Равнопеременное прямолинейное движение. Неравномерное прямолинейное движение Формула для нахождения неравномерного движения

План-конспект урока по теме «Неравномерное движение. Мгновенная скорость»

Дата :

Тема: « »

Цели:

Образовательная : Обеспечить и сформировать осознанное усвоение знаний о неравномерном движении и мгновенной скорости;

Развивающая : Продолжить развитие навыков самостоятельной деятельности, навыков работы в группах.

Воспитательная : Формировать познавательный интерес к новым знаниям; воспитывать дисциплину поведения.

Тип урока: урок усвоения новых знаний

Оборудование и источники информации:

Исаченкова, Л. А. Физика: учеб. для 9 кл. учреждений общ. сред. образования с рус. яз. обучения / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский; под ред. А. А. Сокольского. Минск: Народная асвета, 2015

Структура урока:

    Организационный момент(5 мин)

    Актуализация опорных знаний(5мин)

    Изучение нового материала (14 мин)

    Физкультминутка (3 мин)

    Закрепление знаний (13мин)

    Итоги урока(5 мин)

    Организационный момент

Здравствуйте, садитесь! (Проверка присутствующих). Сегодня на уроке мы должны разобраться с понятиями неравномерное движение и мгновенная скорость. А это значит, что Тема урока : Неравномерное движение. Мгновенная скорость

    Актуализация опорных знаний

Мы изучили равномерное прямолинейное движение. Однако реальные тела - автомобили, корабли, самолеты, детали механизмов и др. чаще всего движутся и не прямолинейно, и не равномерно. Каковы закономерности таких движений?

    Изучение нового материала

Рассмотрим пример. Автомобиль движется по участку дороги, изображенному на рисунке 68. На подъеме движение автомобиля замедляется, при спуске - ускоряется. Движение автомобиля и не прямолинейное, и не равномерное. Как описать такое движение?

Прежде всего, для этого необходимо уточнить понятие скорость .

Из 7-го класса вам известно, что такое средняя скорость. Она определяется как отношение пути к промежутку времени, за который этот путь пройден:

(1 )

Будем называть ее средней скоростью пути. Она показывает, какой путь в среднем проходило тело за единицу времени.

Кроме средней скорости пути, необходимо ввести и среднюю скорость перемещения:

(2 )

Каков смысл средней скорости перемещения? Она показывает, какое перемещение в среднем совершало тело за единицу времени.

Сравнив формулу (2) с формулой (1 ) из § 7, можно сделать вывод: средняя скорость< > равна скорости такого равномерного прямолинейного движения, при котором за промежуток времени Δ t тело совершило бы перемещение Δ r .

Средняя скорость пути и средняя скорость перемещения - важные характеристики любого движения. Первая из них - величина скалярная, вторая - векторная. Так как Δ r < s , то модуль средней скорости перемещения не больше средней скорости пути |<>| < <>.

Средняя скорость характеризует движение за весь промежуток времени в целом. Она не дает информации о скорости движения в каждой точке траектории (в каждый момент времени). С этой целью вводится мгновенная скорость - скорость движения в данный момент времени (или в данной точке).

Как определить мгновенную скорость?

Рассмотрим пример. Пусть шарик скатывается по наклонному желобу из точки (рис. 69). На рисунке показаны положения шарика в различные моменты времени.

Нас интересует мгновенная скорость шарика в точке О. Разделив перемещение шарика Δ r 1 на соответствующий промежуток времени Δ среднюю скорость перемещения <> = на участке Скорость <> может намного отличаться от мгновенной скорости в точке О. Рассмотрим меньшее перемещение Δ = В 2 . Оно произойдет за меньший промежуток времени Δ. Средняя скорость <> = хотя и не равна скорости в точке О, но уже ближе к ней, чем <>. При дальнейшем уменьшении перемещений (Δ, Δ , ...) и промежутков времени (Δ, Δ, ...) мы будем получать средние скорости, которые все меньше отличаются друг от друга и от мгновенной скорости шарика в точке О.

Значит, достаточно точное значение мгновенной скорости можно найти по формуле при условии, что промежуток времени Δ t очень мал:

(3)

Обозначение Δ t -» 0 напоминает, что скорость, определенная по формуле (3), тем ближе к мгновенной скорости, чем меньше Δt .

Мгновенную скорость криволинейного движения тела находят аналогично (рис. 70).

Как направлена мгновенная скорость? Ясно, что в первом примере направление мгновенной скорости совпадает с направлением движения шарика (см. рис. 69). А из построения на рисунке 70 видно, что при криволинейном движении мгновенная скорость направлена по касательной к траектории в той точке, где в этот момент находится движущееся тело.

Понаблюдайте за раскаленными частицами, отрывающимися от точильного камня (рис. 71, а). Мгновенная скорость этих частиц в момент отрыва направлена по касательной к окружности, по которой они двигались до отрыва. Аналогично спортивный молот (рис. 71, б) начинает свой полет по касательной к той траектории, по которой он двигался при раскручивании метателем.

Мгновенная скорость постоянна только при равномерном прямолинейном движении. При движении по криволинейной траектории изменяется ее направление (объясните почему). При неравномерном движении изменяется ее модуль.

Если модуль мгновенной скорости возрастает, то движение тела называют ускоренным , если он убывает - замедленным.

Приведите самостоятельно примеры ускоренных и замедленных движений тел.

В общем случае при движении тела может изменяться и модуль мгновенной скорости, и ее направление (как в примере с автомобилем в начале параграфа) (см. рис. 68).

В дальнейшем мгновенную скорость мы будем называть просто скоростью.

    Закрепление знаний

    Быстрота неравномерного движения на участке траектории характеризуется средней скоростью, а в данной точке траектории - мгновенной скоростью.

    Мгновенная скорость приближенно равна средней скорости, определенной за малый промежуток времени. Чем меньше этот промежуток времени, тем меньше отличие средней скорости от мгновенной.

    Мгновенная скорость направлена по касательной к траектории движения.

    Если модуль мгновенной скорости возрастает, то движение тела называют ускоренным, если он убывает - замедленным.

    При равномерном прямолинейном движении мгновенная скорость одинакова в любой точке траектории.

    Итоги урока

Итак, подведем итоги. Что вы сегодня узнали на уроке?

Организация домашнего задания

§ 9, упр. 5 №1,2

Рефлексия.

Продолжите фразы:

    Сегодня на уроке я узнал…

    Было интересно…

    Знания, которые я получил на уроке, пригодятся

Равноускоренное криволинейное движение

Криволинейные движения - движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Криволинейное движение - это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам

Неравномерное движение. Скорость при неравномерном движении

Ни одно тело не движется все время с постоянной скоростью. Начиная движение, автомобиль движется быстрее и быстрее. Некоторое время он может двигаться равномерно, но потом он тормозит и останавливается. При этом автомобиль проходит разные расстояния за один и то же время.

Движение, при котором тело за равные промежутки времени проходит неодинаковые отрезки пути, называется неравномерным. При таком движении величина скорости не остается неизменной. В таком случае можно говорить лишь о средней скорости.

Средняя скорость показывает, чему равно перемещение, которое тело проходит за единицу времени. Она равна отношению перемещения тела до времени движения. Средняя скорость, как и скорость тела при равномерном движении, измеряется в метрах, разделенных на секунду. Для того, чтобы характеризовать движение точнее, в физике применяют мгновенную скорость.

Скорость тела в данный момент времени или в данной точке траектории называется мгновенной скоростью. Мгновенная скорость является векторной величиной и направлена так же, как вектор перемещения. Измерить мгновенную скорость можно с помощью спидометра. В Системе Интернациональной мгновенная скорость измеряется в метрах, разделенных на секунду.

точка движение скорость неравномерный

Движение тела по окружности

В природе и технике очень часто встречается криволинейное движение. Оно сложнее прямолинейного, так как существует множество криволинейных траекторий; это движение всегда ускоренное, даже когда модуль скорости не меняется.

Но движение по любой криволинейной траектории можно приблизительно представить как движение по дугам круга.

При движении тела по окружности направление вектора скорости меняется от точки к точке. Поэтому когда говорят о скорости такого движения, подразумевают мгновенную скорость. Вектор скорости направлен по касательной к окружности, а вектор перемещения - по хордам.

Равномерное движение по окружности - это движение, во время которого модуль скорости движения не изменяется, изменяется только ее направление. Ускорение такого движения всегда направлено к центру окружности и называется центростремительным. Для того чтобы найти ускорение тела, которое движется по кругу, необходимо квадрат скорости разделить на радиус окружности.

Помимо ускорения, движение тела по кругу характеризуют следующие величины:

Период вращения тела - это время, за которое тело совершает один полный оборот. Период вращения обозначается буквой Т и измеряется в секундах.

Частота вращения тела - это число оборотов в единицу времени. Частота вращения обозначается буквой? и измеряется в герцах. Для того чтобы найти частоту, надо единицу разделить на период.

Линейная скорость - отношение перемещения тела до времени. Для того чтобы найти линейную скорость тела по окружности, необходимо длину окружности разделить на период (длина окружности равна 2? умножить на радиус).

Угловая скорость - физическая величина, равная отношению угла поворота радиуса окружности, по которой движется тело, до времени движения. Угловая скорость обозначается буквой? и измеряется в радианах, разделенных на секунду. Найти угловую скорость можно, разделив 2? на период. Угловая скорость и линейная между собой. Для того чтобы найти линейную скорость, необходимо угловую скорость умножить на радиус окружности.


Рисунок 6. Движение по окружности, формулы.

Неравномерным считается движение с изменяющейся скоростью. Скорость может изменяться по направлению. Можно заключить, что любое движение НЕ по прямой траектории является неравномерным. Например, движение тела по окружности, движение тела брошенного вдаль и др.

Скорость может изменяться по численному значению. Такое движение тоже будет неравномерным. Особенный случай такого движения - равноускоренное движение.

Иногда встречается неравномерное движение, которое состоит из чередования различного вида движений, например, сначала автобус разгоняется (движение равноускоренное), потом какое-то время движется равномерно, а потом останавливается.

Мгновенная скорость

Охарактеризовать неравномерное движение можно лишь скоростью. Но скорость всегда изменяется! Поэтому можно говорить лишь о скорости в данное мгновение времени. Путешествуя на машине спидометр ежесекундно демонстрирует вам мгновенную скорость движения. Но время при этом надо уменьшить не до секунды, а рассматривать гораздо меньший промежуток времени!

Средняя скорость

Что же такое средняя скорость? Неверно думать, что необходимо сложить все мгновенные скорости и разделить на их количество. Это самое распространенное заблуждение о средней скорости! Средняя скорость - это весь путь разделить на затраченное время . И никакими другими способами она не определяется. Если рассмотреть движение автомобиля, можно оценить его средние скорости на первой половине пути, на второй, на всем пути. Средние скорости могут быть одинаковыми, а могут быть различными на этих участках.

У средних величин рисуют сверху горизонтальную черту.

Средняя скорость перемещения. Средняя путевая скорость

Если движение тела не является прямолинейным, то пройденный телом путь будет больше, чем его перемещение. В этом случае средняя скорость перемещения отличается от средней путевой скорости. Путевая скорость - скаляр .


Главное запомнить

1) Определение и виды неравномерного движения;
2) Различие средней и мгновенной скоростей;
3) Правило нахождения средней скорости движения

Часто требуется решить задачу, где весь путь разбит на равные участки, даны средние скорости на каждом участке, требуется найти среднюю скорость движения на всем пути. Неверное решение будет, если сложить средние скорости и разделить на их количество. Ниже выводится формула, которую можно использовать при решении подобных задач.

Мгновенную скорость можно определить с помощью графика движения. Мгновенная скорость тела в любой точке на графике определяется наклоном касательной к кривой в соответствующей точке. Мгновенная скорость - тангенс угла наклона касательной к графику функции.


Упражнения

Во время езды на автомобиле через каждую минуту снимались показания спидометра. Можно ли по этим данным определить среднюю скорость движения автомобиля?

Нельзя, так как в общем случае величина средней скорости не равна среднему арифметическому значению величин мгновенных скоростей. А путь и время не даны.


Какую скорость переменного движения показывает спидометр автомобиля?

Близкую к мгновенной. Близкую, так как промежуток времени должен быть бесконечно мал, а при снятии показаний со спидометра так о времени судить нельзя.


В каком случае мгновенная и средняя скорости равны между собой? Почему?

При равномерном движении. Потому что скорость не изменяется.


Скорость движения молотка при ударе равна 8м/с. Какая это скорость: средняя или мгновенная?

Скатывание тела по наклонной плоскости (рис. 2);

Рис. 2. Скатывание тела по наклонной плоскости ()

Свободное падение (рис. 3).

Все эти три вида движения не являются равномерными, то есть в них изменяется скорость. На этом уроке мы рассмотрим неравномерное движение.

Равномерное движение – механическое движение, при котором тело за любые равные отрезки времени проходит одинаковое расстояние (рис. 4).

Рис. 4. Равномерное движение

Неравномерным называется движение , при котором тело за равные промежутки времени проходит неравные пути.

Рис. 5. Неравномерное движение

Основная задача механики – определить положение тела в любой момент времени. При неравномерном движении скорость тела меняется, следовательно, необходимо научиться описывать изменение скорости тела. Для этого вводятся два понятия: средняя скорость и мгновенная скорость.

Факт изменения скорости тела при неравномерном движении не всегда необходимо учитывать, при рассмотрении движении тела на большом участке пути в целом (нам не важна скорость в каждый момент времени) удобно ввести понятие средней скорости.

Например, делегация школьников добирается из Новосибирска в Сочи поездом. Расстояние между этими городами по железной дороге составляет приблизительно 3300 км. Скорость поезда, когда он только выехал из Новосибирска составляла , значит ли это, что посередине пути скорость была такой же, а на подъезду к Сочи [М1] ? Можно ли, имея только эти данные, утверждать, что время движения составит (рис. 6). Конечно нет, так как жители Новосибирска знают, что до Сочи ехать приблизительно 84 ч.

Рис. 6. Иллюстрация к примеру

Когда рассматривается движение тела на большом участке пути в целом, удобнее ввести понятие средней скорости.

Средней скоростью называют отношение полного перемещения, которое совершило тело, ко времени, за которое совершено это перемещение (рис. 7).

Рис. 7. Средняя скорость

Данное определение не всегда является удобным. Например, спортсмен пробегает 400 м – ровно один круг. Перемещение спортсмена равно 0 (рис. 8), однако мы понимаем, что его средняя скорость нулю равна быть не может.

Рис. 8. Перемещение равно 0

На практике чаще всего используется понятие средней путевой скорости.

Средняя путевая скорость – это отношение полного пути, пройденного телом, ко времени, за которое путь пройден (рис. 9).

Рис. 9. Средняя путевая скорость

Существует еще одно определение средней скорости.

Средняя скорость – это та скорость, с которой должно двигаться тело равномерно, чтобы пройти данное расстояние за то же время, за которое оно его прошло, двигаясь неравномерно.

Из курса математики нам известно, что такое среднее арифметическое. Для чисел 10 и 36 оно будет равно:

Для того чтобы узнать возможность использования этой формулы для нахождения средней скорости, решим следующую задачу.

Задача

Велосипедист поднимается со скоростью 10 км/ч на склон, затрачивая на это 0,5 часа. Далее со скоростью 36 км/ч спускается вниз за 10 минут. Найдите среднюю скорость велосипедиста (рис. 10).

Рис. 10. Иллюстрация к задаче

Дано: ; ; ;

Найти:

Решение:

Так как единица измерения данных скоростей – км/ч, то и среднюю скорость найдем в км/ч. Следовательно, данные задачи не будем переводить в СИ. Переведем в часы.

Средняя скорость равна:

Полный путь () состоит из пути подъема на склон () и спуска со склона ():

Путь подъема на склон равен:

Путь спуска со склона равен:

Время, за которое пройден полный путь, равно:

Ответ: .

Исходя из ответа задачи, видим, что применять формулу среднего арифметического для вычисления средней скорости нельзя.

Не всегда понятие средней скорости полезно для решения главной задачи механики. Возвращаясь к задаче про поезд, нельзя утверждать, что если средняя скорость на всем пути поезда равна , то через 5 часов он будет находиться на расстоянии от Новосибирска.

Среднюю скорость, измеренную за бесконечно малый промежуток времени, называют мгновенной скоростью тела (для примера: спидометр автомобиля (рис. 11) показывает мгновенную скорость).

Рис. 11. Спидометр автомобиля показывает мгновенную скорость

Существует еще одно определение мгновенной скорости.

Мгновенная скорость – скорость движения тела в данный момент времени, скорость тела в данной точке траектории (рис. 12).

Рис. 12. Мгновенная скорость

Для того чтобы лучше понять данное определение, рассмотрим пример.

Пусть автомобиль движется прямолинейно по участку шоссе. У нас есть график зависимости проекции перемещения от времени для данного движения (рис. 13), проанализируем данный график.

Рис. 13. График зависимости проекции перемещения от времени

На графике видно, что скорость автомобиля не постоянная. Допустим, необходимо найти мгновенную скорость автомобиля через 30 секунд после начала наблюдения (в точке A ). Пользуясь определением мгновенной скорости, найдем модуль средней скорости за промежуток времени от до . Для этого рассмотрим фрагмент данного графика (рис. 14).

Рис. 14. График зависимости проекции перемещения от времени

Для того чтобы проверить правильность нахождения мгновенной скорости, найдем модуль средней скорости за промежуток времени от до , для этого рассмотрим фрагмент графика (рис. 15).

Рис. 15. График зависимости проекции перемещения от времени

Рассчитываем среднюю скорость на данном участке времени:

Получили два значения мгновенной скорости автомобиля через 30 секунд после начала наблюдения. Точнее будет то значение, где интервал времени меньше, то есть . Если уменьшать рассматриваемый интервал времени сильнее, то мгновенная скорость автомобиля в точке A будет определяться более точно.

Мгновенная скорость – это векторная величина. Поэтому, кроме ее нахождения (нахождения ее модуля), необходимо знать, как она направлена.

(при ) – мгновенная скорость

Направление мгновенной скорости совпадает с направлением перемещения тела.

Если тело движется криволинейно, то мгновенная скорость направлена по касательной к траектории в данной точке (рис. 16).

Задание 1

Может ли мгновенная скорость () изменяться только по направлению, не изменяясь по модулю?

Решение

Для решения рассмотрим следующий пример. Тело движется по криволинейной траектории (рис. 17). Отметим на траектории движения точку A и точку B . Отметим направление мгновенной скорости в этих точках (мгновенная скорость направлена по касательной к точке траектории). Пусть скорости и одинаковы по модулю и равны 5 м/с.

Ответ: может.

Задание 2

Может ли мгновенная скорость меняться только по модулю, не меняясь по направлению?

Решение

Рис. 18. Иллюстрация к задаче

На рисунке 10 видно, что в точке A и в точке B мгновенная скорость направлена одинаково. Если тело движется равноускоренно, то .

Ответ: может.

На данном уроке мы приступили к изучению неравномерного движения, то есть движения с изменяющейся скоростью. Характеристиками неравномерного движения являются средняя и мгновенная скорости. Понятие о средней скорости основано на мысленной замене неравномерного движения равномерным. Иногда понятие средней скорости (как мы увидели) является очень удобным, но для решения главной задачи механики оно не подходит. Поэтому вводится понятие мгновенной скорости.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Интернет-портал «School-collection.edu.ru» ().
  2. Интернет-портал «Virtulab.net» ().

Домашнее задание

  1. Вопросы (1-3, 5) в конце параграфа 9 (стр. 24); Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10 (см. список рекомендованной литературы)
  2. Можно ли, зная среднюю скорость за определенный промежуток времени, найти перемещение, совершенное телом за любую часть этого промежутка?
  3. Чем отличается мгновенная скорость при равномерном прямолинейном движении от мгновенной скорости при неравномерном движении?
  4. Во время езды на автомобиле через каждую минуту снимались показания спидометра. Можно ли по этим данным определить среднюю скорость движения автомобиля?
  5. Первую треть трассы велосипедист ехал со скоростью 12 км в час, вторую треть - со скоростью 16 км в час, а последнюю треть - со скоростью 24 км в час. Найдите среднюю скорость велосипеда на протяжении всего пути. Ответ дайте в км/час

При неравномерном движении тело может за равные промежутки времени проходить как равные, так и разные пути.

Для описания неравномерного движения вводится понятие средней скорости .

Средняя скорость, по данному определению, величина скалярная потому, что путь и время величины скалярные.

Однако среднюю скорость можно определять и через перемещение согласно уравнению

Средняя скорость прохождения пути и средняя скорость перемещения – это две разные величины, которые могут характеризовать одно и то же движение.

При расчете средней скорости очень часто допускается ошибка, состоящая в том, что понятие средней скорости подменяется понятием среднего арифметического скоростей тела на разных участках движения. Чтобы показать неправомерность такой подмены рассмотрим задачу и проанализируем ее решение.

Из пункта A в пункт B выходит поезд. Половину всего пути поезд движется со скоростью 30 км/ч, а вторую половину пути – со скоростью 50 км/ч.

Чему равна средняя скорость движения поезда на участке AB ?

Движение поезда на участке AC и на участке CB равномерное. Взглянув на текст задачи, нередко сразу хочется дать ответ: υ ср = 40 км/ч.

Да потому, что нам кажется, что для вычисления средней скорости вполне подходит формула, используемая для расчета среднего арифметического.

Давайте разберемся: можно ли использовать эту формулу и рассчитывать среднюю скорость путем нахождения полусуммы заданных скоростей.

Для этого рассмотрим несколько иную ситуацию.

Допустим, мы правы и средняя скорость действительно равна 40 км/ч.

Тогда решим другую задачу.

Как видно, тексты задач очень похожи, есть только «очень маленькая» разница.

Если в первом случае речь идет о половине пути, то во втором случае речь идет о половине времени.

Очевидно, что точка C во втором случае находится несколько ближе к точке A , чем в первом случае, и ожидать одинаковых ответов в первой и второй задаче, вероятно, нельзя.

Если мы, решая вторую задачу, так же дадим ответ, что средняя скорость равна полусумме скоростей на первом и втором участке, мы не можем быть уверены, что мы решили задачу правильно. Как быть?

Выход из положения следующий: дело в том, что средняя скорость не определяется через среднее арифметическое . Есть определяющее уравнение для средней скорости, согласно которому для нахождения средней скорости на некотором участке, надо весь путь, пройденный телом, поделить на все время движения:

Начинать решение задачи нужно именно с формулы, определяющей среднюю скорость, даже если нам кажется, что мы в каком-то случае можем использовать более простую формулу.

Будем двигаться от вопроса к известным величинам.

Неизвестную величину υ ср выражаем через другие величины – L 0 и Δ t 0 .

Оказывается, что обе эти величины неизвестны, поэтому мы должны выразить их через другие величины. Например, в первом случае: L 0 = 2 ∙ L , а Δ t 0 = Δ t 1 + Δ t 2 .

Подставим эти величины, соответственно, в числитель и знаменатель исходного уравнения.

Во втором случае мы поступаем точно так же. Нам не известен весь путь и все время. Выражаем их: и

Очевидно, что время движения на участке AB во втором случае и время движения на участке AB в первом случае различны.

В первом случае, поскольку нам неизвестны времена и мы попытаемся выразить и эти величины: а во втором случае мы выражаем и :

Подставляем выраженные величины в исходные уравнения.

Таким образом, в первой задаче имеем:

После преобразования получаем:

Во втором случае получаем а после преобразования:

Ответы, как и было предсказано, различны, но во втором случае мы получили, что средняя скорость действительно равняется полусумме скоростей.

Может возникнуть вопрос, а почему сразу нельзя воспользоваться этим уравнением и дать такой ответ?

Дело в том, что записав, что средняя скорость на участке AB во втором случае равна полусумме скоростей на первом и на втором участках, мы бы представили не решение задачи, а готовый ответ . Решение же, как видно, достаточно длинное, и начинается оно с определяющего уравнения. То, что мы в данном случае получили уравнение, которое хотели использовать изначально – чистая случайность.

При неравномерном движении скорость тела может непрерывно меняться. При таком движении скорость в любой последующей точке траектории будет отличаться от скорости в предыдущей точке.

Скорость тела в данный момент времени и в данной точке траектории называют мгновенной скоростью .

Чем больше промежуток времени Δ t , тем средняя скорость больше отличается от мгновенной. И, наоборот, чем меньше промежуток времени, тем меньше средняя скорость отличается от интересующей нас мгновенной скорости.

Определим мгновенную скорость как предел, к которому стремится средняя скорость на бесконечно малом промежутке времени :

Если речь идет о средней скорости перемещения, то мгновенная скорость является величиной векторной:

Если речь идет о средней скорости прохождения пути, то мгновенная скорость является величиной скалярной:

Часто встречаются случаи, когда при неравномерном движении скорость тела меняется за равные промежутки времени на одну и ту же величину.


При равнопеременном движении скорость тела может, как уменьшаться, так и увеличиваться.

Если скорость тела увеличивается, то движение называется равноускоренным, а если уменьшается – равнозамедленным.

Характеристикой равнопеременного движения служит физическая величина, называемая ускорением .


Зная ускорение тела и его начальную скорость, можно найти скорость в любой наперед заданный момент времени:

В проекции на координатную ось 0X уравнение примет вид: υ x = υ 0 x + a x ∙ Δ t .