Решение: Вектор нормальный вектор прямой - Решение. Вычисление нормальных векторов для плоскостей Координаты нормального вектора прямой

В аналитической геометрии часто требуется составить общее уравнение прямой по принадлежащей ей точке и вектору нормали к прямой.

Замечание 1

Нормаль – синоним для слова перпендикуляр.

Общее уравнение прямой на плоскости выглядит как $Ax + By + C = 0$. Подставляя в него различные значениях $A$, $B$ и $C$, в том числе нулевые, можно определить любые прямые.

Можно выразить уравнение прямой и другим способом:

Это уравнение прямой с угловым коэффициентом. В нем геометрический смысл коэффициента $k$ заключается в угле наклона прямой по отношению к оси абсцисс, а независимого члена $b$ - в расстоянии, на которое прямая отстоит от центра координатной плоскости, т.е. точки $O(0; 0)$.

Рисунок 1. Варианты расположения прямых на координатной плоскости. Автор24 - интернет-биржа студенческих работ

Нормальное уравнение прямой можно выразить и в тригонометрическом виде:

$x \cdot \cos{\alpha} + y \cdot \sin{\alpha} - p = 0$

где $\alpha$ - угол между прямой и осью абсцисс, а $p$ - расстояние от начала координат до рассматриваемой прямой.

Возможны четыре варианта зависимости наклона прямой от величины углового коэффициента:

  1. когда угловой коэффициент положителен, направляющий вектор прямой идёт снизу вверх;
  2. когда угловой коэффициент отрицателен, направляющий вектор прямой идёт сверху вниз;
  3. когда угловой коэффициент равен нулю, описываемая им прямая параллельна оси абсцисс;
  4. для прямых, параллельных оси ординат, углового коэффициента не существует, поскольку тангенс 90 градусов является неопределенной (бесконечной) величиной.

Чем больше абсолютное значение углового коэффициента, тем круче наклонен график прямой.

Зная угловой коэффициент, легко составить уравнение графика прямой, если дополнительно известна точка, принадлежащая искомой прямой:

$y - y_0 = k \cdot (x - x_0)$

Таким образом, геометрически прямую на координатной всегда можно выразить с помощью угла и расстояния от начала координат. В этом и заключается смысл нормального вектора к прямой - самого компактного способа записи ее положения, если известны координаты хотя бы одной точки, принадлежащей этой прямой.

Определение 1

Вектором нормали к прямой, иначе говоря, нормальным вектором прямой, принято называть ненулевой вектор, перпендикулярный рассматриваемой прямой.

Для каждой прямой можно найти бесконечное множество нормальных векторов, равно как и направляющих векторов, т.е. таких, которые параллельны этой прямой. При этом все нормальные векторы к ней будут коллинеарными, хотя и не обязательно сонаправлены.

Обозначив нормальный вектор прямой как $\vec{n}(n_1; n_2)$, а координаты точки как $x_0$ и $y_0$, можно представить общее уравнение прямой на плоскости по точке и вектору нормали к прямой как

$n_1 \cdot (x - x_n) + n_2 \cdot (y - y_0) = 0$

Таким образом, координаты вектора нормали к прямой пропорциональны числам $A$ и $B$, присутствующим в общем уравнении прямой на плоскости. Следовательно, если известно общее уравнение прямой на плоскости, то можно легко вывести и вектор нормали к прямой. Если прямая, задана уравнением в прямоугольной системе координат

$Ax + By + C = 0$,

то нормальный вектор описывается формулой:

$\bar{n}(A; B)$.

При этом говорят, что координаты нормального вектора "снимаются" с уравнения прямой.

Нормальный к прямой вектор и ее направляющий вектор всегда ортогональны по отношению друг к другу, т.е. их скалярные произведения равны нулю, в чем легко убедиться, вспомнив формулу направляющего вектора $\bar{p}(-B; A)$, а также общее уравнение прямой по направляющему вектору $\bar{p}(p_1; p_2)$ и точке $M_0(x_0; y_0)$:

$\frac{x - x_0}{p_1} = \frac{y - y_0}{p_2}$

В том, что вектор нормали к прямой всегда ортогонален направляющему вектору к ней можно убедиться с помощью скалярного произведения:

$\bar{p} \cdot \bar{n} = -B \cdot A + A \cdot B = 0 \implies \bar{p} \perp \bar{n}$

Всегда можно составить уравнение прямой, зная координаты принадлежащей ей точки и нормального вектора, поскольку направление прямой следует из его направления. Описав точку как $M(x_0; y_0)$, а вектор как $\bar{n}(A; B)$, можно выразить уравнение прямой в следующем виде:

$A(x - x_0) + B(y - y_0) = 0$

Пример 1

Составить уравнение прямой по точке $M(-1; -3)$ и нормальному вектору $\bar(3; -1)$. Вывести уравнение направляющего вектора.

Для решения задействуем формулу $A \cdot (x - x_0) + B \cdot (y - y_0) = 0$

Подставив значения, получаем:

$3 \cdot (x - (-1)) - (-1) \cdot (y - (-3)) = 0$ $3 \cdot (x + 1) - (y + 3) = 0$ $3x + 3 - y - 3 = 0$ $3x - y = 0$

Проверить правильность общего уравнения прямой можно "сняв" из него координаты для нормального вектора:

$3x - y = 0 \implies A = 3; B = -1 \implies \bar{n}(A; B) = \bar{n}(3; -1),$

Что соответствует числам исходных данных.

Подставив реальные значения, проверим, удовлетворяет ли точка $M(-1; -3)$ уравнению $3x - y = 0$:

$3 \cdot (-1) - (-3) = 0$

Равенство верно. Осталось лишь найти формулу направляющего вектора:

$\bar{p}(-B; A) \implies \bar{p}(1; 3)$

Ответ: $3x - y = 0; \bar{p}(1; 3).$

Прямая на плоскости.

Общее уравнение прямой.

Прежде чем вводить общее уравнение прямой на плоскости введем общее определение линии.

Определение . Уравнение вида

F (x , y )=0 (1)

называется уравнением линии L в заданной системе координат, если этому удовлетворяют координаты х и у любой точки, лежащей на линии L , и не удовлетворяют координаты никакой точки, не лежащей на этой линии.

Степень уравнения (1) определяет порядок линии . Будем говорить, что уравнение (1) определяет (задает) линию L .

Определение . Уравнение вида

Ах+Ву+С=0 (2)

при произвольных коэффициентах А , В , С (А и В одновременно не равны нулю) определяют некоторую прямую в прямоугольной системе координат. Данное уравнение называется общим уравнением прямой .

Уравнение (2) есть уравнение первой степени, таким образом, каждая прямая есть линия первого порядка и, обратно, каждая линия первого порядка есть прямая.

Рассмотрим три частных случая, когда уравнение (2) является неполным, т.е. какой-то из коэффициентов равен нулю.

1)Если С=0 , то уравнение имеет вид Ах+Ву=0 и определяет прямую, проходящую через начало координат т.к. координаты (0,0) удовлетворяют данному уравнению.

2)Если В=0 (А≠0 ), то уравнение имеет вид Ах+С=0 и определяет прямую, параллельную оси ординат. Разрешив это уравнение относительно переменной х получим уравнение вида х=а , гдеа=-С/А , а — величина отрезка, который отсекает прямая на оси абсцисс. Если а=0 (С=0 Оу (рис.1а). Таким образом, прямая х=0 определяет ось ординат.

3)Если А=0 (В≠0 ), то уравнение имеет вид Ву+С=0 и определяет прямую, параллельную оси абсцисс. Разрешив это уравнение относительно переменной у получим уравнение вида у= b , гдеb =-С/В , b — величина отрезка, который отсекает прямая на оси ординат. Если b =0 (С=0 ), то прямая совпадает с осью Ох (рис.1б). Таким образом, прямая у=0 определяет ось абсцисс.


а) б)

Уравнение прямой в отрезках .

Пусть дано уравнение Ах+Ву+С=0 при условии, что ни один из коэффициентов не равен нулю. Перенесем коэффициент С в правую часть и разделим на обе части.

Используя обозначения, введенные в первом пункте, получим уравнение прямой «в отрезках »:

Оно имеет такое название потому, что числа а и b являются величинами отрезков, которые прямая отсекает на осях координат.

Пример 2х-3у+6=0 . Составить для этой прямой уравнение «в отрезках» и построить эту прямую.

Решение

Чтобы построить эту прямую, отложим на оси Ох отрезок а=-3 , а на оси Оу отрезок b =2 . Через полученные точки проведем прямую (рис.2).


Уравнение прямой с угловым коэффициентом.

Пусть дано уравнение Ах+Ву+С=0 при условии, что коэффициент В не равен нулю. Выполним следующие преобразования

Уравнение (4), где k =- A / B , называется уравнением прямой с угловым коэффициентом k .

Определение . Углом наклона данной прямой к оси Ох назовем угол α , на который нужно повернуть ось Ох , чтобы её положительное направление совпало с одним из направлений прямой.

Тангенс угла наклона прямой к оси Ох равен угловому коэффициенту, т.е k = tgα . Докажем, что –А/В действительно равно k . Из прямоугольного треугольника ΔОАВ (рис.3) выразим tgα , выполним необходимые преобразования и получим:

Что и требовалось доказать.


Если k =0 , то прямая параллельна оси Ох , и её уравнение имеет вид у= b .

Пример . Прямая задана общим уравнением 4х+2у-2=0 . Составить для этой прямой уравнение с угловым коэффициентом.

Решение . Выполним преобразования, аналогичные описанным выше, получим:

где k=-2, b=1 .

Уравнение прямой, проходящей через заданную точку, с данным угловым коэффициентом.

Пусть задана точка М 0 (х 0 ,у 0) прямой и её угловой коэффициент k . Запишем уравнение прямой в виде (4), где b —пока неизвестное число. Так как точка М 0 принадлежит заданной прямой, то её координаты удовлетворяют уравнению (4): . Подставляя выражение для b в (4), получаем искомое уравнение прямой:

Пример. Записать уравнение прямой, проходящей через точку М(1,2) и под наклоном к оси Ох под углом 45 0 .

Решение . k = tgα = tg 45 0 =1 . Отсюда: .

Уравнение прямой, проходящей через две данные точки.

Пусть даны две точки М 1 (х 1 ,у 1) и М 2 (х 2 ,у 2) . Запишем уравнение прямой в виде (5), где k пока неизвестный коэффициент:

Так как точка М 2 принадлежит заданной прямой, то её координаты удовлетворяют уравнению (5): . Выражая отсюда и подставив его в уравнение (5) получим искомое уравнение:

Если это уравнение можно переписать в виде, более удобном для запоминания:

Пример. Записать уравнение прямой, проходящей через точки М 1 (1,2) и М 2 (-2,3)

Решение . . Используя свойство пропорции, и выполнив необходимые преобразования, получим общее уравнение прямой:

Угол между двумя прямыми

Рассмотрим две прямые l 1 и l 2 :

l 1 : , , и

l 2 : , ,

φ- угол между ними (). Из рис.4 видно: .


Отсюда , или

l 2 параллельны, то φ=0 и tgφ =0 . из формулы (7) следует, что , откуда k 2 = k 1 . Таким образом, условием параллельности двух прямых является равенство их угловых коэффициентов.

Если прямые l 1 и l 2 перпендикулярны, то φ=π/2 , α 2 = π/2+ α 1 . . Таким образом, условие перпендикулярности двух прямых состоит в том, что их угловые коэффициенты обратны по величине и противоположны по знаку.


Линейность уравнения прямой и обратное утверждение.


Направляющий и нормальный векторы.

Нормальный вектор прямой - это любой ненулевой вектор, лежащий на любой прямой перпендикулярной данной.

Направляющий вектор прямой - это любой ненулевой вектор, лежащий на данной прямой или на параллельной ей прямой.

Способы задания плоскости.

Взаимное расположение плоскостей.

Две плоскости в пространстве могут совпадать. В этом случае они имеют, по крайней мере, три общие точки.

Две плоскости в пространстве могут пересекаться. Пересечением двух плоскостей является прямая линия, что устанавливается аксиомой: если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

В этом случае возникает понятие угла между пересекающимися плоскостями. Отдельный интерес представляет случай, когда угол между плоскостями равен девяноста градусам. Такие плоскости называют перпендикулярными.

Наконец, две плоскости в пространстве могут быть параллельными, то есть, не иметь общих точек.

Также интересны случаи, когда несколько плоскостей пересекаются по одной прямой и несколько плоскостей пересекаются в одной точке.

Перечислим основные способы задания конкретной плоскости в пространстве.

Во-первых, плоскость можно задать, зафиксировав три не лежащие на одной прямой точки пространства. Этот способ основан на аксиоме: через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость с помощью указания координат трех ее различных точек, не лежащих на одной прямой, то мы можем написать уравнение плоскости, проходящей через три заданные точки.

Два следующих способа задания плоскости являются следствием из предыдущего. Они основаны на следствиях из аксиомы о плоскости, проходящей через три точки:

· через прямую и не лежащую на ней точку проходит плоскость, притом только одна;

· через две пересекающиеся прямые проходит единственная плоскость.

Четвертый способ задания плоскости в пространстве основан на определении параллельных прямых. Напомним, что две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Таким образом, указав две параллельные прямые в пространстве, мы определим единственную плоскость, в которой эти прямые лежат.

Если в трехмерном пространстве относительно прямоугольной системы координат задана плоскость указанным способом, то мы можем составить уравнение плоскости, проходящей через две параллельные прямые.

Признак параллельности двух плоскостей дает нам еще один способ задания плоскости. Вспомним формулировку этого признака: если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то такие плоскости параллельны. Следовательно, мы можем задать конкретную плоскость, если укажем точку, через которую она проходит и плоскость, которой она параллельна.



В курсе средней школы на уроках геометрии доказывается следующая теорема: через фиксированную точку пространства проходит единственная плоскость, перпендикулярная к данной прямой. Таким образом, мы можем задать плоскость, если укажем точку, через которую она проходит, и прямую, перпендикулярную к ней.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость указанным способом, то можно составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Вместо прямой, перпендикулярной к плоскости, можно указать один из нормальных векторов этой плоскости. В этом случае есть возможность написать общее уравнение плоскости.

Хорошее представление о прямой линии начинается с момента, когда вместе с ее образом одновременно возникают образы ее направляющих и нормальных векторов. Аналогично, при упоминании о плоскости в пространстве, она должна представляться вместе со своим нормальным вектором. Почему так? Да потому что во многих случаях удобнее использовать нормальный вектор плоскости, чем саму плоскость.

Сначала дадим определение нормального вектора плоскости, приведем примеры нормальных векторов и необходимые графические иллюстрации. Далее поместим плоскость в прямоугольную систему координат в трехмерном пространстве и научимся определять координаты нормального вектора плоскости по ее уравнению.

2.1. Нормальный вектор плоскости – определение, примеры, иллюстрации.

Определение. Нормальный вектор плоскости - это любой ненулевой вектор, лежащий на прямой перпендикулярной к данной плоскости.

Из определения следует, что существует бесконечное множество нормальных векторов данной плоскости.

Так как все нормальные векторы заданной плоскости лежат на параллельных прямых, то все нормальные векторы плоскости коллинеарны. Другими словами, если - нормальный вектор плоскости , то вектор при некотором ненулевом действительном значении t также является нормальным вектором плоскости .

Также следует заметить, что любой нормальный вектор плоскости можно рассматривать как направляющий вектор прямой, перпендикулярной к этой плоскости.

Множества нормальных векторов параллельных плоскостей совпадают, так как прямая, перпендикулярная к одной из параллельных плоскостей, перпендикулярна и ко второй плоскости.

Из определения перпендикулярных плоскостей и определения нормального вектора плоскости следует, что нормальные векторы перпендикулярных плоскостей перпендикулярны.

Пример нормального вектора плоскости. Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz. Координатные векторы являются нормальными векторами плоскостей Oyz, Oxz и Oxy соответственно. Это действительно так, потому что векторы ненулевые и лежат на координатных прямых Ox, Oy и Oz соответственно, которые перпендикулярны координатным плоскостям Oyz, Oxz и Oxy соответственно.

2.2. Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости по уравнению плоскости.

Найдем координаты нормального вектора плоскости, если известно уравнение плоскости в прямоугольной системе координат Oxyz.

Общее уравнение плоскости вида определяет в прямоугольной системе координат Oxyz плоскость, нормальным вектором которой является вектор . Таким образом, чтобы найти координаты нормального вектора плоскости нам достаточно иметь перед глазами общее уравнение этой плоскости.

Пример. Найдите координаты какого-либо нормального вектора плоскости .

Решение. Нам дано общее уравнение плоскости, коэффициенты перед переменными x, y и z представляют собой соответствующие координаты нормального вектора этой плоскости. Следовательно, - один из нормальных векторов заданной плоскости. Множество всех нормальных векторов этой плоскости можно задать как , где t - произвольное действительное число, отличное от нуля.

Пример. Плоскость задана уравнением . Определите координаты ее направляющих векторов.

Решение. Нам дано неполное уравнение плоскости. Чтобы стали видны координаты ее направляющего вектора, перепишем уравнение в виде . Таким образом, нормальный вектор этой плоскости имеет координаты , а множество всех нормальных векторов запишется как .

Уравнение плоскости в отрезках вида , как и общее уравнение плоскости, позволяет сразу записать один из нормальных векторов этой плоскости – он имеет координаты .

В заключении скажем, что с помощью нормального вектора плоскости могут быть решены различные задачи. Самыми распространенными являются задачи на доказательство параллельности или перпендикулярности плоскостей, задачи на составление уравнения плоскости, а также задачи на нахождение угла между плоскостями и на нахождение угла между прямой и плоскостью.

Вектор нормали

Плоская поверхность с двумя нормалями

В дифференциальной геометрии , нормаль - это прямая , ортогональная (перпендикулярная) касательной прямой к некоторой кривой или касательной плоскости к некоторой поверхности . Также говорят о нормальном направлении .

Вектор нормали к поверхности в данной точке - это единичный вектор , приложенный к данной точке и параллельный направлению нормали. Для каждой точки гладкой поверхности можно задать два нормальных вектора, отличающихся направлением. Если на поверхности можно задать непрерывное поле нормальных векторов, то говорят, что это поле задает ориентацию поверхности (то есть выделяет одну из сторон). Если этого сделать нельзя, поверхность называется неориентируемой .


Wikimedia Foundation . 2010 .

Смотреть что такое "Вектор нормали" в других словарях:

    вектор нормали - normalės vektorius statusas T sritis fizika atitikmenys: angl. normal vector vok. Normalenvektor, m rus. вектор нормали, m pranc. vecteur de la normale, m; vecteur normal, m … Fizikos terminų žodynas

    Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Вектор Дарбу направляющий вектор мгновенной оси вращения, вокруг которой сопровождающий триэдр кривой L поворачивается при… … Википедия

    Электродинамика сплошных сред Электродинамика сплошных сред … Википедия

    Вектор Дарбу направляющий вектор мгновенной оси вращения, вокруг которой сопровождающий триэдр кривой L поворачивается при равномерном движении точки M по кривой L. Вектор Дарбу лежит в спрямляющей плоскости кривой L и выражается через единичные… … Википедия

    Градиент (от лат. gradiens, род. падеж gradientis шагающий), вектор, показывающий направление наискорейшего изменения некоторой величины, значение которой меняется от одной точки пространства к другой (см. Поля теория). Если величина выражается… …

    Направляющий вектор d мгновенной оси вращения, вокруг к рой сопровождающий триэдр кривой Lповорачивается при равномерном движении точки Мпо кривой L. Д. в. лежит в спрямляющей плоскости кривой Lи выражается через единичные векторы главной нормали … Математическая энциклопедия

    Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Гиперповерх … Википедия

    Графический конвейер аппаратно программный комплекс визуализации трёхмерной графики. Содержание 1 Элементы трехмерной сцены 1.1 Аппаратные средства 1.2 Программные интерфейсы … Википедия

    Математическая дисциплина, в которой изучают свойства операций над Векторами евклидова пространства. При этом понятие вектора представляет собой математическую абстракцию величин, характеризующихся не только численным значением, но и… … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Плоскость. Сюда перенаправляется запрос «Плоскостность». На эту тему нужна отдельная статья … Википедия

Что такое нормаль? Простыми словами, нормаль – это перпендикуляр. То есть, вектор нормали прямой перпендикулярен данной прямой. Очевидно, что у любой прямой их бесконечно много (так же, как и направляющих векторов), причём все векторы нормали прямой будут коллинеарными (сонаправленными или нет – без разницы).

Разборки с ними будут даже проще, чем с направляющими векторами:

Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является вектором нормали данной прямой.

Если координаты направляющего вектора приходиться аккуратно «вытаскивать» из уравнения, то координаты вектора нормали достаточно просто «снять».

Вектор нормали всегда ортогонален направляющему вектору прямой. Убедимся в ортогональности данных векторов с помощью скалярного произведения:

Приведу примеры с теми же уравнениями, что и для направляющего вектора:

Можно ли составить уравнение прямой, зная одну точку и вектор нормали? Если известен вектор нормали, то однозначно определено и направление самой прямой – это «жёсткая конструкция» с углом в 90 градусов.

Как составить уравнение прямой по точке и вектору нормали?

Если известна некоторая точка , принадлежащая прямой, и вектор нормали этой прямой, то уравнение данной прямой выражается формулой:

Составить уравнение прямой по точке и вектору нормали . Найти направляющий вектор прямой.

Решение: Используем формулу:

Общее уравнение прямой получено, выполним проверку:

1) «Снимаем» координаты вектора нормали с уравнения : – да, действительно, получен исходный вектор из условия (либо должен получиться коллинеарный исходному вектор).

2) Проверим, удовлетворяет ли точка уравнению :

Верное равенство.

После того, как мы убедились в том, что уравнение составлено правильно, выполним вторую, более лёгкую часть задания. Вытаскиваем направляющий вектор прямой:

Ответ:

На чертеже ситуация выглядит следующим образом:

В целях тренировки аналогичная задача для самостоятельного решения:

Составить уравнение прямой по точке и нормальному вектору . Найти направляющий вектор прямой.

Заключительный раздел урока будет посвящен менее распространённым, но тоже важным видам уравнений прямой на плоскости

Уравнение прямой в отрезках.
Уравнение прямой в параметрической форме

Уравнение прямой в отрезках имеет вид , где – ненулевые константы. Некоторые типы уравнений нельзя представить в таком виде, например, прямую пропорциональность (так как свободный член равен нулю и единицу в правой части никак не получить).



Это, образно говоря, «технический» тип уравнения. Обыденная задача состоит в том, чтобы общее уравнение прямой представить в виде уравнения прямой в отрезках . Чем оно удобно? Уравнение прямой в отрезках позволяет быстро найти точки пересечения прямой с координатными осями, что бывает очень важным в некоторых задачах высшей математики.

Найдём точку пересечения прямой с осью . Обнуляем «игрек», и уравнение принимает вид . Нужная точка получается автоматически: .

Аналогично с осью – точка, в которой прямая пересекает ось ординат.

Действия, которые я только что подробно разъяснил, выполняются устно.

Дана прямая . Составить уравнение прямой в отрезках и определить точки пересечения графика с координатными осями.

Решение: Приведём уравнение к виду . Сначала перенесём свободный член в правую часть:

Чтобы получить справа единицу, разделим каждый член уравнения на –11:

Делаем дроби трёхэтажными:

Точки пересечения прямой с координатными осями всплыли на поверхность:

Ответ:

Осталось приложить линеечку и провести прямую.

Легко усмотреть, что данная прямая однозначно определяется красным и зелёным отрезками, отсюда и название – «уравнение прямой в отрезках».

Конечно, точки не так трудно найти и из уравнения , но задача всё равно полезная. Рассмотренный алгоритм потребуется для нахождения точек пересечения плоскости с координатными осями, для приведения уравнения линии второго порядка к каноническому виду и в некоторых других задачах. Поэтому пара прямых для самостоятельного решения:

Составить уравнение прямой в отрезках и определить точки её пересечения с координатными осями.

Решения и ответы в конце. Не забывайте, что при желании всё можно начертить.

Как составить параметрические уравнениЯ прямой?



Параметрические уравнения прямой больше актуальны для прямых в пространстве, но без них наш конспект осиротеет.

Если известна некоторая точка , принадлежащая прямой, и направляющий вектор этой прямой, то параметрические уравнения данной прямой задаются системой:

Составить параметрические уравнения прямой по точке и направляющему вектору

Решение закончилось, не успев начаться:

Параметр «тэ» может принимать любые значения от «минус бесконечности» до «плюс бесконечности», и каждому значению параметра соответствует конкретная точка плоскости. Например, если , то получаем точку .

Обратная задача: как проверить, будет ли точка условия принадлежать данной прямой?

Подставим координаты точки в полученные параметрические уравнения:

Из обоих уравнений следует, что , то есть, система совместна и имеет единственное решение.

Рассмотрим более содержательные задания:

Составить параметрические уравнения прямой

Решение: По условию прямая задана в общем виде. Для того чтобы составить параметрические уравнения прямой, нужно знать её направляющий вектор и какую-нибудь точку, принадлежащую данной прямой.

Найдём направляющий вектор:

Теперь нужно найти какую-нибудь точку, принадлежащую прямой (подойдёт любая), в этих целях общее уравнение удобно переписать в виде уравнения с угловым коэффициентом:

Напрашивается, конечно, точка

Составим параметрические уравнения прямой:

И напоследок небольшая творческая задача для самостоятельного решения.

Составить параметрические уравнения прямой, если известна принадлежащая ей точка и вектор нормали

Задачу можно оформить не единственным способом. Одна из версий решения и ответ в конце.

Решения и ответы:

Пример 2: Решение: Найдём угловой коэффициент:

Уравнение прямой составим по точке и угловому коэффициенту :

Ответ:

Пример 4: Решение: Уравнение прямой составим по формуле:

Ответ:

Пример 6: Решение: Используем формулу:

Ответ : (ось ординат)

Пример 8: Решение : Составим уравнение прямой по двум точкам:

Умножаем обе части на –4:

И делим на 5:

Ответ :

Пример 10: Решение : Используем формулу:

Сокращаем на –2:

Направляющий вектор прямой:
Ответ :

Пример 12:
а) Решение : Преобразуем уравнение:

Таким образом:

Ответ :

б) Решение : Преобразуем уравнение:

Таким образом:

Ответ :

Пример 15: Решение : Сначала составим общее уравнение прямой по точке и вектору нормали :

Умножаем на 12:

Умножаем ещё на 2, чтобы после раскрытия второй скобки избавиться от дроби:

Направляющий вектор прямой:
Параметрические уравнения прямой составим по точке и направляющему вектору :
Ответ :

Простейшие задачи с прямой на плоскости.
Взаимное расположение прямых. Угол между прямыми

Продолжаем рассматривать эти бесконечные-бесконечные прямые.



Как найти расстояние от точки до прямой?
Как найти расстояние между двумя параллельными прямыми?
Как найти угол между двумя прямыми?

Взаимное расположение двух прямых

Рассмотрим две прямые, заданные уравнениями в общем виде:

Тот случай, когда зал подпевает хором. Две прямые могут:

1) совпадать;

2) быть параллельными: ;

3) или пересекаться в единственной точке: .

Пожалуйста, запомните математический знак пересечения , он будет встречаться очень часто. Запись обозначает, что прямая пересекается с прямой в точке .

Как определить взаимное расположение двух прямых?

Начнём с первого случая:

Две прямые совпадают, тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, то есть, существует такое число «лямбда», что выполняются равенства

Рассмотрим прямые и составим три уравнения из соответствующих коэффициентов: . Из каждого уравнения следует, что , следовательно, данные прямые совпадают.

Действительно, если все коэффициенты уравнения умножить на –1 (сменить знаки), и все коэффициенты уравнения сократить на 2, то получится одно и то же уравнение: .

Второй случай, когда прямые параллельны:

Две прямые параллельны тогда и только тогда, когда их коэффициенты при переменных пропорциональны: , но .

В качестве примера рассмотрим две прямые . Проверяем пропорциональность соответствующих коэффициентов при переменных :

Однако совершенно очевидно, что .

И третий случай, когда прямые пересекаются:

Две прямые пересекаются, тогда и только тогда, когда их коэффициенты при переменных НЕ пропорциональны, то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства

Так, для прямых составим систему:

Из первого уравнения следует, что , а из второго уравнения: , значит, система несовместна (решений нет). Таким образом, коэффициенты при переменных не пропорциональны.

Вывод: прямые пересекаются

В практических задачах можно использовать только что рассмотренную схему решения. Она, кстати, весьма напоминает алгоритм проверки векторов на коллинеарность. Но существует более цивилизованная упаковка:

Выяснить взаимное расположение прямых:

Решение основано на исследовании направляющих векторов прямых:

а) Из уравнений найдём направляющие векторы прямых: .


, значит, векторы не коллинеарны и прямые пересекаются.

б) Найдем направляющие векторы прямых :

Прямые имеют один и тот же направляющий вектор, значит, они либо параллельны, либо совпадают. Тут и определитель считать не надо.

Очевидно, что коэффициенты при неизвестных пропорциональны, при этом .

Выясним, справедливо ли равенство :

Таким образом,

в) Найдем направляющие векторы прямых :

Вычислим определитель, составленный из координат данных векторов:
, следовательно, направляющие векторы коллинеарны. Прямые либо параллельны, либо совпадают.

Коэффициент пропорциональности «лямбда» можно узнать прямо соотношения коллинеарных направляющих векторов . Впрочем, можно и через коэффициенты самих уравнений: .

Теперь выясним, справедливо ли равенство . Оба свободных члена нулевые, поэтому:

Полученное значение удовлетворяет данному уравнению (ему удовлетворяет вообще любое число).

Таким образом, прямые совпадают.

Как построить прямую, параллельную данной?

Прямая задана уравнением . Составить уравнение параллельной прямой, которая проходит через точку .

Решение: Обозначим неизвестную прямую буквой . Что о ней сказано в условии? Прямая проходит через точку . А если прямые параллельны, то очевидно, что направляющий вектор прямой «цэ» подойдёт и для построения прямой «дэ».

Вытаскиваем направляющий вектор из уравнения :

Геометрия примера выглядит незатейливо:

Аналитическая же проверка состоит в следующих шагах:

1) Проверяем, что у прямых один и тот же направляющий вектор (если уравнение прямой не упрощено должным образом, то векторы будут коллинеарны).

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Аналитическую проверку в большинстве случаев легко выполнить устно. Посмотрите на два уравнения, и многие из вас быстро определят параллельность прямых безо всякого чертежа.

Примеры для самостоятельного решения сегодня будут творческими.

Составить уравнение прямой, проходящей через точку , параллельную прямой , если

Самый короткий путь – в конце.

Как найти точку пересечения двух прямых?

Если прямые пересекаются в точке , то её координаты являются решением системы линейных уравнений

Как найти точку пересечения прямых? Решить систему.

Вот вам и геометрический смысл системы двух линейных уравнений с двумя неизвестными – это две пересекающиеся (чаще всего) прямые на плоскости.

Найти точку пересечения прямых

Решение: Существуют два способа решения – графический и аналитический.

Графический способ состоит в том, чтобы просто начертить данные прямые и узнать точку пересечения непосредственно из чертежа:

Вот наша точка: . Для проверки следует подставить её координаты в каждое уравнение прямой, они должны подойти и там, и там. Иными словами, координаты точки являются решением системы . По сути, мы рассмотрели графический способ решения системы линейных уравнений с двумя уравнениями, двумя неизвестными.

Графический способ, конечно, неплох, но существует заметные минусы. Нет, дело не в том, что так решают семиклассники, дело в том, что на правильный и ТОЧНЫЙ чертёж уйдёт время. Кроме того, некоторые прямые построить не так-то просто, да и сама точка пересечения может находиться где-нибудь в тридесятом царстве за пределами тетрадного листа.

Поэтому точку пересечения целесообразнее искать аналитическим методом. Решим систему:

Для решения системы использован метод почленного сложения уравнений.

Проверка тривиальна – координаты точки пересечения должны удовлетворять каждому уравнению системы.

Найти точку пересечения прямых в том случае, если они пересекаются.

Это пример для самостоятельного решения. Задачу удобно разбить на несколько этапов. Анализ условия подсказывает, что необходимо:
1) Составить уравнение прямой .
2) Составить уравнение прямой .
3) Выяснить взаимное расположение прямых .
4) Если прямые пересекаются, то найти точку пересечения.

Разработка алгоритма действий типична для многих геометрических задач, и я на этом буду неоднократно заострять внимание.

Полное решение и ответ в конце:

Перпендикулярные прямые. Расстояние от точки до прямой.
Угол между прямыми

Как построить прямую, перпендикулярную данной?

Прямая задана уравнением . Составить уравнение перпендикулярной прямой , проходящей через точку .

Решение: По условию известно, что . Неплохо бы найти направляющий вектор прямой . Поскольку прямые перпендикулярны, фокус прост:

Из уравнения «снимаем» вектор нормали: , который и будет направляющим вектором прямой .

Уравнение прямой составим по точке и направляющему вектору :

Ответ:

Развернём геометрический этюд:

Аналитическая проверка решения:

1) Из уравнений вытаскиваем направляющие векторы и с помощью скалярного произведения векторов приходим к выводу, что прямые действительно перпендикулярны: .

Кстати, можно использовать векторы нормали, это даже проще.

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Проверку, опять же, легко выполнить устно.

Найти точку пересечения перпендикулярных прямых , если известно уравнение и точка .

Это пример для самостоятельного решения. В задаче несколько действий, поэтому решение удобно оформить по пунктам.

Расстояние от точки до прямой

Расстояние в геометрии традиционно обозначают греческой буквой «р», например: – расстояние от точки «м» до прямой «д».

Расстояние от точки до прямой выражается формулой

Найти расстояние от точки до прямой

Решение: всё что нужно, это аккуратно подставить числа в формулу и провести вычисления:

Ответ:

Выполним чертёж:

Найденное расстояние от точки до прямой – это в точности длина красного отрезка. Если оформить чертёж на клетчатой бумаге в масштабе 1 ед. = 1 см (2 клетки), то расстояние можно измерить обыкновенной линейкой.

Рассмотрим ещё одно задание по этому же чертежу:

Как построить точку, симметричную относительно прямой?

Задача состоит в том, чтобы найти координаты точки , которая симметрична точке относительно прямой . Предлагаю выполнить действия самостоятельно, однако обозначу алгоритм решения с промежуточными результатами:

1) Находим прямую , которая перпендикулярна прямой .

2) Находим точку пересечения прямых: .


В геометрии за угол между двумя прямыми принимается МЕНЬШИЙ угол, из чего автоматически следует, что он не может быть тупым. На рисунке угол, обозначенный красной дугой, не считается углом между пересекающимися прямыми. А считается таковым его «зелёный» сосед или противоположно ориентированный «малиновый» угол .

Если прямые перпендикулярны, то за угол между ними можно принимать любой из 4-х углов.

Чем отличаются углы ? Ориентацией. Во-первых, принципиально важным является направление «прокрутки» угла. Во-вторых, отрицательно ориентированный угол записывается со знаком «минус», например, если .

Зачем я это рассказал? Вроде бы можно обойтись и обычным понятием угла. Дело в том, что в формулах, по которым мы будем находить углы, запросто может получиться отрицательный результат, и это не должно застать вас врасплох. Угол со знаком «минус» ничем не хуже, и имеет вполне конкретный геометрический смысл. На чертеже для отрицательного угла следует обязательно указывать стрелкой его ориентацию (по часовой стрелке).

Исходя из вышесказанного, решение удобно оформить в два шага:

1) Вычислим скалярное произведение направляющих векторов прямых:
, значит, прямые не перпендикулярны.

2) Угол между прямыми найдём по формуле:

С помощью обратной функции легко найти и сам угол. При этом используем нечётность арктангенса:

Ответ:

В ответе указываем точное значение, а также приближённое значение (желательно и в градусах, и в радианах), вычисленное с помощью калькулятора.

Ну, минус, так минус, ничего страшного. Вот геометрическая иллюстрация:

Неудивительно, что угол получился отрицательной ориентации, ведь в условии задачи первым номером идёт прямая и «открутка» угла началась именно с неё.

Есть и третий способ решения. Идея состоит в том, чтобы вычислить угол между направляющими векторами прямых:

Здесь уже речь идёт не об ориентированном угле, а «просто об угле», то есть результат заведомо будет положительным. Загвоздка состоит в том, что может получиться тупой угол (не тот, который нужен). В этом случае придётся делать оговорку, что угол между прямыми – это меньший угол, и из «пи» радиан (180-ти градусов) вычитать получившийся арккосинус.

Найти угол между прямыми .

Это пример для самостоятельного решения. Попробуйте решить его двумя способами.

Решения и ответы:

Пример 3: Решение: Найдём направляющий вектор прямой :

Уравнение искомой прямой составим по точке и направляющему вектору

Примечание: здесь первое уравнение системы умножено на 5, затем из 1-го уравнения почленно вычтено 2-ое.
Ответ: