С помощью ракеты. Методы навигации крылатых ракет

Ракеты являются отличной иллюстрацией третьего закона движения Ньютона: "Действию всегда есть равное и противоположное противодействие." Считается, что первой ракетой был паровой деревянный голубь, изобретенный Архитом Тарентским в 4 веке до нашей эры. Паровой двигатель был превзойден пороховыми трубками Китайской армии, а затем ракетами, работающими на жидком топлеве, изобретенными Константином Циолковским и разработанными Робертом Годдардом. Эта статья описывает пять способов построения ракеты в домашних условиях, от простых до более сложных; в конце вы можете найти дополнительную секцию, объясняющую базовые принципы построения ракет.

Шаги

Ракета из воздушного шарика

    Привяжите один конец лески или нити к опоре. Опорой может служить спинка стула или дверная ручка.

    Пропустите нить через пластиковую трубочку для питья. Нить и трубочка послужат системой навигации, с помощью которой вы сможете контролировать траекторию движения вашей ракеты из воздушного шарика.

    • Наборы для построения моделей ракет использую похожую технологию, где трубочка похожей длины прикрепляется к корпусу ракеты. Эта трубочка продевается через металлическую трубку на стартовой платформе, чтобы удерживать ракету в вертикальном положении до пуска.
  1. Привяжите другой конец нити к другой основе. Обязательно туго натяните нить перед этим.

    Надуйте воздушный шарик. Защемите кончик шарика, чтобы не выпускать воздух. Вы можете использовать ваши пальцы, скрепку для бумаг или прищепку.

    Приклейте шарик к трубочке скотчем.

    Выпустите воздух из шарика. Ваша ракета пролетит по установленной траектории, от одного конца нити к другому.

    • Вы можете сделать эту ракету как с длинными, так и с круглыми шариками, а также поэкспериментировать с длиной трубочки. Вы также можете изменить угол, под которым проходит траектория полета ракеты, чтобы посмотреть, как это повлияет на расстояние, которое пролетит ваша ракета.
    • Похожим образом вы можете сделать реактивную лодку: Разрежьте коробку из-под молока вдоль. Прорежьте дырку в нижней части и проденьте через нее шарик. Надуйте шарик, затем поместите лодку в ванну с водой и выпустите воздух из шарика.
  2. Туго оберните прямоугольник вокруг карандаша или дюбеля. Начните закручивать полоску бумаги от конца карандаша, а не от центра. Часть полоски должна свисать над стержнем карандаша или концом дюбеля.

    • Используйте карандаш или дюбель чуть толще, чем трубочка для питья, но не намного толще.
  3. Заклейте край бумаги скотчем, чтобы она не размоталась. Заклейте бумагу по всей длине карандаша.

    Сложите свешивающийся край в конус. Закрепите скотчем.

    Уберите карандаш или дюбель.

    Проверьте ракету на предмет дырок. Аккуратно подуйте в открытый конец ракеты. Прислушайтесь, чтобы поймать любой звук, который указывает на то, что воздух выходит из ракеты с боков или из конца и аккуратно ощупайте ракету, чтобы почувствовать вырывающиеся потоки воздуха. Заклейте все пробоины в ракете и снова протестируйте ракету, пока вы не устраните все дырки.

    Добавьте хвостовые плавники к открытому концу бумажной ракеты. Поскольку эта ракета довольно узкая, удобнее будет вырезать и приклеить две пары смежных плавников, чем три или четыре отдельных маленьких плавника.

    Ставьте трубочку в открытую часть ракеты. Убедитесь, что трубочка достаточно выступает из ракеты, чтобы вы могли зажать ее конец пальцами.

    Резко подуйте в трубочку. Ваша ракета взлетит ввысь от силы вашего дыхания.

    • Всегда направляйте трубочку и ракету вверх, а не на кого-либо, когда вы запускаете ракету.
    • Постройте несколько разных ракет, чтобы узнать, как различные изменения влияют на ее полет. Также попробуйте запускать ваши ракеты дыханием разной силы, чтобы узнать, как сила вашего дыхания влияет на расстояние, которое пролетает ваша ракета.
    • Игрушка, похожая на бумажную ракету, состояла из пластикового конуса с одного края и пластикового парашюта с другого. Парашют прикреплялся к палочке, которая затем вставлялась в картонную трубку. Когда в трубку дули, пластиковый конус ловил воздух и взлетал вверх. Достигнув максимальной высоты, палочка отпадала, после чего раскрывался парашют.

Ракета из баночки из-под фотопленки

  1. Решите, какой длины/высоты вы хотите построить вашу ракету. Рекомендованная длина - 15 см, но вы можете сделать ее длиннее или короче.

    Раздобудьте баночку из-под фотопленки. Она послужит камерой сгорания для вашей ракеты. Вы можете найти такую баночку в фотомагазинах, которые еще работают с фотопленкой.

    • Найдите баночку, которая защелкивается изнутри, а не снаружи.
    • Если вы не можете найти баночку из-под фотопленки, вы можете использовать старую пластиковую баночку из-под лекарств с защелкивающейся крышкой. Если вы не можете найти баночку с защелкивающейся крышкой, вы можете найти пробку, которая туго поместится в горлышко баночки.
  2. Соберите ракету. Легче всего сделать корпус ракеты тем же способом, что и в случае с бумажной ракетой, запускающейся через трубочку: просто оберните лист бумаги вокруг баночки из-под пленки. Поскольку эта баночка послужит пусковым устройством вашей ракеты, вам стоит приклеить бумагу к ней, чтобы она не улетела.

    Решите, где вы хотите запустить вашу ракету. Рекомендуется запускать этот тип ракет в открытом пространстве или на улице, так как ракета может взлететь достаточно высоко.

    Наполните баночку водой на 1/3. Если рядом с вашей стартовой площадкой нет источника воды, вы можете наполнить ракету где-либо еще и донести ее до площадки вниз головой или принести воду к платформе и наполнить ракету там.

    Разломайте пополам шипучую таблетку и опустите одну половинку в воду.

    Закройте баночку и переверните ракету носом вверх.

    Отойдите на безопасное расстояние. Растворяясь в воде, таблетка выпустит двуокись углерода. Давление накопится внутри баночки и сорвет крышку, запуская вашу ракету ввысь.

Спичечная ракета

    Вырежьте небольшой треугольник алюминиевой фольги. Это должен быть равнобедренный треугольник с основанием в 2,5 см и медианой 5 см.

    Возьмите спичку из спичечного коробка.

    Приложите спичку к прямой булавке таким образом, чтобы острый кончик булавки доставал до головки спички, но не был длиннее ее.

    Оберните алюминиевый треугольник вокруг головок спички и булавки, начиная с самой верхушки. Оберните фольгу как можно туже вокруг спички, не сбивая иголку с позиции. Когда вы завершили этот процесс, обертка должна спускаться примерно на 6,25 мм ниже головки спички.

    Помните фольгу ногтями. Это подтолкнет фольгу ближе к головке спички и лучше отметит канал, сформированный булавкой под фольгой.

    Аккуратно вытащите иголку, чтобы не порвать фольгу.

    Сделайте стартовую площадку из скрепки.

    • Согните внешний сгиб скрепки под углом в 60 градусов. Это будет основой стартовой платформы.
    • Загните внутренний сгиб скрепки вверх и немного в сторону, чтобы образовался открытый треугольник. К нему вы и прикрепите обернутую фольгой головку спички.
  1. Поместите стартовую площадку на место запуска ракеты. Опять же, найдите открытое место на улице, так как эта ракета может пролететь довольно большое расстояние. Избегайте сухие места, так как спичечная ракета может начать пожар.

    • Убедитесь, что вблизи вашего космодрома нет людей и животных, прежде чем запускать ракету.
  2. Поместите спичечную ракету на стартовую площадку головкой вверх. Ракета должна располагаться как минимум под углом в 60 градусов от основы стартовой площадки и земли. Если она немного ниже, согните скрепку еще больше, пока вы не получите необходимый угол.

    Запустите ракету. Зажгите спичку и поместите огонь сразу под обернутую головку спичечной ракеты. Когда фосфор в ракете зажжется, ракета взлетит.

    • Держите поблизости ведро с водой, чтобы погасить использованные спички, чтобы убедиться, что они полностью потухли.
    • Если ракета неожиданно попадет в вас, замрите, упадите на землю и покатайтесь по ней, пока вы не собьете с себя огонь.

Водяная ракета

  1. Приготовьте одну пустую двухлитровую бутылку, которая послужит напорной камерой для вашей ракеты. Поскольку в строительстве этой ракеты используется пластиковая бутылка, она иногда называется бутылочной ракетой. Ее не стоит путать с типом петард, которые также известны как бутылочные ракеты, потому что они часто запускаются изнутри бутылки. Эта форма бутылочной ракеты запрещена во многих местах; водяная ракета не является запрещенной.

    Сделайте плавники. Поскольку пластиковый корпус ракеты довольно прочный, особенно после укрепления лентой, вам потребуются столь же прочные плавники. Твердый картон может подойти для этого, но он прослужит только несколько запусков. Лучше всего использовать пластик, похожий на тот, из которого изготавливаются пластиковые папки для бумаг.

    • Первым делом вам следует придумать дизайн ваших плавников и создать бумажный трафарет для вырезания пластиковых плавников. Какими бы ни были ваши плавники, помните, что впоследствии вам понадобится сложить каждый из них пополам для прочности. Также они должны доставать до той отметки, где бутылка начинает сужаться.
    • Вырежьте трафарет и используйте его, чтобы вырезать три или четыре одинаковых плавника из пластика или картона.
    • Согните плавники пополам и прикрепите их к телу ракеты крепким скотчем.
    • В зависимости от дизайна вашей ракеты, вам может потребоваться сделать плавники длиннее горлышка бутылки/сопла ракеты.
  2. Создайте носовой конус и отсек полезной нагрузки. Для этого вам потребуется вторая двухлитровая бутылка.

    • Вырежьте донышко пустой бутылки.
    • Поместите полезный груз в верхнюю часть разрезанной бутылки. Грузом может быть все, что угодно, начиная от комка пластилина до шарика из эластичных резинок. Поместите отрезанную нижнюю часть внутрь бутылки так, чтобы дно было направлено к ее горлышку. Закрепите конструкцию скотчем, а затем приклейте эту бутылку донышку бутылки, которая выполняет роль камеры давления.
    • Нос ракеты можно сделать из чего угодно, от крышечки пластиковой бутылки до поливиниловой трубки или пластикового конуса. Придумав, какой нос вы хотите сделать для вашей ракеты, и собрав его, прикрепите его к верхней части ракеты.
  3. Протестируйте баланс вашей ракеты. Поместите ракету на ваш указательный палец. Точка баланса должна находиться чуть выше камеры давления (в нижней части первой бутылки). Если точка баланса смещена, снимите секцию позитивного груза и измените вес груза.

  4. Создайте пусковой / ограничительный клапан. Существуют несколько устройств, которые вы можете сделать, чтобы запустить вашу водяную ракету. Самое легкое из них - пусковой и ограничительный клапан, которые крепится на горлышко бутылки, которая служит камерой давления.

    • Найдите винную пробку, которая туго помещается в горлышко бутылки. Вам может понадобиться немного подрезать края пробки, если она слишком широкая.
    • Найдите клапанную систему, вроде такой, которая используется в автомобильных шинах или внутренней трубке велосипедных колес. Измерьте диаметр клапана.
    • Просверлите дырку в центре пробки такого же диаметра, что и клапан.
    • Очистите стержень клапана и поместите кусочек скотча на резьбу и открытие.
    • Проденьте клапан через дырку в пробке, затем закрепите его силиконовым или уретановым герметиком. Позвольте герметику полностью высохнуть, прежде чем снимать скотч с клапана.
    • Протестируйте клапан, чтобы убедиться, что воздух свободно проходит через него.
    • Протестируйте ограничитель, залив в камеру давления немного воды и вертикально поставив ракету. Если вы заметите протечку, перезакрепите клапан и протестируйте его еще раз. Когда вы убедились, что клапан не протекает, протестируйте его еще раз, чтобы узнать, при каком давлении воздух выталкивает ограничитель из бутылки.
    • Вы можете найти инструкции по созданию более сложной пусковой системы здесь:

Писателя Авла Геллия (лат. Aulus Gellius ) одно из первых реактивных устройств использовалось более 2000 лет назад, ещё в 400 году до н. э. , греческим философом-пифагорейцем Архитом Тарентским , заставлявшим деревянного голубя двигаться вдоль проволоки с помощью пера, перед глазами изумлённых жителей своего города. Архит Тарентский использовал принцип «действие-противодействие», который был научно описан только в XVII веке.

Тем не менее, истоки возникновения ракет большинство историков относят ко временам китайской династии Хань (206 год до н. э. - н. э.), к открытию пороха и началу его использования для фейерверков и развлечений. Сила, возникающая при взрыве порохового заряда была достаточной, чтобы двигать различные предметы. Позже этот принцип нашёл применение при создании первых пушек и мушкетов . Снаряды порохового оружия могли летать на далёкие расстояния, однако не были ракетами, поскольку не имели собственных запасов топлива . Тем не менее, именно изобретение пороха стало основной предпосылкой возникновения настоящих ракет. Описание летающих «огненных стрел», применявшихся китайцами, показывает, что эти стрелы были ракетами. К ним прикреплялась трубка из уплотненной бумаги, открытая только с заднего конца и заполненная горючим составом. Этот заряд поджигался, и затем стрела выпускалась с помощью лука. Такие стрелы применялись в ряде случаев при осаде укреплений, против судов, кавалерии.

Известно, что ракеты применялись запорожскими казаками , начиная с XVI -XVII вв. В XVII веке литовский военный инженер Казимир Семенович описал многоступенчатую ракету.

Двухступенчатая ракета ХVI в.

Ракетная артиллерия широко применялась вплоть до конца XIX века. Ракеты были более лёгкими и подвижными, чем артиллерийские орудия. Точность и кучность ведения огня ракетами была небольшой, но сопоставимой с артиллерийскими орудиями того времени. Однако во второй половине XIX века появились нарезные артиллерийские орудия, обеспечивающие большую точность и кучность огня и ракетная артиллерия была всюду снята с вооружения. Сохранились лишь фейерверочные и сигнальные ракеты.

В конце XIX века стали предприниматься попытки математически объяснить реактивное движение и создать более эффективное ракетное вооружение. В России одним из первых этим вопросом занялся Николай Тихомиров в 1894 году.

Теорией реактивного движения занимался Константин Циолковский . Он выдвигал идею об использовании ракет для космических полетов и утверждал, что наиболее эффективным топливом для них было бы сочетание жидких кислорода и водорода . Ракету для межпланетных сообщении он спроектировал в 1903 г.

17 августа 1933 года была запущена ракета «ГИРД 9», которую можно считать первой советской зенитной ракетой. Она достигла высоты 1.5 км. А следующая ракета «ГИРД 10», запущенная 25 ноября 1933 года, достигла уже высоты в 5 км.

В Германии подобные работы вело Немецкое Общество межпланетных сообщений (VfR). 14 марта 1931 член VfR Йоханнес Винклер осуществил первый в Европе удачный запуск жидкостной ракеты.

В 1957 г. в СССР под руководством Сергея Королёва как средство доставки ядерного оружия была создана первая в мире межконтинентальная баллистическая ракета Р-7 , которая в том же году была использована для запуска первого в мире искусственного спутника Земли . Так началось применение ракет для космических полётов.

Ракетные двигатели

Большинство современных ракет оснащаются химическими ракетными двигателями . Подобный двигатель может использовать твёрдое, жидкое или гибридное ракетное топливо . Химическая реакция между топливом и окислителем начинается в камере сгорания, получающиеся в результате горячие газы образуют истекающую реактивную струю, ускоряются в реактивном сопле (или соплах) и выбрасываются из ракеты. Ускорение этих газов в двигателе создаёт тягу - толкающую силу, заставляющую ракету двигаться. Принцип реактивного движения описывается третьим законом Ньютона .

Однако не всегда для движения ракет используются химические реакции. В паровых ракетах перенагретая вода, вытекающая через сопло, превращается в высокоскоростную паровую струю, служащую движителем . Эффективность паровых ракет относительно низка, однако это окупается их простотой и безопасностью, а также дешевизной и доступностью воды. Работа небольшой паровой ракеты в году была проверена в космосе на борту спутника UK-DMC. Существуют проекты использования паровых ракет для межпланетной транспортировки грузов, с нагревом воды за счёт ядерной или солнечной энергии.

Ракеты наподобие паровой, в которых нагрев рабочего тела происходит вне рабочей зоны двигателя, иногда описывают как системы с двигателями внешнего сгорания . Другими примерами ракетных двигателей внешнего сгорания может служить большинство конструкций ядерных ракетных двигателей .

Применение

Военное дело

Ракеты используются как способ доставки средств поражения к цели. Небольшие размеры и высокая скорость перемещения ракет обеспечивает им малую уязвимость . Так как для управления боевой ракетой не нужен пилот , она может нести заряды большой разрушительной силы, в том числе ядерные. Современные системы самонаведения и навигации дают ракетам большую точность и манёвренность.

Существует множество видов боевых ракет отличающихся дальностью полёта, а также местом старта и местом поражения цели («земля» - «воздух»). Для борьбы с боевыми ракетами используются системы противоракетной обороны .

Существуют также сигнальные и осветительные ракеты.

Научные исследования

Самолёты и воздушные шары, запускаемые для изучения атмосферы Земли имеют высотный потолок 30-40 километров. Ракеты такого потолка не имеют и используются для зондирования верхних слоёв атмосферы, главным образом мезосферы и ионосферы.

Существует деление ракет на лёгкие метеорологические, способные поднять один комплекс приборов на высоту около 100 километров и тяжёлые геофизические, которые могут нести несколько комплексов приборов и чья высота полёта практически не ограничена.

Обычно научные ракеты оснащают приборами для измерения атмосферного давления , магнитного поля , космического излучения и состава воздуха, а также оборудованием для передачи результатов измерения по радио на землю. Существуют модели ракет, где приборы с полученными в ходе подъёма данными опускаются на землю с помощью парашютов .

Ракетные метеорологические исследования предшествовали спутниковым, поэтому на первых метеоспутниках стояли те же приборы, что и на метеорологических ракетах. В первый раз ракета была запущена с целью изучить параметры воздушной среды 11 апреля , но регулярные ракетные запуски начались с 1950-х годов, когда были созданы серии специализированных научных ракет. В Советском Союзе это были метеорологические ракеты МР-1 , М-100 , МР-12 , ММР-06 и геофизические типа «Вертикаль ». В современной России в сентябре -го использовались ракеты М-100Б . За пределами России применялись ракеты «Аэроби», «Black Brant », «Skylark».

Космонавтика

Создателем космонавтики как науки считается Герман Оберт, впервые доказавший физическую возможность человеческого организма выносить возникающие при запуске ракеты перегрузки, а также состояние невесомости.

10 мая 1897 г К. Э. Циолковский в рукописи «Ракета» исследует ряд задач реактивного движения, где определяет скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, неизменной по направлению, при отсутствии всех других сил; конечная зависимость получила название «формула Циолковского» (статья опубликована в журнале «Научное обозрение» в 1903 г.).

1903 г. К. Э. Циолковский опубликовал работу «Исследование мировых пространств реактивными приборами» - первую в мире, посвященную теоретическому обоснованию возможности осуществления межпланетных полетов с помощью реактивного летательного аппарата - «ракеты». В 1911-1912 опубликована вторая часть этой работы, в 1914 - дополнение. К. Э. Циолковский и независимо от него Ф. А. Цандер пришли к выводам, что космические полеты возможны и на известных уже тогда источниках энергии и указали практические схемы их реализаций (форму ракеты, принципы охлаждения двигателя, использование жидких газов в качестве топливной пары и др.).

Высокая скорость истечения продуктов сгорания топлива (часто большая, чем 10), позволяет использовать ракеты в областях, где требуются сверхбольшие скорости движения, например, для вывода космических аппаратов на орбиту Земли (см. Первая космическая скорость). Максимальная скорость, которая может быть достигнута при помощи ракеты, рассчитывается по |формуле Циолковского, описывающей приращение скорости, как произведение скорости истечения на натуральный логарифм отношения начальной и конечной массы аппарата.

Ракета пока является единственным транспортным средством, способным вывести космический аппарат в космос. Альтернативные способы поднимать космические аппараты на орбиту, такие как «космический лифт », электромагнитные и обычные пушки, пока что находятся на стадии проектирования.

В космосе наиболее ярко проявляется основная особенность ракеты - отсутствие потребности в окружающей среде или внешних силах для своего перемещения. Эта особенность, однако, требует того, чтобы все компоненты, необходимые для создания реактивной силы, находились на борту самой ракеты. Так для ракет, использующих в качестве топлива такие плотные компоненты, как жидкий кислород и керосин , отношение веса топлива к весу конструкции достигает 20/1. Для ракет, работающих на кислороде и водороде , это соотношение меньше - около 10/1. Массовые характеристики ракеты очень сильно зависят от типа используемого ракетного двигателя и закладываемых пределов надёжности конструкции.

За счёт уменьшения общего веса конструкции и выгорания топлива ускорение составной ракеты с течением времени увеличивается. Оно может немного снижаться лишь в момент сбрасывания отработавших ступеней и начала работы двигателей следующей ступени. Подобные многоступенчатые ракеты, предназначенные для запуска космических аппаратов, называют ракеты-носители .

Используемые для нужд космонавтики ракеты называются ракетами-носителями, так как они несут на себе полезную нагрузку. Чаще всего в качестве ракет-носителей используются многоступенчатые баллистические ракеты. Старт ракеты-носителя происходит с Земли, или, в случае долгого полёта, с орбиты искусственного спутника Земли .

Силы, действующие на ракету в полёте

Наука, исследующая силы, действующие на ракеты или другие космические аппараты, называется астродинамикой .

Основные силы, действующие на ракету в полёте:

  1. Тяга двигателя
  2. Притяжение небесного тела
  3. При движении в атмосфере - лобовое сопротивление .
  4. Подъёмная сила . Обычно мала, но значительна для ракетопланов .

См. также

Примечания

Литература

  • Ракета // Космонавтика : Маленькая энциклопедия ; Главный редактор В. П. Глушко. 2-е издание, дополнительное - Москва: «Советская энциклопедия», - C. 372
  • Boris Rauschenbach. Hermann Oberth 1894-1989. Über die Erde hinaus - eine Biographie: - Der. Böttiger Verlags - GmbH - ISBN 3-925725-27-7
  • Harald Tresp, Karlheinz Rohrwild. - Am Anfang war die Idee… Hermann Oberth - Vater der Raumfahrt: Herman E. Sieger GmbH, Lorh/Württemberg. 1994
  • Hermann Oberth. Mein Beitrag zur Weltraumfahrt: - Hermann - Oberth - Raumfahrt - Museum, Druck Center Meckencheim. Nürnberg/Feucht. 1994. ISBN 3-925103-71-6
  • Marsha Freeman. Hin zu neuen Welten. Die Geschichte der deutschen Raumfahrtpioniere: - Der. Böttiger Verlags - GmbH, Wiesbaden. 1995. ISBN 3-925725-22-9
  • Walter Dornberger, V2 - Der Schuß ins Weltall, Bechtle Verlag, Esslingen 1952.

Ссылки

  • Znamensk.info - история первого ракетного полигона Капустин Яр
  • Гончар А. С. Звёздные часы ракетной техники (Воспоминания). // Харьков: Факт, 2008. - 400 с: iл. ISBN 978-966-637-633-9 .

Учитывая опыт боевого применения крылатых ракет, охватывающий шесть с половиной десятилетий, их можно рассматривать как зрелую и хорошо зарекомендовавшую себя технологию. За время их существования произошло значительное развитие технологий, используемых при создании крылатых ракет, охватывающих планер, двигатели, средства преодоления ПВО и системы навигации.


Благодаря технологиям создания, планера ракеты становились все более и более компактными. Теперь их можно разместить во внутренних отсеках и на внешних подвесках самолетов, корабельных пусковых установках трубного типа или торпедных аппаратах подводных лодок. Двигатели изменились от простых пульсирующих воздушно-реактивных двигателей через турбореактивные и жидкотопливные ракетные двигатели или прямоточные воздушно-реактивные двигатели (ПВРД) к нынешней комбинации турбореактивных двигателей для дозвуковых тактических крылатых ракет, турбовентиляторных для дозвуковых стратегических крылатых ракет и прямоточных воздушно-реактивных двигателей или смешанных турбореактивных/ракетных конструкций для сверхзвуковых тактических крылатых ракет.

Средства преодоления ПВО возникли в 1960-х годах когда системы противовоздушной обороны приобрели большую эффективность. К ним относятся низкая высота полета с огибанием рельефа местности или полёт ракеты на предельно малой высоте над поверхностью моря с целью скрыться от радаров и все чаще форма повышающая малозаметность и радиопоглощающие материалы, призванные снизить радиолокационную заметность. Некоторые советские крылатые ракеты были также оборудованы передатчиками помех оборонительного назначения, призванных сорвать перехват зенитноракетных комплексов.

Наконец, за этот период значительно развилась и разнообразилась система навигации крылатых ракет.

Проблемы навигации крылатых ракет
Основной идеей всех крылатых ракет является то, что это может быть запущено в цель вне пределов досягаемости систем противовоздушной обороны противника с целью не подвергать стартовую платформу ответной атаке. Это создает серьезные проблемы проектирования, первой из которых становится задача заставить крылатую ракету надежно переместиться на расстояние до тысячи километров в непосредственную близость к намеченной цели - и как только она будет находиться в непосредственной близости от цели, обеспечить боевой части точное наведение на цель чтобы произвести запланированный военный эффект.


Первая боевая крылатая ракета FZG-76/V-1

Первой боевой крылатой ракетой была немецкая FZG-76/V-1, более 8000 которых было применено, причем, в основном, по целям в Великобритании. Если судить по современным меркам то ее система навигации была достаточно примитивной: автопилот на базе гироскопа выдерживал курс, а анемометр расстояние до цели. Ракета выставлялась по намеченному курсу перед запуском и на ней выставлялось рассчетное расстояние до цели и как только одометр указывал, что ракета находится над целью, автопилот уводил её в крутое пикирование. Ракета обладала точностью в около мили и этого было достаточно для бомбардировки крупных городских целей, таких как Лондон. Главной целью бомбардировок было терроризирование гражданского населения и отвлечение воинских сил Великобритании от наступательных операций и направление их на выполнение задач ПВО.


Первая американская крылатая ракета JB-2 являющаяся копией немецкой V-1

В непосредственно послевоенный период США и СССР воссоздали V-1 и начали развитие своих собственных программ крылатых ракет. Первое поколение театра военных действий и тактического ядерного оружия вызвало создание крылатых ракет серии Regulus ВМС США, серии Mace/Matador ВВС США и советских серий Комета КС-1 и Комета-20 и дальнейшего развития технологии навигации. Все эти ракеты первоначально используют автопилоты на основе точных гироскопов, но также возможности корректировки траектории ракеты по каналам радиосвязи так, что ядерная боеголовка могла быть доставлена как можно точнее. Промаха в сотни метров может быть достаточно, чтобы уменьшить избыточное давление произведенное ядерной боеголовкой было ниже летального порога укрепленных целей. В 1950-х годах на вооружение поступили первые конвенциональные послевоенные тактические крылатые ракеты, прежде всего в качестве противокорабельного оружия. В то время как на маршевом участке траектории наведение продолжалось на основе гироскопа, а иногда и корректировалось по радиосвязи, точность наведения на конечном участке траектории обеспечивалась ГСН с РЛС малой дальности действия, полуактивной на самых ранних версиях, но вскоре вытесненной активными радарами. Ракеты этого поколения обычно летят на средних и больших высотах, пикируя при атаке на цель.


Межконтинентальная крылатая ракета Northrop SM-62 Snark

Следующий важный этап в технологии навигации крылатых ракет последовал с принятием на вооружение межконтинентальных крылатых ракет наземного базирования Northrop SM-62 Snark, предназначенных для автономного полета над полярными регионами для атаки крупными ядерными боеголовками целей на территории Советского Союза. Межконтинентальные расстояния представили перед конструкторами новый вызов - создать ракету способную поражать цели на расстоянии в десять раз больше, чем это могли сделать более ранние версии крылатых ракет. На Snark была установлена надлежащая инерциальная навигационная система использующая гиростабилизированный платформу и точные акселерометры для измерения движения ракеты в пространстве, а также аналоговый компьютер используемый для накопления измерений и определения положения ракеты в пространстве. Однако вскоре выявилась проблема, дрейф в инерциальной системе был слишком велик для оперативного использования ракеты, а ошибки инерциальной системы позиционирования оказались кумулятивными - таким образом, погрешность позиционирования накапливалась с каждым часом полета.

Решением этой проблемы стало другое устройство, предназначенное для выполнения прецизионных измерений географического положения ракеты на траектории её полета и способное исправить или "привязать" ошибки генерированные в инерциальной системе. Это фундаментальная идея и сегодня остается центральной в конструкции современного управляемого оружия. Так, накопленные ошибки инерциальной системы периодически сводятся к ошибке позиционного измерительного прибора.


Крылатая ракета Martin Matador

Для решения этой задачи была применена астронавигационная система или ориентация по звездам, автоматизированное оптическое устройство, осуществляющее угловые измерения известного положения звезд и использующая их для расчета положения ракеты в пространстве. Астронавигационная система оказались весьма точной, но и довольно дорогой в производстве и сложной в обслуживании. Также требовалось, чтобы ракеты, оснащенные этой системой, летели на большой высоте во избежание влияния облачности на линию визирования к звездам.

Менее известно, что успех астронавигационных систем, повсеместно послужил толчком в развитии в настоящее время спутниковых навигационных систем, таких как GPS и ГЛОНАСС. Спутниковая навигация основывается на аналогичной астронавигации концепции, но вместо звезд используются искусственные спутники Земли на полярных орбитах, а вместо естественного света искусственные СВЧ сигналы, а также используются измерения псевдо-диапазона, а не угловые измерения. В итоге эта система значительно снизила расходы и позволила осуществлять определение местоположения на всех высотах в любых погодных условиях. Несмотря на то, что технологии спутниковой навигации были изобретены в начале 1960-х годов, они стали оперативно использоваться только в 1980-е годы.

В 1960-е годы произошли существенные улучшения точности инерциальных систем, а также увеличилась стоимость такого оборудования. В результате это привело к противоречивым требованиям по точности и стоимости. Как результат возникла новая технология в области навигации крылатых ракет основанная на системе определения местоположения ракеты путем сопоставления радиолокационного отображения местности с эталонной картографической программой. Данная технология поступила на вооружение крылатых ракет США в 1970-е годы и советских ракет в 1980-е. Технология TERCOM (система цифровой корреляции с рельефом местности блока наведения крылатой ракеты) была использована, как и система астронавигации, для обнуления совокупных инерциальных системных ошибок.


Крылатая ракета Комета

Технология TERCOM относительно проста по замыслу, хотя и сложна в деталях. Крылатая ракета непрерывно измеряет высоту местности под траекторией своего полета, используя для этого радиолокационный высотомер, и сравнивает результаты этих измерений с показаниями барометрического высотомера. Навигационная система TERCOM также хранит в себе цифровые карты высот местности, над которой ей предстоит лететь. Затем с помощью компьютерной программы профиль местности, над которым пролетает ракета сравнивается с сохраненной в памяти цифровой картой высот с целью определить наилучшее их соответствие. Как только профиль согласован с базой данных, можно с большой точностью определить положение ракеты на цифровой карте, что используется для исправления совокупных ошибок инерциальной системы.

TERCOM обладала огромным преимуществом перед астронавигационными системами: она позволяла крылатым ракетам осуществлять полет на предельно низкой высоте необходимой для преодоления ПВО противника, она оказалась относительно дешевой в производстве и очень точной (до десятка метров). Это более чем достаточно для 220 килотонной ядерной боеголовки и достаточно для 500 килограммовой конвенциональной боеголовки применяемой против множества типов целей. И всё же TERCOM не была лишена недостатков. Ракета которая должна была пролететь над уникальной холмистой местностью, легко сравниваемой с профилем высоты цифровых карт, обладала превосходной точностью. Однако TERCOM оказалась неэффективна над водной поверхностью, над сезонно изменяемой местностью, такой как песчаные дюны и местностью с различной сезонной отражательной способностью радара, такой как сибирская тундра и тайга, где снегопады могут изменить высоту местности или скрыть её особенности. Ограниченная емкость памяти ракет часто затрудняла хранение достаточного количества картографических данных.


Крылатая ракета Boeing AGM-86 CALCM

Будучи достаточной для оснащенных ядерными боеголовками КР Томагавк RGM-109A ВМФ и AGM-86 ALCM ВВС, TERCOM была явно не достаточной для уничтожения обычной боеголовкой отдельных зданий или сооружений. В связи с этим ВМС США оснастили TERCOM крылатых ракет Томагавк RGM-109C/D дополнительной системой основанной на так называемой технологии корреляции отображения объекта с его эталонным цифровым образом. Эта технология была использована в 1980-е годы на баллистических ракетах Першинг II, советских КАБ-500/1500Кр и американских высокоточных бомбах DAMASK/JDAM, а также на последних китайских управляемых противокорабельных ракетных комплексах, предназначенных для борьбы с авианосцами.

При корреляции отображения объекта используется камера для фиксации местности перед ракетой, а затем информация с камеры сравнивается с цифровым изображением полученным с помощью спутников или воздушной разведки и хранящейся в памяти ракеты. Измеряя угол поворота и смещение, необходимые для точного совпадения двух изображений, прибор способен очень точно определить ошибку местоположения ракеты и использовать её для коррекции ошибок инерциальной и TERCOM навигационных систем. Блок цифровой корреляции системы наведения крылатых ракет DSMAC используемый на нескольких блоках КР Томагавк были действительно точными, но обладал побочными оперативными эффектами похожими на TERCOM, которую необходимо было программировать на полет ракеты над легко узнаваемой местностью особенно в непосредственной близости от цели. В 1991-ом году во время операции Буря в пустыне, это привело к тому ряд шоссейных развязок в Багдаде были использованы в качестве таких привязок, что в свою очередь позволило войскам противовоздушной обороны Саддама расположить там зенитные батареи и сбить несколько Томагавков. Также как и TERCOM блок цифровой корреляции системы наведения крылатых ракет чувствителен к сезонным изменениям контраста местности. Томагавки, оснащенные DSMAC также несли лампы-вспышки для освещения местности в ночное время.

В 1980-е годы в американские крылатые ракеты были интегрированы первые приемники GPS. Технология GPS была привлекательна, поскольку она позволяла ракете постоянно исправлять свои инерциальные ошибки независимо от рельефа местности и погодных условий, а также она действовала одинаково как над водой, так и над землей.

Эти преимущества были сведены на нет проблемой слабой помехозащищенности GPS, так как сигнал GPS по своей природе очень слабый, восприимчивый к эффекту "повторного изображения" (когда сигнал GPS отражается от рельефа местности или зданий) и изменению точности в зависимости от количества принимаемых спутников и тому, как они распределены по небу. Все американские крылатые ракеты на сегодняшний день оснащены приемниками GPS и пакетом инерциальной системы наведения, причем в конце 1980-х и начале 1990-х годов технологию механической инерциальной системы заменили более дешевой и более точной инерциальной навигационной системой на кольцевых лазерных гироскопах.


Крылатая ракета AGM-158 JASSM

Проблемы связанные с основной точностью GPS постепенно решаются путем введения широкодиапазонных методов GPS (Wide Area Differential GPS) при которых коррекционные сигналы действительные для данного географического положения транслируются на приемник GPS по радиоканалу (в случае американских ракет используется WAGE -Wide Area GPS Enhancement). Основными источниками сигналов этой системы являются радионавигационные маяки и спутники на геостационарной орбите. Наиболее точные технологии подобного рода, разработанные в США в 1990-е годы, способны исправить ошибки GPS до нескольких дюймов в трех измерениях и являются достаточно точными, чтобы попасть ракетой в открытый люк бронемашины.

Проблемы с помехоустойчивостью и "повторным изображением" оказались наиболее трудно решаемыми. Они привели к внедрению технологии так называемых "умных" антенн, как правило, основанных на "цифровом формировании луча" в программном обеспечении. Идея, стоящая за этой технологией проста, но как водится сложна в деталях. Обычная антенна GPS принимает сигналы со всей верхней полусферы над ракетой, таким образом, включая спутники GPS, а также вражеские помехи. Так называемая антенна с управляемой диаграммой направленности (Controlled Reception Pattern Antenna, CRPA) при помощи программного обеспечения синтезирует узкие пучки, направленные к предполагаемому месторасположению спутников GPS, в результате чего антенна оказывается "слепа" во всех других направлениях. Наиболее продвинутые конструкции антенн этого типа производят так называемые "нули" в диаграмме направленности антенны направленные на источники помех для дальнейшего подавления их влияния.


Крылатая ракетаТомагавк

Большая часть проблем получивших широкую огласку в начале производства крылатых ракет AGM-158 JASSM были результатом проблем с программным обеспечением приемника GPS, в результате которых ракета теряла спутники GPS и сбивалась со своей траектории.

Продвинутые приемники GPS обеспечивают высокий уровень точности и надежную помехоустойчивость к расположенным на земной поверхности источникам помех GPS. Они менее эффективны против сложных источников помех GPS развернутых на спутниках, беспилотных летательных аппаратах или аэростатах.

Последнее поколение американских крылатых ракет использует GPS-инерциальную систему наведения, дополняет её установленной в носовой части ракеты цифровой тепловизионной камерой, преследующей цель обеспечить возможности подобные DSMAC против неподвижных целей с соответствующим программным обеспечением и возможностью автоматического опознавания образов и против подвижных целей, таких как зенитно-ракетные системы или ракетные пусковые установки. Линии передачи данных, как правило, происходят от технологии JTIDS/Link-16, внедряемой для обеспечения возможности перенацеливания оружия в случае, когда подвижная цель изменила своё местоположение в время нахождения ракеты на марше. Использование этой функции главным образом зависит от пользователей обладающих разведкой и возможностями выявления таких перемещений цели.

Долгосрочные тенденции в развитии навигации крылатых ракет приведут к их большей интеллектуальности, большей автономности, большему разнообразию в датчиках, повышенной надежности и снижению стоимости.

Терри Эдмондс продолжает публикацию серии статей о методах доставки наживки и прикормки на дальние расстояния. На сей раз речь пойдет о нюансах прикармливания с помощью кормушки-ракеты. Оригинал статьи находится на сайте www.mainline-baits.co.uk.

В наши дни ракетное удилище, должно быть, самый распространенный способ прикармливания на карповых водоемах. Это очень эффективный способ доставки всех видов корма в участок ловли на расстояниях от нескольких до 150 ярдов. И я хочу помочь вам прикормить эти дальние участки ловли. Для эффективного исполнения этого требуются правильные снасти и методы, но, однажды приобретя это, можно добиться убедительных результатов и практически ничего не менять. Рыболовы-спортсмены также знают, что такое предельная дистанция.

Требования к снастям

Первое требование, которому должно соответствовать удилище для прикармливания на дальних дистанциях, - это качественный бланк с тестовой кривой не менее 4.5 lb, поскольку сложные условия заброса ракеты весом до 7 унций могут очень быстро выявить слабые места бланка. Это неоднократно видели люди, наблюдающие за моими показательными забросами. Сейчас для выполнения всей работы, связанной с прикармливанием, я отдаю предпочтение бланкам Harrison, поскольку они действительно доказали свою надежность. Я также без каких-либо проблем пользовался Fox Horizon, и много раз бросал им ракеты на расстояние до 150 ярдов. Если в процессе покупки ракетного удилища вы примете решение остановиться на изделии, выполненном на заказ, тем лучше, поскольку оно может быть сделано в соответствии с вашими личными требованиями. Многие ракетные удилища, представленные на рынке, имеют слишком короткую рукоятку, что приводит к тому, что во время заброса ось вращения сильно смещена к низу бланка. Это приводит к увеличению нагрузки в процессе прикармливания ракетой. Я рекомендовал бы поместить комель удилища подмышку, протянув руку вдоль бланка. То место бланка, в котором окажется ваша кисть, является идеальным для размещения катушкодержателя. Это смещает ось вращения удилища, облегчая заброс тяжелых ракет.

Наилучший набор колец для ракетного удилища начинается с нижнего кольца диаметром 50 мм и заканчивается тюльпаном диаметром 16 мм. Нижнее кольцо диаметром 50 мм действительно способствует увеличению дистанции заброса с катушками типа биг пит, независимо от того, что кто-либо говорит по этому поводу. На соревнованиях, в которых я боролся с лучшими кастингистами мира, все они пользовались нижними кольцами диаметром не менее 50 мм. Я также использовал такие кольца, чтобы побить некоторые британские рекорды, что кое-что говорит в пользу их влияния на дальность заброса.

На рынке представлено много катушек, подходящих для дальнего прикармливания с помощью ракетных удилищ. К важным характеристикам таких катушек следует отнести высокую скорость обратной подмотки, большое тяговое усилие, хорошую укладку лески и удобную клипсу шпули. Катушки, которыми я пользуюсь, и которые никогда не подводили меня - Shimano Biomaster. Эти катушки делают все необходимое и не стоят целого состояния - превосходные катушки.

Я считаю, что использование шнура Whiplash 20 lb с лидером Whiplash 65 lb, связанных встречными 5-и оборотными гриннерами - очень эффективный способ прикормить с помощью ракеты на большом расстоянии. Шнур Whiplash облегчает прикармливание при помощи ракеты по нескольким причинам:

  1. Поскольку плетенка плавает, это облегчает выматывание ракеты. Моно может тонуть, что делает выматывание более утомительным.
  2. Узлы, соединяющие шок-лидер с основной леской, очень маленькие, поэтому они легче пролетают сквозь кольца и не будут цеплять витки лески на шпуле в процессе заброса, что фактически устраняет вероятность обрыва.
  3. При забросах с леской, зажатой в клипсу, нерастяжимость плетенки способствует значительному повышению точности, особенно учитывая, на сколько растянется моно леска на длине более 100 ярдов.

Для беспрепятственной работы ракетным удилищем я окунаю катушку в воду перед первым забросом, чтобы намочить шнур - это помогает избежать образования "бороды". Во избежание обрезания лески о клипсу я помещаю немного изоляционной ленты вокруг той части шнура, которая заходит под клипсу. Моно также можно использовать без проблем, в этом случае я бы посоветовал остановиться на диаметре от 0.26 до 0.28 мм с лидером Whiplash 65 lb. Я также много пользуюсь моно леской, поскольку ее совсем не накладно заменять, и она не подвержена образованию "бород".

При выполнении всех дальних забросов не забывайте пользоваться напалечником, поскольку в противном случае палец можно порезать очень сильно. Я чаще всего пользуюсь напалечниками MCF.

Техника заброса

Если вы вернетесь к моей статье о забросе над головой, техника для заброса ракетным удилищем в точности такая же.

После того как ракета отправится в полет, направьте удилище таким образом, чтобы совместить его с линией, по которой движется сходящая леска. В конце заброса поднимите удилище вверх почти вертикально, Как только шнур/моно натянется, и вы почувствуете ракету, опустите вершинку удилища в горизонтальное положение. Это поможет амортизировать удар лески о клипсу и предотвратит обрезание лески, а ракета приводнится с меньшим всплеском.

Пока леска зажата в клипсе, дистанция заброса будет соответствовать расстоянию, на котором находится маркерный поплавок или нужный участок, точно выполняйте все необходимые действия для заброса над головой (см. статью о забросе над головой), и необходимая точность будет достигнута.

Типы кормушек-ракет

На рынке представлен широкий ассортимент ракет, и я пользовался многими из них, но остановился на тех, которые считаю лучшими в настоящее время. Я пользуюсь разными ракетами для доставки различных видов прикормки.

Первая ракета, которой я пользуюсь чаще всего, - это Korda Skyliner. Она действительно хорошо забрасывается, устойчива в полете и великолепно выматывается. В основном я пользуюсь ею для доставки тяжелых смесей на расстояние до 150 ярдов - большие отверстия действительно хорошо помогают выгружаться этим смесям.

Для прикармливания бойлами на больших дистанциях я использую бойловую ракету MCF, потому что она сделана из по-настоящему толстого пластика и довольно тяжелая для ракеты, что делает ее очень прочной и устойчивой даже при боковом ветре. Она хорошо выматывается если приподнять ее заднюю часть и может донести бойлы диаметром до 16 мм так далеко, как это может потребоваться. Я часто загружаю в ракету сначала коноплю, а уже затем бойлы и всегда окунаю ракету в воду перед забросом.

Другая хорошая ракета, которой я пользуюсь - небольшая ракета MCF без отверстий. Эта ракета прекрасно подходит для прикармливания опарышами и сухими смесями на расстоянии до 130 ярдов. Она имеет устройство, отстегивающееся после заброса, и позволяющее развернуть ракету носом к берегу перед выматыванием. Это превосходная идея для ракет без отверстий, значительно облегчающая процесс прикармливания. Ракеты выпускаются нескольких типоразмеров.

Последний вид ракет, которыми я пользуюсь - это изделия Gardner, размером от карманной ракеты до XXL, в зависимости от того, сколько корма я хочу забросить. Я пользуюсь ими для жидких смесей. Они летят превосходно, но выматывать их тяжело. Они обладают очень высокой плавучестью, что помогает вытекать жидким смесям.

Загружайте ракету только на 3/4 ее полного объема, в противном случае она не будет лететь ровно, а дальность и точность очень сильно пострадают.

Смеси для ракет

Существует бесчисленное множество смесей для ракет, и у каждого есть свои фавориты. Мои смеси остаются очень простыми. Я отдаю им предпочтение, поскольку главным образом выезжаю на короткие рыбалки и не хочу брать с собой несметное количество различных прикормок. Я просто предпочитаю пользоваться тем, в чем уверен.

Моя стандартная смесь на 60% состоит из зерен конопли или зерновой смеси, которые хорошо привлекают карпа, а также способствуют лучшей выгрузке прикормки из ракеты, и на 40% из пеллетса различных размеров, крошеных бойлов и некоторого количества применяемой насадки, какой бы она ни была. Затем я добавляю жидкие аттрактанты, например, превосходную патоку Mainline и немного соли и сахара.

Жидкие смеси - это просто переувлажненные смеси, предназначенные для создания в воде столба мути. Они часто используются при ловле на оснастки зиг риг для создания привлекающего эффекта без риска перекормить или в кристально чистых местах, где облако мути может привести к тому, что рыба будет более уверенно кормиться. Это отличный способ максимального привлечения с подачей минимального количества корма, что особенно эффективно зимой.

Моя обычная смесь - это прекрасно работающая донная прикормка из линейки Active от Mainline, дробленая конопля и много жидких аттрактантов, таких как кокосовое молоко и кленовая патока Maple 8 Mainline, которые дают много мути и обладают сильным привлекающим эффектом. Донная прикормка очень активна и будет подниматься сквозь слои воды с различной скоростью.

В процессе прикармливания с помощью ракеты на большой дистанции старайтесь держать все необходимое под рукой и войти в ритм, это поможет в плане точности и равномерности, а следовательно, и эффективности прикармливания.

Испытайте вашу прикормочную смесь у берега, чтобы увидеть, как она будет взаимодействовать с водой. Просто загрузите ракету и бросьте ее в воду у берега, это позволит вам увидеть, чего вы сможете добиться на расстоянии более 100 ярдов. Это также позволит понять, какое время требуется для выгрузки содержимого ракеты. После приводнения ракеты поддерните ее несколько раз - это поможет выгрузить прикормочную смесь на участке ловли, что является очень важным, если вы не хотите выматывать обратно ракету с прикормкой, рассыпая ее где ни попадя.

Пока ракета летит к прикармливаемому участку, некоторое количество смеси часто вылетает из ее задней части, в результате прикормка будет рассыпана на большой площади. Во избежание этого можно посоветовать запечатать конец ракеты недоувлажненной донной прикормкой, после чего снова убедитесь в том, что ракета заполнена не более чем на 3/4 своего объема.

Прикармливание с помощью ракеты на больших расстояниях может быть тяжелой работой, но если вы обладаете правильной техникой, снастями и прикормкой, это может стать приятной и выполнимой задачей.

Удачи и удачных забросов.

Я помогу любому, кто обратится за помощью в области совершенствования своих методов ловли рыбы на большом расстоянии.
Пишите мне по адресу: