со сто­ячей водой - лужах, озерах, боло­тах, а так лее на влажной почве. В летнее время молено наблюдать, как в небольшом пруду или луже вода становится зеленой - «цве­тет». Причиной этого «цветения» может быть массовое развитие эвг­лены. Под микроскопом в капле воды, взятой из такого водоема, можно рассмотреть ее строение.


Строение эвглены зеленой: 1 - глазок; 2 - хлоропласту; 3 - ядро; 4 - запасные питательные вещества; 5 - сократительная вакуоль; 6 - жгутик.

Тело эвглены зеленой дли­ной около 0,05 мм имеет вытя­нутую обтекаемую форму, хо­рошо приспособленную к дви­жению в воде. На­ружный слой цитоплазмы у эв­глены уплотнен и называется пелликулой, которая придает клетке форму. На переднем конце тела эвглены находится углубление. Оно является вы­водным каналом сократитель­ной вакуоли, а из отверстия углубления выходит жгутик - органоид движения. По­стоянно вращая жгутиком, эвг­лена как бы ввинчивается в воду и за счет этого плывет вперед. В цитоплазме эвглены располага­ются ядро, ярко-красный свето­чувствительный глазок и около 20 хлоропластов, содержащих хлорофилл.

Питание. Особенностью эвг­лены является способность ме­нять характер питания и обмена веществ в зависимости от усло­вий среды обитания. На свету ей присущ автотрофный тип пита­ния. Эвглены всегда находятся в освещенной части водоема, где более благоприятные условия для фотосинтеза. Находить осве­щенные места эвглене помогает светочувствительный глазок, расположенный на переднем конце тела.

Если эвглену поместить на длительное время в темноту, она теряет хлорофилл и становится бесцветной. В отсутствие хлоро­филла фотосинтез прекращает­ся, эвглена начинает усваивать готовые органические вещества, т.е. переходит от автотрофного к гетеротрофному (сапротрофно му) способу питания. Вот почему в водах, обогащенных органичес­кими веществами, эвглена раз­вивается в массовых количе­ствах.

Гетеротрофное питание у эвг­лены осуществляется путем вса­сывания органических веществ всей поверхностью тела.

Часто, развиваясь в загряз­ненных водоемах, где имеется большое количество растворен­ных органических веществ, эвг­лена сочетает оба типа питания - и автотрофный, и гетеротрофный. Способность эвглены изменять характер питания обеспечивает возможность выживания в раз­личных условиях существова­ния. Таким образом, эвглена зе­леная является автогетеротроф­ным протистом.

Отличительной особенностью ав­тогетеротрофных протистов яв­ляется их способность питаться двумя способами: на свету - как растения, а в темноте - как животные. Это значит, что на свету они осуществляют процесс фо­тосинтеза и создают органические веще­ства. При недостаточном для фотосинтеза освещении и при обилии органических ве­ществ в воде они усваивают готовые органические вещества, которые образуются в во­доеме при расщеплении отмерших частей живых организмов.

Дыхание и выделение у эв­глены зеленой происходит так нее, как и у других пресновод­ных протистов.

Сократительная вакуоль, в которой скапливается избыток воды с растворенными продук­тами обмена веществ, при со­кращении выводит свое содер­жимое наружу. Этот процесс происходит ритмично через каждые 20-30 с.

Размножение. Бесполое размножение эвглены начина­ется с деления ядра, хлоропластов, светочувствительного глазка и образования второго жгутика. Затем на переднем конце клетки между жгутика­ми появляется разделительная щель, которая постепенно уве­личивается. В конце продоль­ного деления дочерние клетки, связанные между собой своими задними концами, расходятся. При благоприятных условиях процесс деления клетки про­должается 2-4 ч.

Половое размножение у эвг­лены научно не установлено.

Неблагоприятные условия среды обитания эвглена, как и амеба, переносит в состоянии цисты.

Хламидомонада часто встре­чается в тех лее загрязненных органическими веществами во­доемах, что и эвглена. В прош шлом году вы познакомились с ее строением, питанием, раз­множением. К этому следует до­бавить еще одну очень важную особенность хламидомонады. Оказывается, что наряду с ав-тотрофным способом питания она способна поглощать через оболочку растворенные в воде органические вещества и таким образом участвовать в очище­нии загрязненной воды.

Хламидомонада размножа­ется бесполым и половым путя­ми. В благоприятных условиях хламидомонада размножается бесполым способом. При этом хламидомонада утрачивает жгутики, перестает двигаться. Ее ядро делится дважды: обра­зуется четыре дочерних ядра. Затем протопласт делится на че­тыре части. Таким образом внутри материнской клетки об­разуется четыре, а иногда во­семь зооспор. Каждая из них по­крывается оболочкой, а на пе­реднем конце образуется два жгутика. Оболочка материнс­кой клетки разрывается, и зоо­споры развиваются в дочерние хламидомонады, которые начи­нают самостоятельное суще­ствование. Они быстро растут и через сутки способны к новому делению.

В неблагоприятных услови­ях (например, при подсыхании водоема) у хламидомонады про­исходит половое размножение. При этом ее содержимое делится на 6, 32, 64 мелкие подвижные

половые клетки - гаметы. Они выплывают в воду и сливаются с гаметами другой особи. Так происходит оплодотворение, в результате которого образуется одна клетка - зигота. Она не имеет жгутиков, покрыта тол­стой оболочкой и устойчива к не­благоприятным условиям. При наступлении благоприятных ус­ловий из зиготы развивается не­сколько хламидомонад.

Диатомовые водоросли. В морях и пресных водах всех климатичес­ких зон встречаются диатомовые водоросли. Под микроскопом можно уви­деть, что форма этих одноклеточных орга­низмов бывает очень разнообразной. Общим для всех диатомовых во­дорослей является наличие прочного крем­неземного панциря. Этот панцирь состоит из двух половин, которые подогнаны одна к другой, как коробка с крышкой. Желто-бурый цвет придают диатомовым водорос­лям пигменты, маскирующие хлорофилл. Размножение диатомовых водорослей происходит половым и бесполым путем посред­ством деления клеток. В результате увели­чения объема цитоплазмы половинки пан­циря расходятся, и ядро и цитоплазма де­лятся. Каждая дочерняя клетка заново об­разует недостающую половинку панциря.

В пресных водах диатомовые водорос­ли в основном находятся на дне водоемов. Морские диатомовые водоросли живут в воде во взвешенном состоянии. Капелька жира, содержащаяся в клетке водоросли, позволяет ей легко поддерживать такое состояние. Диатомовые водоросли состав­ляют важную кормовую базу для живот­ных, живущих на отмелях, например для моллюсков. На одном квадратном санти­метре земли, заливаемой приливом, часто живет свыше миллиона диатомовых водо­рослей, образующих там бурый налет. На диатомовых водорослях «пасутся» мол­люски, а ими, в свою очередь, питаются другие животные, например серебристая чайка и гага.

Диатомовые водоросли находятся в са­мом начале пищевой цепи: диатомовые во­доросли → моллюски → птицы.

Почти неразлагающиеся панцири диа-


Диатомовые водоросли морских и пресных водоемов: 1 - табеллярия; 2- пиннулярия; 3 - табеллярия; 4 - ризосоления; 5 - фрагилярия; 6 - стефанодискус; 7 - навикула; 8 - астерионелла; 9 - циклотелла.


томовых водорослей образовали на протя­жении геологических эпох мощные слои осадочной породы диатомит. Сегодня эти отложения разрабатываются. Благодаря тонкой структуре и твердости раковин диа­томит используется как шлифовальный и полировальный материал, а также для из­готовления фильтров. В аптеках кремнезем предлагается в качестве средства для ухода за кожей, волосами и ногтями. Структура панцирей диатомовых водорослей настоль­ко тонка и правильна, что их можно ис­пользовать для проверки качества микро­скопов.

Колониальные водоросли. Вольвокс. В небольших пресно­водных водоемах (прудах, озе­рах) встречаются плавающие зе­леные шарики диаметром 1-2 мм. Это вольвокс. При рассмотрении под микроско­пом видно, что он образован мно­жеством отдельных клеток, рас­положенных по периферии ша­рика в один слой. Число их колеб­лется от 500 до 60 000.

Колония вольвокса с дочерними коло­ниями внутри материнской.

Клетки - это отдельные организмы, объединенные в ко­лонию. Клетки вольвокса похо­жи на хламидомонаду. Они имеют по два жгутика. Согласо­ванная работа жгутиков обеспе­чивает вращательное (волчко-образное) движение колонии (отсюда и название этого орга­низма: «вольвокс» означает «волчок»).

Основная масса колонии со­стоит из полужидкого студенис­того вещества, которое образо­валось в результате ослизнения клеточных стенок. Наружный слой студенистого вещества бо­лее плотный, что придает всей колонии определенную форму.

В колонии вольвокса отдель­ные особи не полностью изоли­рованы одна от другой. Они сра­щены своими боковыми стенка­ми и соединены между собой тон­кими цитоплазматическими мо­стиками.

Для вольвокса характерна дифференцировка, или специа­лизация, клеток в колонии. Одни из них - вегетативные, не способные к размножению, другие - клетки бесполого и по­лового размножения. В коло­нии вольвокса клеток размно­жения немного - от 4 до 10. В летнее время эти клетки много­кратно делятся и образуют не­сколько новых дочерних коло­ний внутри материнской. Когда размеры дочерних колоний уве­личиваются настолько, что они не могут поместиться внутри материнской, последняя раз­рывается и погибает, а дочер­ние колонии выходят наружу.

При половом размножении в специализированных клет­ках колонии развиваются га­меты, в результате слияния ко­торых образуется зигота. После периода покоя из зиготы после ряда последовательных делений развивается новая колония.

Наличие таких организмов, как вольвокс со специализиро­ванными клетками, выполняю­щими разные функции, дает ос­нование предполагать, что разви­тие многоклеточных организмов от одноклеточных могло идти че­рез колониальные формы.

К водорослям относятся одноклеточные, колониальные и многоклеточные организмы, способные осуществлять фото­синтез. Способность к фотосин­тезу обеспечивается наличием в их клетках хлоропластов. Во­доросли имеют разные форму и размеры. Они живут преиму­щественно в воде и заселяют те водные глубины, куда прони­кает свет. Эвглена зеленая и хламидомонада - типичные представители автогетеротроф­ных протистов(водорослей).

В пресноводных и морских водоемах широко распростране­ны многоклеточные водоросли. Тело многоклеточных водорос­лей называется слоевищем. От личительная черта слоевища - сходство клеток и отсутствие тка­ней и органов. Все клетки слоеви­ща устроены почти одинаково, и все части тела выполняют одина­ковые функции. В теле водоросли вещества передвигаются от клетки к клетке, причем происходит это очень медленно.

Клетки слоевища могут де­литься в одном направлении, об­разуя нити, или в двух направле­ниях - образуя пластинки. Среди водорослей встречаются виды не только микроскопически малых размеров, но и такие, которые до­стигают длины свыше 100 м (на­пример, бурая водоросль макроцистис грушеносный достигает длины 160 м).

Водоросли играют важную роль в природе, участвуя в образо­вании органических веществ и кислорода.

Многоклеточные водоросли бывают нитчатыми, пластинчатыми, кустистыми. Они, как правило, ведут при­крепленный образ жизни.

Улотрикс. Эта водоросль жи­вет преимущественно в пресных, реже в морских водоемах. Она прикрепляется к подводным предметам, формируя ярко-зеле­ные кустики высотой до 10 см.

Нити улотрикса состоят из од­ного ряда цилиндрических кле­ток с толстыми целлюлозными оболочками. Для улотрикса ха­рактерны хлоропласты в виде пластинки, образующей незамк­нутый поясок.

Бесполое размножение осуще­ствляется разрывом нити на корот­кие участки, каждый из которых развивается в новую нить, или 4-жгутиковыми зооспорами. Они выходят из материнской клетки, утрачивают жгутики, прикрепля­ются боком к субстрату и прораста­ют в новую нить. При половом размножении

Улотрикс: 1 - внешний вид; 2 - фраг­мент нити с зооспорами и гаметами; 3 - зооспора; 4, 5 - гаметы и их копуляция.

происходит слияние гамет с об­разованием зиготы. Зигота вна­чале плавает, затем оседает на дно, утрачивает жгутики, выра­батывает плотную оболочку и слизистую ножку, которой при­крепляется к субстрату. После периода покоя происходит деле­ние ядра и зигота прорастает зоо­спорами.

Смена поколений у водорос­лей. У некоторых видов водорос­лей и гаметы, и споры могут раз­виваться в клетках одной особи. При высокой температуре, на­пример, водоросль производит споры, а при низкой - гаметы.

У других водорослей особи одного вида могут быть двух сор­тов. Одни из них производят споры. Их называют спорофи­ты, и они имеют двойной набор хромосом в клетках своего тела. Другие производят гаметы. Их называют гаметофиты, и они имеют одинарный набор хромо­сом в клетках.

Гаметофит может быть внеш­не похожим на спорофит, а мо­жет отличаться по форме и раз­мерам. У улотрикса нитчатый многоклеточный гаметофит (по­коление, формирующее гаметы) сменяется одноклеточным споро­фитом - поколением, являю­щимся результатом полового процесса и формирующим споры.

У ламинарии, напротив, га­метофит микроскопический, а спорофит представляет собой ленту длиной до 15м.

Спирогира. В стоячих и мед­ленно текущих водоемах часто встречается спирогира. Она пред­ставляет собой тонкую нить, со­стоящую из цилиндрических, расположенных в один ряд од­ноядерных клеток с хорошо за­метной клеточной оболочкой. Снаружи нити по­крыты толстым слоем слизи, по­этому тина и слизистая на ощупь. Вместе с другими нитча­тыми зелеными водорослями спирогира образует большие мас­сы тины ярко-зеленого цвета.

Характерным признаком спирогиры является то, что хлоропласт имеет вид спирально закрученной ленты, расположен­ной в цитоплазме вдоль клеточ­ной стенки. Большая часть каж­дой клетки занята вакуолью с клеточным соком. В центре клетки расположено ядро, за­ключенное в цитоплазматиче-


Размножение улотрикса и чередование поколений: а - дочерние (новые) водоросли; б - водоросли, образующие гаметы (гаметофиты): 1 - прорастание зооспоры; 2 - гаметы; 3 - слияние гамет; 4 - зигота (спорофит); 5 - прорастание зиготы четырехжгутиковыми зооспорами.


ский мешочек, соединенный тя­жами с постенной цитоплазмой.

Бесполое размножение у спи­рогиры осуществляется путем разрыва нити на отдельные ко­роткие участки. Размножение

Спирогира: а - часть нити; б - поло­вой процесс (конъюгация): 1 - хлоро­пласт; 2 - ядро; 3 - зигота.

спорами отсутствует. Для спиро­гиры характерно также половое размножение.

При половом размножении обыч­но две нити располагаются рядом. В их клетках возникают вы­пячивания стенок, которые растут навстре­чу друг другу. В месте их соприкосновения стенки растворяются, и между клетками двух нитей образуется сквозной канал. Че­рез этот канал содержимое клетки одной нити перемещается в клетку другой нити и сливается с ее содержимым. В результате образуется зигота. Такой тип полового про­цесса называется конъюгацией. Образовавшиеся зиготы с толстой обо­лочкой после периода покоя прорастают. Этому предшествует двухкратное деление ядра: из четырех получившихся ядер три отмирают,

Морские водоросли: 1 - ульва; 2 - фукус.

а одно остается ядром единственного проростка, который выходит в месте разрыва оболочки зиготы и развива­ется во взрослую водоросль.

Ульва. Ульва известна под на­званием «морской салат», так как население многих примор­ских стран употребляет ее в пищу. На мелководье Черного и Японского морей ульва - одна из массовых водорослей. Ее легко узнать по широкому двухслойно­му пластинчатому слоевищу ярко-зеленого цвета.

Слоевище ульвы состоит из почти однотипных клеток. Лишь у основания они более крупные и снабжены отростками, с помо­щью которых растения прикреп­ляются к субстрату. Размножает­ся ульва бесполым (четырехжгутиковыми зооспорами) и поло­вым способами. Специализиро­ванных органов размножения у нее нет, зооспоры и гаметы обра­зуются в обычных клетках.

Ламинария. В морях обитают водоросли, имеющие желто-бу­рую окраску слоевища. Это так называемые бурые водоросли. Окраска их слоевища обусловле­на высоким содержанием в клет­ках особых пигментов. Тело бу­рых водорослей имеет вид нитей или пластин. Типичным предста­вителем этой группы водорослей является ламинария, которая из­вестна под названием «морская капуста». Она имеет пластинчатое слоевище длиной до 10 - 15 м. Ламинария при­крепляется к субстрату выроста­ми слоевища - ризоидами. Раз­множается зооспорами и поло­вым путем.

Ламинария используется в пищу, идет на корм скоту как пи­щевая добавка, содержащая мно­гие химические элементы и боль­шое количество йода. Использу­ется ламинария также для полу­чения йода и углеводов, приме­няемых в пищевой, медицинской и микробиологической промыш­ленности.

На мелководье густые заросли об­разует фукус . Его слоевище более расчлененное, чем у ламинарии. В верхней части слоевища имеются специальные пузыри с воздухом, благодаря чему тело фукуса удерживается в вертикальном положении.

Приспособления водорослей к условиям обитания. Для орга­низмов, обитающих в океанах, морях, реках и других водо­емах, вода является их средой обитания. Условия этой среды



Морские водоросли: 1 - ламинария; 2 - аллария; 3 - ундария; 4 - филлофора; 5 - гелидиум; 6 - анфельция.


заметно отличаются от назем­ных условий. Для водоемов ха­рактерны постепенное ослабле­ние освещенности по мере по­гружения на глубину, колеба­ния температуры и солености, низкое содержание кислоро­да в воде - в 30-35 раз мень­ше, чем в воздухе. Кроме того, для морских водорослей боль­шую опасность представляет движение воды, особенно в при­брежной (приливно-отливной) зоне. Здесь водоросли подверга­ются воздействию таких мощ­ных факторов, как прибой и удары волн, отливы, приливы и др.

Выживание водорослей в та­ких жестких условиях водной среды возможно за счет ряда особенностей строения.

1. При недостатке влаги обо­лочки клеток значительно утол­щаются, пропитываются неор­ганическими и органическими веществами, которые защища­ют организм от высыхания в пе­риод отлива.

2. Слоевище морских водорос­лей прочно прикреплено к грун­ту, поэтому в случае прибоя и

ударов волн они сравнительно редко отрываются от грунта.

3. Глубоководные водоросли содержат более крупные хло-ропласты с высоким содержани­ем хлорофилла и других фото-синтезирующих пигментов.

4. У некоторых водорослей имеются специальные пузыри, заполненные воздухом. Они, как поплавки, удерживают сло-евище у поверхности воды, где есть возможность улавливать максимальное количество света для фотосинтеза.

5. Выход спор и гамет у морс­ких водорослей совпадает с прили­вом. Развитие зиготы происходит сразу же после оплодотворения, что предотвращает ее унос в океан.

Значение водорослей. Повсе­местное распространение водо­рослей определяет их большое значение в биосфере и хозяй­ственной деятельности челове­ка. Благодаря способности к фо­тосинтезу они создают в водо­емах огромное количество орга­нических веществ, которые ис­пользуются водными животны­ми. Иными словами, водоросли являются кормильцами водных животных.

Водоросли являются источ­ником кислорода. Поглощая из воды углекислый газ, водорос­ли насыщают ее кислородом, не­обходимым для всех живых организмов.

Многие водоросли (эвглена, хламидомонада и др.) являются активными санитарами загряз­ненных водоемов, в том числе хозяйственных и бытовых сто­ков городской канализации.

В геологическом прошлом Земли водоросли играли важ­ную роль в образовании горных и меловых пород, известняков, рифов, особых разновидностей угля, были родоначальниками растений, заселивших сушу.

Водоросли чрезвычайно ши­роко используются в различных отраслях хозяйственной дея­тельности человека, в том числе в пищевой, фармацевтической и парфюмерной промышленно­сти. Их возделывают в больших количествах в установках под от­крытым небом с целью получе­ния белков, витаминов.

Большое значение в природе и хозяйственной деятельности человека имеет хлорелла. Быст­рое размножение и высокая ин­тенсивность фотосинтеза (при­мерно в 3-5 раз выше, чем у на­земных растений) приводят к тому, что за сутки масса хлорел­лы увеличивается более чем в 10 раз. При этом в клетках накап­ливаются белки (до 50 % сухой массы клетки), сахара, жиры, витамины и др.

Способность хлореллы в про­цессе фотосинтеза интенсивно поглощать углекислый газ и вы­делять кислород делает возмож­ным использование ее для восста­новления воздуха в замкнутых пространствах космических ко­раблей и подводных лодок.

Водоросли служат сырьем для получения ценных органи­ческих веществ: спиртов, лака, органических кислот, йода. Из водорослей получают также осо­бые вещества, на основе кото­рых изготавливают клей, обла­дающий клеящей силой, в 14 раз превосходящей таковую крахмала. Эти вещества ис­пользуются в текстильной и бу­мажной промышленности для придания бумаге плотности и глянца.

Из красных водорослей полу­чают агар-агар. Он применяется в качестве твердой среды, на ко­торой с добавлением определен­ных питательных веществ вы­ращивают грибы, бактерии. В больших количествах агар-агар используют в пищевой про­мышленности при изготовлении мармелада, пастилы, морожено­го и других изделий.

Человек использует водорос­ли в пищу. Так, на Гавайских ос­тровах из 115 имеющихся там видов водорослей местное насе­ление употребляет в пищу око­ло 60. Наибольшей известнос­тью как лечебное и профилакти­ческое средство пользуется «морская капуста» (некоторые виды бурой водоросли ламина­рии и красной порфиры). Она применяется против желудочно-кишечных расстройств, при за­болевании щитовидной железы, рахите и других болезнях. В сельском хозяйстве водо­росли применяют как органи­ческие удобрения под некото­рые растения и в качестве кор­мовой добавки в рационы до­машних животных.

В пресноводных и морских водоемах широко распростране­ны многоклеточные водоросли. Тело многоклеточных водорос­лей называется слоевищем. От­личительная черта слоевища - сходство строения клеток и от­сутствие тканей и органов. Все клетки слоевища устроены по­чти одинаково, и все части тела выполняют одинаковые функ­ции. Для обитания в воде водо­росли имеют ряд характерных черт. Водоросли играют важную роль в биосфере и хозяйственной деятельности человека.

Зеленые водоросли - самый обширный из всех отделов водорослей, насчитывающий по разным оценкам от 4 до 13 - 20 тысяч видов. Все они имеют зеленый цвет слоевищ, что обусловлено преобладанием в хлоропластах хлорофилла a и b над другими пигментами. Клетки некоторых представителей зеленых водорослей (Хламидомонас, Трентеполия, Гематококкус ) окрашены в красный или оранжевый цвета, что связано с накоплением вне хлоропласта каротиноидных пигментов и их производных.

В морфологическом отношении они отличаются большим разнообразием. Среди зеленых водорослей встречаются одноклеточные, колониальные, многоклеточные и неклеточные представители, активно подвижные и неподвижные, прикрепленные и свободноживущие. Чрезвычайно велик и диапазон их размеров - от нескольких микрометров (что сравнимо по размерам с бактериальными клетками) до 1–2 метров.

Клетки одноядерные или многоядерные, с одним или несколькими хроматофорами, содержащими хлорофилл и каротиноиды. Хлоропласты покрыты двумя мембранами и обычно имеют стигму, или глазок, - фильтр, проводящий синий и зеленый свет к фоторецептору. Глазок состоит из нескольких рядов липидных глобул. Тилакоиды - структуры, где локализованы фотосинтетические пигменты - собраны в стопки (ламеллы) по 2–6. В переходной зоне жгутиков есть звездчатое образование. Жгутиков чаще всего два. Основной компонент клеточной стенки – целлюлоза.

У хлорофит встречаются различные типы питания: фототрофное, миксотрофное и гетеротрофное. Запасной полисахарид зеленых водорослей – крахмал – откладывается внутри хлоропласта. Хлорофиты также могут накапливать липиды, которые откладываются в виде капель в строме хлоропласта и в цитоплазме.

Многоклеточные слоевища нитевидные, трубчатые, пластинчатые, кустистые или иного строения и разнообразной формы. Из известных типов организации таллома у зеленых водорослей отсутствует только амебоидный.

Они широко распространены в пресных и морских водах, в почве и в наземных местообитаниях (на почве, скалах, коре деревьев, стенах домов и пр.). В морях распространено около 1/10 от общего количества видов, которые растут обычно в верхних слоях воды до 20 м. Среди них есть планктонные, перифитонные и бентосные формы. Иначе говоря, зеленые водоросли освоили три основных среды обитания живых организмов: воду – землю – воздух.

Зеленые водоросли обладают положительным (движение к источнику света) и отрицательным (движение от яркого источника света) фототаксисом. Кроме интенсивности освещения, на фототаксис влияет температура. Положительным фототаксисом при температуре 160°С обладают зооспоры видов родов Гематококкус, Улотрикс, Ульва , а также отдельные виды десмидиевых водорослей, у которых движение клеток осуществляется за счет выделения слизи через поры в оболочке.

Размножение. Для зеленых водорослей характерно наличие всех известных способов размножения: вегетативное, бесполое и половое.

Вегетативное размножение у одноклеточных форм происходит делением клетки пополам. Колониальные и многоклеточные формы хлорофит размножаются частями тела (слоевища, или таллома).

Бесполое размножение у зеленых водорослей представлено широко. Осуществляется чаще подвижными зооспорами, реже неподвижными апланоспорами и гипноспорами. Клетки, в которых образуются споры (спорангии), в большинстве случаев ничем не отличаются от остальных вегетативных клеток таллома, реже они имеют иную форму и более крупные размеры. Формирующиеся зооспоры могут быть голыми или покрытыми жесткой клеточной стенкой. Количество жгутиков у зооспор варьирует от 2 до 120. Зооспоры разнообразной формы: шаровидные, эллипсоидные или грушевидные, одноядерные, лишенные обособленной оболочки, с 2–4 жгутиками на переднем, более заостренном конце и хлоропластом в расширенном заднем конце. Обычно они имеют пульсирующие вакуоли и стигму. Зооспоры образуются одиночно или, чаще, в числе нескольких из внутреннего содержимого материнской клетки, выходят наружу через образующееся в оболочке круглое или щелевидное отверстие, реже вследствие ее общего ослизнения. В момент выхода из материнской клетки зооспоры иногда окружены тонким слизистым пузыре, в скором времени расплывающимся (род Улотрикс).

У многих видов вместо зооспор или наряду с ними образуются неподвижные споры – апланоспоры. Апланоспоры - споры бесполого размножения, у которых отсутствуют жгутики, но имеются сократительные вакуоли. Апланоспоры рассматривают как клетки, у которых приостановлено дальнейшее развитие в зооспоры. Они также возникают из протопласта клетки в числе одной или нескольких, но не вырабатывают жгутиков, а, приняв шаровидную форму, одеваются собственной оболочкой, в образовании которой оболочка материнской клетки не участвует. Апланоспоры освобождаются вследствие разрыва или ослизнения оболочек материнских клеток и прорастают после некоторого периода покоя. Апланоспоры с очень толстыми оболочками называются гипноспорами. Они обычно принимают на себя функцию покоящейся стадии. У автоспор, которые представляют собой уменьшенные копии неподвижных вегетативных клеток, отсутствуют сократительные вакуоли. Образование автоспор коррелирует с завоеванием наземных условий, в которых вода не может всегда присутствовать в достаточном количестве.

Половое размножение осуществляется гаметами, возникающих в неизмененных, слегка измененных или значительно преобразованных клетках – гаметангиях. Подвижные гаметы монадного строения, двужгутиковые. Половой процесс у зеленых водорослей представлен различными формами: гологамия, конъюгация, изогамия, гетерогамия, оогамия. При изогамии гаметы морфологически совершенно подобны друг другу и различия между ними являются чисто физиологическими. Зигота одевается толстой оболочкой, нередко со скульптурными выростами, содержит большое количество запасных веществ и прорастает сразу или после некоторого периода покоя. При прорастании содержимое зиготы у большинства видов делится на четыре части, которые выходят из оболочки и прорастают в новые особи. Значительно реже гаметы развиваются в новый организм без слияния, сами по себе, без образования зиготы. Такое размножение называется партеногенезом , а споры, образующиеся из отдельных гамет, – партеноспорами .

При гетерогамии обе гаметы различаются между собой по величине и иногда по форме. Более крупные гаметы, часто менее подвижные, принято считать женскими, меньшие по величине и более подвижные – мужскими. В одних случаях различия эти невелики, и тогда говорят просто о гетерогамии, в других весьма значительны.

Если женская гамета неподвижна и напоминает больше яйцеклетку, то подвижная мужская становится сперматозоидом, а половой процесс получает название оогамии. Гаметангии, в которых возникают яйцеклетки, называются оогониями, от вегетативных клеток они отличаются как по форме, так и по величине. Гаметангии, в которых образуются сперматозоиды, называются антеридиями . Зигота, получившаяся в результате оплодотворения яйцеклетки сперматозоидом, формирует толстую оболочку и называется ооспорой .

При типичной оогамии яйцеклетки крупные, неподвижные и развиваются чаще всего по одной в оогонии, сперматозоиды мелкие, подвижные, образуются в антеридии в большом количестве. Оогонии и антеридии могут развиваться на одной особи, в этом случае водоросли однодомные; если они развиваются на разных особях – двудомные. Оплодотворенная яйцеклетка одевается толстой бурой оболочкой; нередко соседние с ней клетки дают короткие веточки, которые обрастают ооспору, оплетая ее однослойной корой.

Жизненные циклы . У большинства представителей зеленых водорослей жизненный цикл гаплобионтный с зиготической редукцией. У таких видов диплоидной стадией является только зигота – клетка, получающаяся в результате оплодотворения яйцеклетки сперматозоидом. Другой тип жизненного цикла – гаплодиплобионтный со спорической редукцией – встречается у Ульвовых, Кладофоровых и некоторых Трентеполиевых. Для этих водорослей характерно чередование диплоидного спорофита и гаплоидного гаметофита. Гаплодиплобионтный жизненный цикл с соматической редукцией известен только у Празиолы . Наличие диплобионтного жизненного цикла у Бриопсидовых и Дазикладиевых подвергается сомнению.

У некоторых Улотриксовых одна и та же особь может давать начало как зооспорам, так и гаметам. В других случаях зооспоры и гаметы образуются на разных особях, т.е. жизненный цикл водорослей включает в себя как половую (гаметофит), так и бесполую (спорофит) форму развития. Спорофит обычно диплоидный, т.е. имеет в клетках двойной набор хромосом, гаметофит гаплоидный, т.е. имеет одинарный набор хромосом. Это наблюдается в тех случаях, когда мейоз происходит при образовании спор (спорическая редукция) и часть жизненного цикла водоросли от зиготы до образования спор проходит в диплофазе, а часть от споры до образования гамет в гаплофазе. Такой цикл развития характерен для видов рода Ульва.

В пределах Улотриксовых водорослей широко распространена зиготическая редукция, когда мейоз происходит при прорастании зиготы. Диплоидной в этом случае оказывается только зигота, весь остальной жизненный цикл протекает в гаплофазе. Значительно реже встречается гаметическая редукция, когда мейоз происходит при образовании гамет. В этом случае гаплоидными являются только гаметы, а весь остальной цикл диплоидный.

Систематика

До сих пор отсутствует единая устоявшаяся система зеленых водорослей, особенно в отношении группировки порядков в различные предлагаемые классы. Очень долго типу дифференциации таллома придавали основное значение при выделении порядков у зеленых водорослей. Однако в последнее время в связи с накоплением данных об ультраструктурных особенностях жгутиковых клеток, типе митоза и цитокинеза и др. очевидна гетерогенность многих таких порядков.

Отдел включает 5 классов: Ульвофициевые– Ulvophyceae, Брипсодовые – Bryopsidophyceae, Хлорофициевые – Chlorophyceae , Требуксиевые –Trebouxiophyceae , Празиновые – Prasinophyceae .

Класс Ульвофициевые – Ulvophyceae

Известно около 1 тысячи видов. Название класса происходит от типового рода Ulva . Включает виды с нитчатым и пластинчатым талломом. Жизненные циклы разнообразны. Виды преимущественно морские, реже пресноводные и наземные. Некоторые входят в состав лишайников. У морских представителей в клеточных стенках может откладываться известь.

Порядок Улотриксовые – Ulotrichales .

Род Улотрикс (рис. 54). Виды Улотрикса обитают чаще в пресных, реже в морских, солоноватых водоемах и в почве. Они прикрепляются к подводным предметам, формируя ярко-зеленые кустики размером до 10 см и более. Неразветвленные нити Улотрикса , состоящие из одного ряда цилиндрических клеток с толстыми целлюлозными оболочками, прикрепляются к субстрату бесцветной конической базальной клеткой, выполняющей функции ризоида. Характерным является строение хроматофора, который имеет вид постенной пластинки, образующей незамкнутый поясок или кольцо (цилиндр).

Рис. 54. Улотрик c (по:): 1 – нитчатый таллом, 2 – зооспора, 3 – гамета, 4 – копуляция гамет

Бесполое размножение Улотрикса осуществляется 2 следующими способами: распадением нити на короткие участки, развивающиеся в новую нить, или образованием в клетках четырехжгутиковых зооспор. Зооспоры выходят из материнской клетки, сбрасывают один за другим жгутики, прикрепляются боком к субстрату, покрываются тонкой целлюлозной оболочкой и прорастают в новую нить. Половой процесс изогамный. После оплодотворения зигота вначале плавает, затем оседает на дно, теряет жгутики, вырабатывает плотную оболочку и слизистую ножку, которой прикрепляется к субстрату. Это покоящийся спорофит. После периода покоя происходит редукционное деление ядра и зигота прорастает зооспорами. Так в жизненном цикле Улотрикса происходит чередование поколений, или смена половой и бесполой форм развития: нитчатый многоклеточный гаметофит (поколение, формирующее гаметы) сменяется одноклеточным спорофитом – поколением, которое представлено своеобразной зиготой на ножке и способно образовывать споры.

Порядок Ульвовые - Ulvales . Имеют пластинчатое, мешковидное, трубчатое или, редко, нитчатое слоевище всевозможных оттенков зеленого цвета. По краю пластины могут быть волнистыми либо складчатыми, для прикрепления к субстрату снабжены короткой ножкой или основанием с небольшим базальным диском. Морские и пресноводные виды. Наиболее распространены в прибрежных водах дальневосточных морей виды родов Ульва, Монострома, Корнманния и Ульвария.

Род Ульва (рис. 55). Таллом представляет собой светло-зеленую или ярко-зеленую, тонкую двуслойную, нередко перфорированную пластину либо однослойную полую трубку, прикрепленную к субстрату суженным в короткий черешок основанием.

Рис. 55. Ульва : А – внешний вид Ульвы окончатой , Б – поперечный срез таллома, В – внешний вид Ульвы кишечницы

Смена форм развития в жизненном цикле Ульвы сводится к изоморфной, когда бесполая стадия (спорофит) и половая стадия (гаметофит) морфологически подобны друг другу, и гетероморфной, когда они морфологически различны. Гаметофит многоклеточный, пластинчатый, спорофит одноклеточный. На гаметофитах образуются двужгутиковые гаметы, на спорофитах - четырехжгутиковые зооспоры.

Виды рода встречаются в морях всех климатических зон, хотя предпочитает теплые воды. Например, на мелководье Черного и Японского морей Ульва - один из самых массовых родов водорослей. Многие виды Ульвы выносят опреснение воды; их часто можно встретить в устьях рек.

Класс Бриопсидовые Bryopsidophyceae

Известно около 500 видов. Слоевище неклеточное. Образовано простыми или переплетенными сифонными нитями, образующими сложные структуры. Таллом в виде пузырей, кустиков, губчатых, дихотомически разветвленных кустов. Слоевище сегментированное, имитирующее многоклеточное, из нескольких или многих ядерных клеток. Нити и кустики всех оттенков зеленого или буроватого цвета.

Порядок Бриопсидовые Bryopsidales

Большинство видов встречается в пресных и солоноватых водоемах. Некоторые из них растут на почве, на камнях, песке и иногда на солончаках.

Род Бриопсис – нитевидные кустики до 6-8 см высоты, перисто или неправильно разветвленные, верхние веточки с перетяжками у основания. Слоевище сифонного неклеточного строения. Растет единичными кустиками или небольшими куртинами в в прибрежной зоне, обитает в теплых и умеренных морях (приложение, 7Б).

Род Кодиум – шнуровидные дихотомически разветвленные кустики 10–20 см высоты, губчатые. мягкие, прикрепляются дисковидной подошвой. Внутренняя часть слоевища образована сложно переплетенными сифонными нитями. Растет на мягких и твердых грунтах в сублиторальной зоне до глубины 20 м одиночными растениями или небольшими группами (приложение, 7А, Б).

Род Каулерпа включает около 60 видов морских водорослей, ползучие, распростертые на грунте части слоевища которых имеют вид ветвящихся цилиндров, достигающих в длину нескольких десятков сантиметров. Через определенные интервалы вниз от них отходят обильно ветвящиеся ризоиды, закрепляющие растение в грунте, а вверх – плоские листообразные вертикальные побеги, в которых сосредоточены хлоропласты.

Рис. 56. Каулерпа: А – внешний вид таллома; Б – срез таллома с целлюлозными балками

Таллом каулерпы, несмотря на свои крупные размеры, не имеет клеточного строения – в нем полностью отсутствуют поперечные перегородки, и формально он представляет собой одну гигантскую клетку (рис.56). Такое строение таллома называют сифонным . Внутри таллома каулерпы располагается центральная вакуоль, окруженная слоем цитоплазмы, содержащей многочисленные ядра и хлоропласты. Различные части таллома растут у своих верхушек, где скапливается цитоплазма. Центральную полость во всех частях таллома пересекают цилиндрические скелетные тяжи – целлюлозные балки, придающие телу водоросли механическую прочность.

Каулерпа легко размножается вегетативно: при отмирании более старых частей таллома отдельные участки его с вертикальными побегами становятся независимыми растениями. Виды этого рода обитают главным образом в тропических морях, и лишь немногие заходят в субтропические широты, например, распространенная в Средиземном море Каулерпа прорастающая . Эта водоросль предпочитает мелководье со спокойной водой, например, лагуны, защищенные от действия постоянного прибоя коралловыми рифами, и поселяется как на различных твердых субстратах – камнях, рифах, скалах, на песчаном и илистом грунте.

Класс Хлорофициевые Chlorophyceae

Известно около 2,5 тысяч видов. Слоевище одноклеточное или колониальное моннадное, свободно живущее.

Порядок Вольвоксовые - Volvocales .

Род Хламидомонада (рис. 57)включает свыше 500 видов одноклеточных водорослей, которые обитают в пресных, мелких, хорошо прогреваемых и загрязненных водоемах: прудах, лужах, канавах и т.п. При их массовом размножении вода приобретает зеленую окраску. Хламидомонада также обитает на почве и на снегу. Ее тело имеет овальную, грушевидную или шаровидную форму. Клетка одета плотной оболочкой, нередко отстающей от протопласта, с двумя одинаковыми жгутиками на переднем конце; с их помощью хламидомонада активно передвигается в воде. Протопласт содержит 1 ядро, чашевидный хроматофор, стигму и пульсирующие вакуоли.

Рис. 57. Строение и развитие Хламидомонады: А – вегетативная особь; Б – пальмеллевидная стадия; В – размножение (молодые особи внутри материнской клетки)

Хламидомонады размножаются преимущественно бесполым путем. При подсыхании водоема они размножаются делением клетки пополам. Клетки останавливаются, теряют жгутики, стенки их клеток ослизняются, и в таком неподвижном состоянии клетки переходят к делению. Стенки образующихся при этом дочерних клеток также ослизняются, так что в итоге образуется система вложенных друг в друга слизистых обверток, в которых группами располагаются неподвижные клетки. Это - пальмеллевидное состояние водоросли. При попадании в воду клетки снова образуют жгутики, покидают материнскую клетку в виде зооспор и переходят к одиночному монадному состоянию.

В благоприятных условиях хламидомонада интенсивно размножается другим путем – клетка останавливается, и ее протопласт, несколько отстав от стенки, последовательно делится продольно на две, четыре или восемь частей. Эти дочерние клетки образуют жгутики и выходят наружу в виде зооспор, которые вскоре снова приступают к размножению.

Половой процесс у хламидомонады изогамный или оогамный. Гаметы меньших размеров образуются внутри материнской клетки так же, как и зооспоры, но в большем количестве (16, 32 или 64). Оплодотворение происходит в воде. Оплодотворенная яйцеклетка покрывается многослойной оболочкой и оседает на дно водоема. После периода покоя зигота делится мейотически с образованием 4 гаплоидных дочерних особей хламидомонады.

Род Вольвокс – наиболее высокоорганизованные представители порядка, образуют гигантские колонии, состоящие из сотен и тысяч клеток. Колонии имеют вид слизистых, диаметром до 2 мм, шариков, в периферическом слое которых расположено до 50 тыс. клеток со жгутиками, сросшихся своими боковыми ослизненными стенками друг с другом и соединенных плазмодесмами (рис. 58). Внутренняя полость

Рис. 58. Внешний вид колоний Вольвокса

шара заполнена жидкой слизью. В колонии существует специализация клеток: периферическую ее часть составляют вегетативные клетки, а между ними разбросаны более крупные – репродуктивные.

Около десятка из клеток колонии – это гонидии, клетки бесполого размножения. В результате многократных делений они дают начало молодым, дочерним колониям, которые выпадают внутрь материнского шара и освобождаются лишь после его разрушения. Половой процесс – оогамия. Оогонии и антеридии возникают также из репродуктивных клеток. Колонии однодомные и двудомные. Виды рода встречаются в прудах и старицах рек, где в период интенсивного размножения вызывают «цветение» воды.

Класс Требуксиевые – Trebouxiophyceae

Класс назван по типовому роду Trebouxia . Включает в основном одноклеточные коккоидные формы. Встречаются сарциноидные и нитчатые представители. Пресноводные и наземные, реже морские формы, многие формируют симбиозы. Около 170 видов.

Порядок Хлорелловые - Chlorellales . Объединяет коккоидных автоспоровых представителей.

Род Хлорелла – одноклеточные водоросли в виде неподвижного шарика. Клетка одета гладкой оболочкой; содержит одно ядро и пристенный, цельный, рассеченный или лопастной хроматофор с пиреноидом. Клеточная стенка ряда видов наряду с целлюлозой содержит спорополленин – чрезвычайно устойчивое к действию различных ферментов вещество, встречающееся также в пыльцевых зернах и спорах высших растений. Размножается хлорелла бесполым путем, образуя до 64 неподвижных автоспор. Полового размножения нет. Хлорелла распространена в различных водоемах, встречается на сырой почве, коре деревьев, входит в состав лишайников.

Порядок Требуксиевые - Trebouxiales . Включает роды и виды, входящие в состав лишайников.

Род Требуксия – одноклеточная водоросль. Сферические клетки имеют единственный осевой звездчатый хлоропласт с одним пиреноидом. Бесполое размножение осуществляется голыми зооспорами. Встречается или в свободноживущем виде в наземных местообитаниях (на коре деревьев), или как фотобионт лишайников.

Класс Празиновые – Prasinophyceae

Название класса происходит от греч. prasinos – зеленый. Жгутиковые или, реже, коккоидные или пальмеллоидные одноклеточные организмы.

Порядок Пирамимонадовые - Pyramimonadales . Клетки несут 4 или больше жгутиков, три слоя чешуек. Митоз открытый, с веретеном, сохраняющимся в телофазе, цитокинез идет за счет образования борозды деления.

Род Пирамимонас – одноклеточные организмы (рис. 59). От переднего конца клетки отходит 4–16 жгутиков, которые могут быть в пять раз длиннее клетки. Хлоропласт обычно единственный, с одним пиреноидом и одним или больше глазками. Клетки и жгутики покрыты несколькими слоями чешуек. Широко распространены в пресных, солоноватых и морских водах. Встречаются в планктоне и бентосе, могут вызывать "цветение" воды.

Рис. 59. Внешний вид водоросли Пирамимонас

Порядок Хлородендровые Chlorodendrales . Клетки сжатые, с четырьмя жгутиками, покрыты текой, митоз закрытый, цитокинез идет за счет образования борозды деления.

Род Тетраселмис может встречаться в виде подвижных четырехжгутиковых клеток или в виде неподвижных клеток, прикрепленных слизистыми ножками. Клетки покрыты текой. При делении клеток новая тека формируется вокруг каждой дочерней клетки внутри теки материнской. На переднем конце клетки через отверстие в теке выходят жгутики, которые покрыты волосками и чешуйками. Хлоропласт один, с базальным пиренодом. Клетки обычно зеленого цвета, но иногда приобретают красную окраску, что связано с накоплением каротиноидов. Морские представители, могут обитать в морских плоских червях.

Экология и значение

Зеленые водоросли широко распространены по всему миру. Большинство из них можно встретить в пресных водоемах, но немало солоноватоводных и морских форм. Нитчатые зеленые водоросли, прикрепленные или неприкрепленные, наряду с диатомовыми и синезелеными являются преобладающими бентосными водорослями континентальных водоемов. Они встречаются в водоемах различной трофности (от дистрофных до эвтрофных) и с различным содержанием органических веществ (от ксено- до полисапробных), водородных ионов (от щелочных до кислых), при различных температурах (термо-, мезо- и криофилы).

Среди зеленых водорослей имеются планктонные, перифитонные и бентосные формы. В группе морского пикопланктона празиновая водоросль Остреококкус считается самой маленькой эукариотной свободноживущей клеткой. Есть виды зеленых водорослей, которые приспособились к жизни в почве и наземных местообитаниях. Их можно встретить на коре деревьев, скалах, различных постройках, на поверхности почв и в толще воздуха. В этих местообитаниях особенно распространены представители родов Трентеполия и Требуксия . Зеленые водоросли вегетируют в горячих источниках при температуре 35–52°С, а в отдельных случаях до 84°С и выше, нередко при повышенном содержании минеральных солей или органических веществ (сильно загрязненные горячие сточные воды заводов, фабрик, электростанций или атомных станций). Они также преобладают среди криофильных видов водорослей. Они могут вызывать зеленое, желтое, голубое, красное, коричневое, бурое или черное «цветение» снега или льда. Эти водоросли находятся в поверхностных слоях снега или льда и интенсивно размножаются в талой воде при температуре около 0 °С. Лишь немногие виды имеют стадии покоя, тогда как большинство лишены каких-либо специальных морфологических приспособлений к низким температурам.

В пересоленных водоемах преобладают одноклеточные подвижные зеленые водоросли – гипергалобы, клетки которых лишены оболочки и окружены лишь плазмалеммой. Эти водоросли отличаются повышенным содержанием хлористого натрия в протоплазме, высоким внутриклеточным осмотическим давлением, накоплением в клетках каротиноидов и глицерина, большой лабильностью ферментных систем и обменных процессов. В соленых водоемах они нередко развиваются в массовом количестве, вызывая красное или зеленое «цветение» соленых водоемов.

Микроскопические одноклеточные, колониальные и нитчатые формы зеленых водорослей приспособились к неблагоприятным условиям существования в воздушной среде. В зависимости от степени увлажнения их подразделяют на 2 группы: воздушные водоросли, обитающие в условиях только атмосферного увлажнения, и, следовательно, испытывающие постоянную смену влажности и высыхания; водновоздушные водоросли, подвергающиеся действию постоянного орошения водой (под брызгами водопада, прибоя и т. д.). Условия существования водорослей аэрофильных сообществ очень своеобразны и характеризуются, прежде всего, частой и резкой сменой двух факторов - влажности и температуры.

Сотни видов зеленых водорослей обитают в почвенном слое. Почва как биотоп имеет сходство и с водными и с воздушными местообитаниями: в ней есть воздух, но насыщенный водяными парами, что обеспечивает дыхание атмосферным воздухом без угрозы высыхания. Интенсивное развитие водорослей как фототрофных организмов возможно только в пределах проникновения света. В целинных почвах это поверхностный слой почвы толщиной до 1 см, в обрабатываемых почвах он немного толще. Однако в толще почвы, куда не проникает свет, жизнеспособные водоросли обнаруживаются на глубине до 2 м в целинных почвах и до 3 м – в пахотных. Это объясняется способностью некоторых водорослей переходить в темноте к гетеротрофному питанию. Многие водоросли сохраняются в почве в покоящемся состоянии.

Для поддержания своей жизнедеятельности почвенные водоросли имеют некоторые морфологические и физиологические особенности. Это относительно мелкие размеры почвенных видов, а также способность к обильному образованию слизи – слизистых колоний, чехлов и обверток. Благодаря наличию слизи, водоросли быстро поглощают воду при увлажнении и запасают ее, замедляя высыхание. Характерной чертой почвенных водорослей является «эфемерность» их вегетации – способность быстро переходить из состояния покоя к активной жизнедеятельности и наоборот. Они также способны переносить разные колебания температуры почвы. Диапазон выживаемости ряда видов лежит в пределах от -200 до +84 °С и выше. Наземные водоросли составляют важную часть растительности Антарктиды. Они окрашены почти в черный цвет, поэтому температура их тела оказывается выше температуры окружающей среды. Почвенные водоросли являются также важными компонентами биоценозов аридной (засушливой) зоны, где почва в летнее время нагревается до 60–80°С. Защитой от избыточной инсоляции служат темные слизистые чехлы вокруг клеток.

Своеобразную группу представляют эндолитофильные водоросли, связанные с известковым субстратом. Во-первых, это – сверлящие водоросли. Например, водоросли из рода Гомонтия сверлят раковины перловиц и беззубок, внедряются в известковый субстрат в пресных водоемах. Они делают известковый субстрат рыхлым, легко поддающимся различным воздействиям химических и физических факторов. Во-вторых, ряд водорослей в пресных и морских водоемах способны переводить растворенные в воде соли кальция в нерастворимые и отлагающие их на своих талломах. Ряд тропических зеленых водорослей, в частности Галимеда , откладывает в талломе карбонат кальция. Они принимают активное участие в постройке рифов. Гигантские залежи останков Галимеды , иногда достигающие 50 м в высоту, встречаются в континентальных шельфовых водах, связанных с Большим Барьерным Рифом в Австралии и других регионах, на глубине от 12 до 100 м.

Зеленые требуксиевые водоросли, вступая в симбиотические отношения с грибами, входят в состав лишайников. Около 85% лишайников содержат в качестве фотобионта одноклеточные и нитчатые зеленые водоросли, 10% - цианобактерии и 4% (и более) содержат одновременно синезеленые и зеленые водоросли. В качестве эндосимбионтов они существуют в клетках простейших, криптофитовых водорослей, гидр, губок и некоторых плоских червей. Даже хлоропласты отдельных сифоновых водорослей, например Кодиума , становятся симбионтами для голожаберных моллюсков. Эти животные питаются водорослями, хлоропласты которых остаются жизнеспособными в клетках дыхательной полости, причем на свету они очень эффективно фотосинтезируют. Ряд зеленых водорослей развивается на шерсти млекопитающих. Эндосимбионты, претерпевая морфологические изменения по сравнению со свободноживущими представителями, не теряют способности фотосинтезировать и размножаться внутри клеток хозяина.

Хозяйственное значение . Повсеместное распространение зеленых водорослей определяет их огромное значение в биосфере и хозяйственной деятельности человека. Благодаря способности к фотосинтезу они являются основными продуцентами громадного количества органических веществ в водоемах , которые широко используются животными и человеком. Поглощая из воды углекислый газ, зеленые водоросли насыщают ее кислородом, необходимым всем живым организмам. Велика их роль в биологическом круговороте веществ. Быстрое размножение и очень высокая скорость ассимиляции (примерно в 3-5 раз выше, чем у наземных растений) приводят к тому, что за сутки масса водоросли увеличивается более чем в 10 раз. При этом в клетках хлореллы накапливаются углеводы (в селекционных штаммах их содержание достигает 60%), липиды (до 85%), витамины B, С и К. Белок хлореллы, на долю которого может приходиться до 50% сухой массы клетки, содержит все незаменимые аминокислоты. Уникальная способность видов Хлореллы ассимилировать от 10 до 18% световой энергии (против 1–2% у наземных растений) позволяет использовать эту зеленую водоросль для регенерации воздуха в замкнутых биологических системах жизнеобеспечения человека при длительных космических полетах и подводном плавании.

Ряд видов зеленых водорослей используют как индикаторные организмы в системе мониторинга водных экосистем. Наряду с фототрофным способом питания многие одноклеточные зеленые водоросли (хламидомонады) способны всасывать через оболочку растворенные в воде органические вещества, что способствует активному очищению загрязненных вод, в которых развиваются эти виды. Поэтому их применяют для очистки и доочистки загрязненных вод, а также как корм в рыбохозяйственных водоемах.

Некоторые виды зеленых водорослей используются населением ряда стран в пищу . Для пищевых целей, например, в Японии специально культивируют виды рода Ульва . Эти водоросли широко используют, особенно в странах Юго-Восточной Азии, под названием Морского салата. Ульвовые по содержанию белка (до 20%) заметно превосходят другие виды водорослей. Отдельные виды зеленых водорослей используют в качестве продуцентов физиологически активных веществ. Зеленые водоросли - хороший модельный объект для разнообразных биологических исследований. Виды Гематококкуса культивируют для получения астаксантина, Ботриококкус - для получения липидов. В то же время с «цветением» воды одного из озер на Тайване, вызванного Ботриококкусом, связывают гибель рыб.

Виды родов Хлорелла и Хламидомонас - модельные объекты для изучения фотосинтеза в растительных клетках. Хлорелла , благодаря очень высоким темпам размножения, является объектом массового культивирования для использования в различных областях

Поверхностные пленки зеленых водорослей имеют большое противоэрозионное значение . Скрепляющее значение имеют некоторые одноклеточные виды зеленых водорослей, выделяющие обильную слизь. Слизистые вещества клеточных оболочек склеивают частицы почвы. Развитие водорослей влияет на структурирование мелкозема, придавая ему водостойкость и препятствуя выносу с поверхностного слоя. Влажность почвы под водорослевыми пленками обычно выше, чем там, где они отсутствуют. Кроме того, пленки уменьшают водопроницаемость почвы и замедляют испарение воды, что оказывает влияние и на солевой режим почвы. Уменьшается вымывание из почвы легкорастворимых солей; их содержание под макроразрастаниями водорослей выше, чем на других участках. В то же время замедляется поступление солей из глубоких слоев почвы.

Почвенные водоросли оказывают влияние и на рост и развитие высших растений. Выделяя физиологически активные вещества, они ускоряют рост проростков, особенно их корней.

Среди зеленых водорослей, обитающих в загрязненных водоемах, доминируют обычно хлорококковые, устойчивые к длительному воздействию многих токсических веществ.

Клетки водорослей способны аккумулировать из воды различные химические элементы, причем коэффициенты их накопления достаточно высоки. Мощными концентраторами являются пресноводные зеленые водоросли, особенно нитчатые. При этом интенсивность накопления в них металлов гораздо выше, чем в других пресноводных гидробионтах. Немалый интерес представляет способность водорослей концентрировать в себе радиоактивные элементы. Отмершие клетки водорослей удерживают накопленные элементы не менее прочно, чем живые, а в некоторых случаях десорбция из мертвых клеток меньше, чем из живых. Способность ряда родов (Хлорелла, Сценедесмус и др.) концентрировать и прочно удерживать в своих клетках химические элементы и радионуклиды позволяет использовать их в специализированных системах очистки для дезактивации промышленных сточных вод, например для дополнительной очистки слабоактивных сточных вод АЭС.

Некоторые зеленые водоросли являются антагонистами вируса гриппа, полиовируса и др. Выделяемые водорослями биологически активные вещества играют важную роль в обеззараживании воды и подавлении жизнедеятельности патогенной микрофлоры.

В специальных биологических прудах сообщества водорослей и бактерий используют для разложения и детоксикации гербицидов . Доказана способность ряда зеленых водорослей гидролизовать гербицид пропанил, который быстрее разрушается бактериями.

Контрольные вопросы

    Назовите характерные черты строения клетки зеленых водорослей.

    Какие пигменты и типы питания известны у зеленых водорослей?

    Как размножаются зеленые водоросли? Что такое зооспоры, апланоспоры, автоспоры?

    Какие классы выделяют у зеленых водорослей?

    Назовите характерные особенности зеленых водорослей класса Ульвофициевые.

    Назовите характерные особенности зеленых водорослей класса Бриопсидовые.

    Назовите характерные особенности зеленых водорослей класса Хлорофициевые.

    Назовите характерные особенности зеленых водорослей класса Требуксиевые.

    Назовите характерные особенности зеленых водорослей класса Празиновые.

    В каких местообитаниях встречаются зеленые водоросли? Охарактеризуйте их основные экологические группы.

    Роль и значение зеленых водорослей в природе.

    Каково хозяйственное значение зеленых водорослей?

    Что такое «цветение воды»? Участие зеленых водорослей в биологической очистке вод.

    Зеленые водоросли как нетрадиционные источники энергии.

Водоросли – обитатели воды. Они живут как в водоемах с пресной водой, так и в соленых водах морей и океанов. Есть и такие, которые живут вне воды, например, на коре деревьев. Водоросли очень разнообразны. Знакомство с ними начнем с одноклеточных зеленых водорослей.

Вам, например, приходилось летом видеть зеленую гладь пруда, или тихую изумрудную

заводь реки. Про такую ярко-зеленую воду говорят, что она “цветет”. Попробуйте зачерпнуть ладонью “цветущую” воду. Оказывается, что она прозрачна. Множество одноклеточных зеленых водорослей, плавающих в воде, придают ей изумрудный оттенок. Во время “цветения” мелких луж или водоемов наиболее часто в воде встречается одноклеточная водоросль хламидомонада . В переводе с греческого слово “хламидомонада” означает “простейший организм, покрытый одеждой” – оболочкой. Хламидомонада – одноклеточная зеленая водоросль. Она хорошо различима только под микроскопом. Хламидомонада движется в воде при помощи двух жгутиков, находящихся на переднем, более узком конце клетки. Как и все другие живые организмы, хламидомонада дышит кислородом, растворенным в воде.

Снаружи хламидомонада покрыта прозрачной оболочкой, под которой расположена цитоплазма с ядром. Имеется также маленький красный “глазок” – светочувствительное тельце красного цвета, крупная вакуоль, заполненная клеточным соком, и две маленькие пульсирующие вакуоли. Хлорофилл и другие красящие вещества у хламидомонады находятся в хроматофоре (в переводе с греческого “несущий цвет”). Он зеленый, так как содержит хлорофилл, поэтому и вся клетка кажется зеленой.

Через оболочку хламидомонада поглощает из воды минеральные вещества и углекислый газ. На свету в хроматофоре в процессе фотосинтеза образуется сахар (из него - крахмал) и выделяется кислород. Но хламидомонада может поглощать из окружающей среды и готовые органические вещества, растворенные в воде. Поэтому хламидомонаду вместе с другими одноклеточными зелеными водорослями используют в очистных сооружениях. Здесь воду очищают от вредных примесей.

Летом при благоприятных условиях хламидомонада размножается делением. Перед делением она перестает двигаться и теряет жгутики. Из материнской клетки освобождаются 2-4, а иногда и 8 клеток. Эти клетки в свою очередь делятся. Таков бесполый способ размножения хламидомонады.

При наступлении неблагоприятных для жизни условий (похолодание, пересыхание водоема) внутри хламидомонады возникают гаметы (половые клетки). Гаметы выходят в воду и соединяются попарно. При этом образуется зигота, которая покрывается толстой оболочкой и зимует. В результате деления образуются четыре клетки – молодые хламидомонады. Это половой способ размножения.

Хлорелла – тоже одноклеточная зеленая водоросль, широко распространенная в пресных водоемах и почвах. Клетки ее мелкие, шаровидные, хорошо видимые только с помощью микроскопа. Снаружи клетка хлореллы покрыта оболочкой, под которой находится цитоплазма с ядром, а в цитоплазме – зеленый хроматофор.

Хлорелла очень быстро размножается и активно поглощает из окружающей среды органические вещества. Поэтому ее применяют при биологической очистке сточных вод. На космических кораблях и подводных лодках хлорелла помогает поддерживать нормальный состав воздуха. Благодаря способности хлореллы создавать большое количество органического вещества ее используют для получения кормов.

Цель урока: показать, что клетка может быть целостным организмом; рассмотреть особенности строения одноклеточных водорослей, их роль в природе.

Задачи.

Образовательные: начать формировать представления о различных отделах растительного мира; выделить особенности строения одноклеточных водорослей, познакомить с многообразием, средой обитания и особенностями жизнедеятельности водорослей.

Воспитательные: обратить внимание на красоту природы и одноклеточных растений, подвести к пониманию необходимости заботы о природе.

Развивающие: развивать навыки работы с микроскопом, дополнительными источниками информации, ведения конспективных записей, выполнения тестовых заданий; развивать интерес к изучению биологии.

Ход урока

I. Организационный момент

До начала урока на партах размещаются материалы с рабочими листами, тестовыми заданиями и оборудование для проведения лабораторной работы (микроскопы и микропрепараты). На доске прикрепляются карточки с названиями новых систематических групп (обратной стороной.

Здравствуйте, ребята!

У нас с вами сегодня пройдёт необычный урок, а урок-экспедиция.

– А что же такое экспедиция? (Путешествие со специальной научной целью)

Во время экспедиции путешественники узнают много нового, делают путевые заметки. Мы с вами тоже будем делать записи в специальных рабочих листах, которые находятся у вас на партах. А чтобы ваши старания были оценены по достоинству, давайте их подпишем. Старайтесь ничего не пропустить, успевайте выполнить задания, будьте внимательны!

II. Актуализация знаний

На предыдущем уроке мы с вами говорили о науке систематике.

Давайте вспомним, что же такое систематика? (Ответы учеников)

Кто был первым учёным-систематиком? (Ответы учеников)

Какой вклад в науку он сделал? (Ответы учеников)

А зачем нужна классификация растений? На основе каких признаков растения объединяются в одну группу: вид, род и т.д.

Ребята, давайте попробуем на доске представим классификацию растений от царства до вида. (Один из учеников работает у доски с карточками - задание на соответствие).

У меня есть ещё одно задание, которое я вам приготовила заранее.

Но к сожалению наша уборщица, когда мыла доску, всё перепутала. Давайте сейчас с вами попробуем всё восстановить.

На доске карточки с названиями систематических групп.

Царство: Растения
Отдел: Покрытосеменные
Класс: Двудольные
Порядок: Капустоцветные
Семейство: Капустные
Род: Капуста
Вид: Капуста огородная

А сейчас, давайте немного поиграем! У меня есть специальный мешочек, со словами. Ваша задача, достать один и объяснить смысл слова.

Слова: вид, таксон, царство, Жан Батист Ламарк, Карл Линней, Аристотель.

Но у меня есть одна проблема.

Попробуйте ответить на следующие вопросы (они написаны на доске)

- Кто покрасил белых медведей в зоопарке?

Что является причиной “цветения” воды в водоемах?

Что такое арбузный снег?

Летом 2001 года в Индии пролился красный дождь. Как можно объяснить это явление?

Узнать ответы на эти вопросы и будет целью нашей сегодняшнего путешествия.

Итак, ребята наше знакомство с растительным миром мы начнём с самых древних жителей нашей планеты – водорослей. Водоросли – это так называемые низшие растения, т.е. их тело не разделено на органы (корни, листья, стебли)

На доске:

Я рожден волной зеленой,
Корнем к камню прикреплен.
Влагой горькой и соленой
Этот корень напоен…

Начнём наше знакомство с водорослями с самых простых -одноклеточных водорослей.

Оказывается, есть такие одноклеточные растения, которые выступают в роли целого организма. Именно их нам предстоит сегодня изучить, чтобы найти ответ на интересующие нас вопросы.
Итак, записываем тему нашего урока –

Одноклеточные водоросли. Строение и значение.
Сегодня мы постараемся выяснить, как устроены и какую роль в природе играют одноклеточные водоросли.

III. Изучение нового материала

– Куда же отправиться нашей экспедиции на их поиски? Где обитают водоросли? (В водоемах)
Мы мысленно переместились на берег реки и взяли пробу воды.
– Что можно сказать о её внешнем виде? (Вода имеет зеленый оттенок)
– Как вы думаете, что придало воде такую окраску? (Обитающие в ней одноклеточные водоросли)
– Видны ли они в воде невооруженным глазом? (Нет)
– Почему мы не можем их рассмотреть? (Они имеют очень маленький размер)
А с помощью микроскопа в пресных водоемах можно обнаружить одноклеточную зеленую водоросль, которая называется хлорелла.
Может быть, кто-то из вас знает от какого слова образовано название этой водоросли? На какое известное вам слово оно похоже? (Хлорофилл, хлоропласт)
Все эти слова – однокоренные, образованы от греческого слова “хлорос” – зеленый. А вторая часть названия – от латинского суффикса, придающего уменьшительное значение, “элла” – маленькая.
Хлорелла имеет шарообразную форму. Снаружи она защищена плотной оболочкой, под которой находится мембрана. В цитоплазме располагаются ядро, вакуоль и один крупный хлоропласт, который у водорослей носит название – хроматофор . В нем, так же как у наземных растений, содержится хлорофилл и происходит процесс фотосинтеза.
Пора начинать вести наши путевые заметки. Отметьте в рабочих листах, что такое хроматофор.
Часто обитателем пресных водоемов является и другая одноклеточная водоросль – хлорококк . Вторая часть названия этой водоросли происходит от греческого слова “коккос” – зерно, его употребляют, чтобы подчеркнуть шарообразную форму объекта.
Клетки хлорококка крупнее, чем у хлореллы и покрыты более толстой оболочкой. Это связано с тем, что эта водоросль может жить не только в воде, но и на суше во влажных местах. Под оболочкой находятся ядро, цитоплазма, вакуоль и хроматофор с пигментами.
А теперь давайте познакомимся еще с одним представителем одноклеточных водорослей. Перед нами водоросль – хламидомонада . В переводе с греческого языка “хламида” – одежда, “монадос” – частица, существо, организм. Клетка хламидомонады имеет грушевидную форму, снаружи покрыта оболочкой, под которой можно обнаружить, ядро, чашевидный хроматофор, пару пульсирующих сократительных вакуолей (удаляют из клетки избыток воды и продукты обмена веществ), красный светочувствительный глазок, цитоплазму, которая имеет тонкие выросты – жгутики. Жгутики так быстро движутся, что разглядеть их можно только на неподвижной клетке.

Клетка хламидомонады способна накапливать различные пигменты - красящие вещества.
– Чем хламидомонада отличается от хлореллы и хлорококка? (Она подвижная, у неё есть светочувствительный глазок, сократительные вакуоли)
– Как вы думаете, с помощью чего хламидомонада двигается? (С помощью жгутиков)
Действительно, жгутики – это органоиды передвижения хламидомонады. С их помощью она активно движется в сторону лучшего освещения.
– Зачем хламидомонаде искать освещенные участки водоема? (Свет необходим для фотосинтеза)
– С помощью чего она может определить степень освещенности? (С помощью светочувствительного глазка)
Таким образом, мы понаблюдали за представителями одноклеточных водорослей, изучили их строение.

Размножение одноклеточных водорослей происходит 2-мя способами, в зависимости от внешних условий.
А сейчас, юные исследователи, пришло время для решения наших проблемных задач:

– Кто покрасил белых медведей в зоопарке? (Водоросль хлорелла, которая может поселяться во влажной шерсти животных и придавать ей зеленую окраску; медведь любит купаться, а шерстинки у него полые внутри)
– Что является причиной “цветения” воды в водоемах? (Интенсивное размножение одноклеточных зеленых водорослей, например хлорококка, придает зеленую окраску среде обитания)
– Откуда в горах берется розовый снег? (В горах на поверхности снега обитает хламидомонада снежная, которая накапливает пигмент, придающий розовую окраску снегу)
– Летом 2001 года в Индии пролился красный дождь. Как можно объяснить это явление? (В дождевой воде присутствовали представители водоросли хлорококка, содержащие пигмент каротин, который придал им самим и воде красную окраску)

Ребята, а вы знаете, что к нам в гости сегодня пришли учёные. Давайте мы послушаем, что они нам интересного скажут об этих организмах.

Выступления учащихся.

Ученый-эколог. Одноклеточные водоросли входят в состав планктона. Планктон происходит от греческого слова, означающего “скиталец”, и представляют морское и океаническое сообщество.

Самые мелкие представители – наннопланктон – имеют размер 4,76 мкм. Основную часть морского и пресноводного планктона представляют золотистые водоросли и диатомовые водоросли с уникальным двустворчатым панцирем из кремнезема.

Фитопланктон представляет собой огромный запас биомассы и служит первым звеном в пищевой цепи морских обитателей.

Ученый-биолог. Одноклеточных водорослей много и в пресной воде средних и северных широт. К ним относятся хламидомонада и хлорелла из отдела зеленых водорослей. Хламидомонада развивается в любой луже, а снежная хламидомонада также на поверхности льда и снега, окрашивая их в красный цвет. Это подвижная микроскопическая клетка рода вольвокс округлой или грушевидной формы. В свежей хлорелле столько же витамина С, сколько в лимоне. А 100 г ее порошка хватит, чтобы удовлетворить суточную потребность организма в разного вида витаминах.

Инженер-технолог. Хламидомонада хоботковая любит грязь и обитает в мелких, часто пересыхающих водоемах, иногда в почве и вызывает цветение воды. Ее используют в очистных сооружениях для биологической очистки бытовых сточных вод.

Эколог. Хлорелла – еще более мелкая водоросль, чем хламидомонада, без сократительных вакуолей и без глазка. В основном все, что сказано о хламидомонаде, относиться полностью и к хлорелле. Кроме очистки стоков ее используют для восстановления, регенерации воздуха космических кораблях и подводных лодках. Благодаря быстрому размножению и неприхотливости хлорелла известна и как источник витаминов и полноценного белка.

Спасибо, дорогие наши учёные за интересную информацию. Просим вас присаживайтесь к ребятам и вместе с ними вы можете выполнить лабораторную работу.

В чём же состоит значение водорослей?

Какова их роль в природе и в жизни человека? (Высказывания учащихся)

Делаем записи в рабочих листах.

IV. Закрепление

Лабораторная работа на тему “Особенности строения одноклеточных водорослей”.

Цель: знакомство с внешним видом одноклеточных водорослей.

Оборудование:микроскоп, инструментарий, аквариум с одноклеточными водорослями, цветные карандаши.

Выполнение работы.

Приготовьте микропрепарат зацветшей воды из аквариума.

Рассмотрите микропрепарат под малым увеличением микроскопа.

Пользуясь рисунками из учебника, найдите в исследуемой капле аквариумной воды одноклеточную водоросль (хламидомонаду или другого представителя).

Фильтровальной бумагой с краю от покровного стекла удалите часть влаги. Рассмотрите строение, отметьте окраску тела. Наблюдайте, как работает пульсирующая вакуоль.

Зарисуйте водоросль и подпишите её части.

Сделайте вывод - что такое водоросли, какова их роль в природе?

Гимнастика для глаз.

Наша экспедиция подходит к завершению.

Давайте подведем итоги.

– Какие общие особенности имеют одноклеточные водоросли? (Состоят из одной клетки, есть специальные органоиды для питания, движения)

– Какие органоиды обеспечивают питание? (Хроматофор)

– С помощью какого органоида осуществляется выделение? (С помощью сократительных вакуолей)

– Какие органоиды движения существуют у одноклеточных водорослей? (Жгутики)

– Почему всего лишь одну клетку называют организмом? (Потому что она выполняет все функции организма: дышит, питается, растет, размножается, двигается)

Достигла ли наша экспедиция своей цели? (Да)

Итак, экспедиция успешно завершилась. Настало время проверить ваши знания. Для этого выполним тестовое задание. Возьмите листочки с заданиями: выберите буквы, соответствующие правильным ответам под номерами вопросов.

Завершаем выполнение теста и проверяем свои работы.

Поднимите руки те, кто выполнил задание без ошибок, с одной ошибкой, с двумя.

Все, кто выполнил задание правильно – молодцы, а те, кто допустил ошибки, могут дома еще раз поработать с информационным листом и найти правильные ответы.

V. Домашнее задание

Всем: изучить § 37, устно ответить на вопросы после §.

Любознательным: найти дополнительную информацию о водорослях и подготовить сообщения.

VI. Рефлексия

Ответьте на вопросы:

– Что нового вы узнали на уроке?

– Что вас удивило?

– Что еще захотелось узнать?

Приложение 1 (Методы и средства обучения)

Водоросли обнаруживаются повсеместно во всех пригодных для жизни местообитаниях. В пресноводных водоемах водоросли чаще всего имеют микроскопические размеры, но в морях встречаются во­доросли, достигающие десятков метров в длину.

Обитают водоросли в водоемах любого типа, но некоторые приспособились к жизни на суше (в почве и на ее поверхности, на камнях и скалах, стволах де­ревьев и т.д.). Одни из них свободно (активно или пассивно) переме­щаются в толще воды, другие ведут прикрепленный образ жизни.

Водоросли - это разнородная в таксономическом отношении группа организмов, которые возникли и эволюционировали незави­симо друг от друга. Водоросли - это фотосинтезирующие организ­мы, выделяющие кислород, которые обитают преимущественно в во­де. Тело водорослей представлено талломом, или слоевищем, а не разделяется на многоклеточные вегетативные органы. Для водорослей характерны одноклеточные органы размножения (спороношения и полового размножения). В настоящее время эта группа объединяет примерно 35^40 тысяч видов.

По строению тела водоросли делятся на одноклеточные, колони­альные и многоклеточные. Клетки многих водорослей по своему строению похожи на растительные, то есть у них имеются клеточная стенка, вакуоль с клеточным соком и хлоропласты, которые у водо­рослей называются хроматофорами. В хроматофорах находятся пиг­ментные системы, в состав которых входят хлорофиллы и каротинои­ды. Комбинации этих пигментов обусловливают окраску талломов водорослей. Некоторые водоросли утратили способность к фотосин­тезу и полностью перешли на гетеротрофный тип питания.

Размножение у водорослей может происходить тремя способами: вегетативным (деление клетки пополам, фрагментами колоний и ни­тей, специализированными структурами), бесполым (подвижными зооспорами и неподвижными апланоспорами) и половым путем с уча­стием гамет. Половой процесс у водорослей бывает трех типов: изо­гамия, при которой происходит слияние подвижных гамет, одинако­вых по размеру и форме; гетерогамия, при которой сливаются под­вижные гаметы, имеющие одинаковую форму, но отличающиеся по размерам; оогамия, когда сливается неподвижная крупная женская гамета (яйцеклетка) с мелким подвижным сперматозоидом. Отдель­ным типом полового процесса является конъюгация. При конъюгации сливаются протопласты двух гаплоидных вегетативных клеток и об­разуется диплоидная зигота.

Строение и жизнедеятельность одноклеточных водорослей

могут быть рассмотрены на примере хламидомонады и хлореллы.

Хламидомонада - зеленая водоросль, которая обитает в лужах и других мелких водоемах. По форме клетки эта водоросль напоминает каплю. Снаружи клетка хламидомонады покрыта клеточной стенкой, состоящей из пектина. Водоросль передвигается в воде с помощью двух одинаковых жгутиков, расположенных на переднем конце клет­ки. Большую часть клетки занимает чашевидный хроматофор. Ближе к переднему концу в нем расположен красный глазок, который вос­принимает свет. В хроматофоре происходит процесс фотосинтеза и откладывается запасной полисахарид - крахмал. В цитоплазме клет­ки расположены ядро и две сократительные вакуоли. Вакуоль с кле­точным соком у хламидомонады отсутствует. Размножение у хлами­домонады бесполое и половое. Бесполое размножение осу­ществляется с помощью зооспор, которые формируются внутри мате­ринской клетки. Чаще всего формируется 2-4-8 двужгутиковых зоо­спор, каждая из которых после выхода в воду дорастает до размеров взрослой особи. При половом размножении под оболочкой материн­ской клетки образуются двужгутиковые гаметы, которые попарно сливаются и образуют зиготу. Зигота покрывается толстой оболочкой и зимует. Весной ядро в ней мейотически делится, и в результате формируются четыре молодые гаплоидные хламидомонады. Таким образом, большая часть жизненного цикла хламидомонады протекает в гаплоидной стадии, диплоидной у нее является только зигота.

В пресных и соленых водоемах, а также в почве и на ее поверхно­сти встречается одноклеточная зеленая водоросль хлорелла. Ее клетка имеет шаровидную форму, покрыта плотной целлюлозной оболочкой. В цитоплазме находится ядро и крупный чашевидный хроматофор.

Хлорелла размножается только бесполым путем с помощью округлых неподвижных апланоспор. Хлорелла - удобный объект для научных исследований, с ее помощью активно изучаются многие процессы, происходящие в фотосинтезирующих клетках. Ее использовали на космических кораблях для регенерации воздуха и утилизации органи­ческих остатков в замкнутых системах жизнеобеспечения.

Представителями нитчатых водорослей являются улотрикс и спирогира.

Нитчатая зеленая водоросль улотрикс обитает преимущественно в пресных водоемах и образует зеленый налет на подводных предметах. К субстрату нить улотрикса прикрепляется с помощью одной бес­цветной базальной клетки (ризоида). Нити улотрикса не ветвятся и состоят из коротких одинаковых клеток. В цитоплазме клетки распо­ложены ядро и хроматофор в виде незамкнутого кольца. Большая часть клетки занята вакуолью с клеточным соком. Размножается улотрикс вегетативным, бесполым и половым путем. Четырехжгути­ковые зооспоры формируются внутри клеток улотрикса, выходят в воду, плавают, затем прикрепляются к подводным предметам и начи­нают делиться, формируя новые нити. В результате первого деления образуются две разнокачественные клетки: одна бесцветная (ризоид), другая зеленая. При делении последней происходит нарастание нити тела водоросли. При половом размножении в клетках образуются двужгутиковые гаметы. Половой процесс изогамный. Выйдя из мате­ринской клетки, гаметы сливаются в воде, образуя четырехжгутико­вую зиготу, которая, проплавав определенное время, одевается обо­лочкой. После периода покоя в зиготе в результате мейотического деления формируются 4 гаплоидные зооспоры, которые после выхода в воду прорастают в новые нити. Таким образом, большую часть жиз­ненного цикла улотрикс проводит в гаплоидном состоянии, диплоид­на у него только зигота.

Другая широко распространенная зеленая нитчатая водоросль - спирогира образует скопления зеленой тины в пресных водоемах. Ни­ти ее не ветвятся, состоят из крупных цилиндрических клеток, одетых целлюлозной оболочкой и слизью. В центре клетки расположена крупная вакуоль с клеточным соком, в которой на цитоплазматиче­ских нитях подвешено ядро. Хроматофор спирально закрученный. В одной клетке могут быть несколько хроматофоров. Размножается спирогира вегетативным (при разрывах нитей) и половым способом.

Половой процесс у спирогиры протекает по типу конъюгации. При этом сливается содержимое вегетативных клеток двух рядом распо­ложенных нитей. Образующаяся диплоидная зигота одевается обо­лочками и превращается в зимующую стадию. Весной ядро претерпе­вает мейотическое деление, три гаплоидных ядра отмирают, и вырастает только одна новая гаплоидная нить спирогиры.

Водоросли, которые обитают в морях, могут быть одноклеточ­ными, колониальными и многоклеточными. Наиболее крупные талло­мы имеют бурые, красные и зеленые водоросли. Бурые водоросли яв­ляются многоклеточными организмами с желто-бурой окраской, которая обусловлена наличием большого количества желтых и бурых пигментов. Наиболее густые заросли бурые водоросли образуют до глубины 15 м, хотя могут заходить и до глубины 40-100 м. В северных и умеренных широтах произрастает одна из самых распространенных бурых водорослей - ламинария, или морская капуста, таллом которой может достигать в длину 20 м. В ее талломе содержится много амино­кислоты метионина, йода, углеводов, минеральных веществ и витами­нов, по содержанию которых она может превосходить многие овощи и кормовые травы. В жизненном цикле ламинарии происходит чередо­вание бесполого и полового поколений. Эту водоросль культивируют в северных морях России и странах Юго-Восточной Азии.

Красные водоросли, или багрянки, в основном обитают в морях. Они называются так из-за окраски таллома, которая меняется в зави­симости от соотношения пигментов от темно-малинового, розового до голубовато-зеленого или желтого цвета. Наличие красного пиг­мента позволяет красным водорослям обитать на больших глубинах (до 200 м). Это самые глубоководные водоросли. Их многоклеточные слоевища имеют вид красивых сложнорассеченных пластинок, иногда кустиков, напоминающих кораллы, но некоторые представители мо­гут состоять из единственной клетки или образовывать колонии. В состав клеточной стенки красных водорослей помимо целлюлозы входит агар. Многие багрянки съедобны.

Значение водорослей в природе и хозяйстве многообразно. Во­доросли способны синтезировать органические вещества из неорга­нических в процессе фотосинтеза. В водных экосистемах они чаще всего выполняют роль продуцентов, то есть несут ту же функцию, что и зеленые растения на суше. Это начальное звено в цепях питания.

В процессе фотосинтеза они выделяют большое количество ки­слорода. Кислород растворяется в воде и используется для дыхания другими организмами.

Заросли водорослей служат местом обитания, укрытия и размно­жения многих животных, то есть водоросли формируют разнообраз­ные водные биотопы.

При наступлении благоприятных внешних условий некоторые во­доросли способны массово размножаться и вызывать цветение воды. Зеленое цветение воды в канавах, лужах и ямах чаще всего обуслов­лено размножением эвгленовых водорослей. Большой урон рыболов­ству наносят красные приливы - цветение морей, вызванное рядом микроскопических одноклеточных водорослей (отсюда название - Красное море). Водоросли, вызывающие «красные приливы», выде­ляют вещества, токсичные для животных и человека.

Почвенные водоросли участвуют в формировании структуры поч­вы, обеспечивают частично ее плодородие, насыщают почву кислоро­дом, принимают участие в формировании ряда горных и осадочных пород.

Водоросли широко употребляют в пищу (виды рода порфира, ла­минария). Ряд видов успешно культивируют.

Красные водоросли используют для получения агара. Он обладает желирующими свойствами и используется для изготовления желе, пастилы, суфле, ряда конфет и других продуктов, а в микробиологии для приготовления сред, на которых выращиваются микроорганизмы.

Бурые водоросли - единственный источник получения альгина­тов - соединений альгиновой кислоты, которые используют в пище­вой промышленности.

Ряд водорослей (ламинарии, фукусы, аскофиллум) идет на корм скоту и получение удобрений.

Водоросли применяются в медицине при лечении ряда заболева­ний. В последние годы препараты из водорослей применяют для вы­ведения радионуклидов.

Некоторые водоросли используют в качестве индикаторных орга­низмов для определения степени загрязнения водоемов. Используют их и для очистки сточных вод.

Многие водоросли служат хорошими модельными объектами для научных исследований.

Выберите один правильный ответ.

1. У водорослей не бывает

2) листьев

4) ни стебля, ни листьев, ни корней

2. Хроматофор - это

1) оболочка клетки водоросли

2) хлоропласт водоросли

3) орган размножения водоросли

4) листовая пластинка бурых водорослей

3. Водоросли размножаются

1) вегетативно

2) зооспорами

3) половым путем

4) всеми перечисленными выше способами

4. Половое размножение не обнаружено у

1) спирогиры 3) хламидомонады

2) хлореллы 4) ламинарии

5. При бесполом размножении хламидомонады она образует

1) одну зооспору

2) шесть зооспор

3) восемь зооспор

4) неопределенное большое количество зооспор

6. Хламидомонада размножается половым путем

1) в неблагоприятных условиях

2) в благоприятных условиях

3) постоянно, независимо от внешних условий

4) только в лабораторных условиях

7. Половой процесс называется конъюгацией у

1) хламидомонады 3) хлореллы

2) ламинарии 4) спирогиры

8. Многоклеточной водорослью является

1) хламидомонада 3) спирогира

2) хлорелла 4) пиннулария

9. Одноклеточной водорослью является

1) ламинария 3) хламидомонада

2) фукус 4) спирогира

10. К нитчатым водорослям не относится

1) улотрикс 3) кладофора

2) ламинария 4) спирогира

11. Хлорофилл в клетках спирогиры расположен в

1) многочисленных пластидах

2) шаровидном хроматофоре

3) ленточном хроматофоре

4) цитоплазме в растворенном виде

12. Хроматофор в виде незамкнутого кольца имеет

1) хламидомонада 3) хлорелла

2) спирогира 4) улотрикс

13. Ризоиды водорослей служат для

1) дыхания

2) вегетативного размножения

3) прикрепления к субстрату

4) фотосинтеза

14. К отделу бурых водорослей относится

1) хламидомонада

2) ламинария

3) хлорелла

4) спирогира

15. По типу питания водоросли, как правило, относятся к

16. К нитчатым водорослям относится

1) десмококкус 4) спирогира
2) хламидомонада 5) улотрикс
3) хлорелла 6) кладофора
17. Многоклеточной зеленой водорослью является
1) хламидомонада 4) спирогира
2) хлорелла 5) кладофора
3) улотриКС 6) ламинария
18. В клетках водорослей могут содержаться следующие пигменты
1) гемоглобин 4) каротин
2) гемоцианин 5) миоглобин
3) хлорофилл 6) билирубин
19. Частями таллома может делиться
1) хламидомонада 4) спирогира
2) хлорелла 5) улотрикс
3) пиннулария 6) кладофора
20. Хлорофилл содержит
1) ламинария 4) хлорелла
2) фукус 5) анфельция
3) улотрикс 6) спирогира
21. Установите соответствие между названием водоросли и типом
к которому она относится.
Название водоросли Тип водорослей
1) десмококкус А) красные водоросли
2) кладофора Б) зеленые водоросли
3) ламинария В) бурые водоросли
4) фукус
5) цистозейра
6) порфира