Принципы построения международной системы. Учебник: Метрология Принципы построения международной системы единиц

Проблема выбора системы единиц физических величин совсем недавно не могла полностью относиться к нашему произволу. С точки зрения материалистической философии нам непросто было убедить кого-либо в том, что большой раздел естественных наук, относящийся к обеспечению единства измерений, в основе своей опирается на зависимость основных моментов от нашего сознания. Можно обсуждать, хорошо или плохо составлена система единиц физических единиц, но факт, что в основе своей любая система величин и единиц имеет произвол, связанный с человеческим сознанием, остается бесспорным.

Единицы физических величин подразделяются на основные и производные. До 1995 г. имели место еще дополнительные единицы - единицы плоского и телесного угла, радиан и стерадиан,- но с целью упрощения системы эти единицы были переведены в категорию безразмерных производных единиц.

Основными физическими величинами являются величины, выбранные произвольно и независимо друг от друга.

Основные единицы выбираются так, чтобы пользуясь закономерной связью между величинами можно было бы образовать единицы других величин. Соответственно, образованные таким образом величины и единицы называются производными.

Самый главный вопрос при построении систем единиц состоит в том, сколько должно быть основных единиц или, более точно, какими принципами нужно руководствоваться при построении той или иной системы? Частично в метрологической литературе можно найти утверждение, что главный принцип системы должен состоять в минимальном количестве основных единиц. На самом деле такой подход является неверным, так как следуя этому принципу такая величина и единица может быть одна. Например, через энергию можно выразить практически любую физическую величину, т. к. в механике энергия равна:

  • кинетическая энергия

где m - масса, -v - скорость движения тела;

  • потенциальная энергия

(1.4)

где m - масса, g - ускорение, Н - высота (длина).

В электрических измерениях энергия заряда

(1.5)

где q - заряд, U - разность потенциалов.

В оптике и квантовой механике энергия фотона

где h - постоянная Планка, v - частота излучения.

В теплофизике энергия теплового движения частиц

(1.7)

где k - постоянная Больцмана, Т - температура.

Используя указанные законы и опираясь на закон сохранения энергии, можно определить любую физическую величину, независимо оттого, к каким явлениям она относится - к механическим, электрическим, оптическим или тепловым.

Для того чтобы сказанное выглядело более убедительно, рассмотрим основные механические единицы, принятые в большинстве систем - единицы длины, времени и массы. Эти величины являются основными, т. е. выбраны произвольно и независимо друг от друга. Рассмотрим теперь, какова степень этой независимости и нельзя ли сократить число произвольно выбранных основных механических единиц.

Большинство из нас привыкло к тому, что второй закон Ньютона записывается как

(1.8)

где F - сила взаимодействия, m - масса тела, а - ускорение движения, и это выражение является определением инерционной массы. С другой стороны, масса гравитационная согласно закону всемирного тяготения определяется из соотношения

(1.9)

где r - расстояние между телами и γ- гравитационная постоянная, равная

(1.10)

Рассматривая, например, равномерное движение одного тела вокруг другого по окружности, когда сила инерции Fi равна силе гравитации Fg , и учитывая, что масса m в обоих законах есть одна и та же величина, получим:

(1.11)

(1.12)

где Т - период обращения, получим

(1.13)

Это есть выражение для третьего закона Кепплера, давно известного для движения небесных тел, т. е. мы получили связь между временем Т, длиной r и массой m в виде

(1.14)

Это означает, что достаточно положить коэффициент К равным единице, и единица массы будет определена через длину и время. Значение этого коэффициента

(1.15)

является следствием только того факта, что мы произвольно выбрали единицу массы и для приведения ситуации в соответствие с физическими законами обязаны в законе Кепплера ввести дополнительный множитель К. Приведенный пример наглядно показывает, что число основных единиц может быть изменено как в меньшую, так и в большую сторону, т. е. полностью зависит от нашего выбора, определяемого удобством практического использования системы.

Естественно, что выбрав произвольно какую-либо единицу в качестве основной, мы произвольно выбираем размер этой единицы. В механических измерениях длину, время и массу мы имеем возможность сравнивать с любыми выбранными в качестве исходных одноименными величинами. По мере развития метрологии определения размера величин основных единиц неоднократно изменялись, тем не менее ни на физических законах, ни на единстве измерений это не отразилось.

Покажем, что произвол выбора размера единицы имеет место не только для основных, произвольно выбранных величин, но и для величин производных, т. е. связанных с основным каким-либо физическим законом. В качестве примера вернемся к определениям силы через инерционные свойства тел или через гравитационные свойства. Мы предполагаем, что основными величинами являются длина, время и масса. Ничто не мешает считать равным единице коэффициент пропорциональности в законе всемирного тяготения, т. е. считать, что

(1.16)

Тогда во втором законе Ньютона мы обязаны будем ввести коэффициент пропорциональности, называемый инерционной постоянной, т. е.

(1.17)

Значение инерционной постоянной должно равняться

(1.18)

Аналогичную картину можно проследить, выражая и принимая единицу площади. Мы привыкли к тому, что единицей площади считается площадь квадрата со стороной в единицу длины - квадратный метр, квадратный сантиметр и т. д. Однако никто не запрещает в качестве единицы площади выбрать площадь круга с диаметром в 1 метр, т. е. считать, что

(1.19)

В этом случае площадь квадрата выразится

(1.20)

Такая единица площади, называемая «круглый метр», очень удобна в измерении площадей кругов. Очевидно, что «круглый метр» будет в 4/π раз меньше «квадратного метра».

Следующий вопрос в проблеме выбора единиц системы состоит в определении целесообразности введения новых основных единиц при рассмотрении нового класса физических явлений. Начнем с электромагнитных явлений. Хорошо известно, что электрические явления опираются на закон Кулона, связывающий механические величины - силу взаимодействия и расстояния между зарядами - с электрической величиной - зарядом:

(1.21)

В законе Кулона, как и в других законах, где упоминаются векторные величины, мы опускаем единичный вектор с целью упрощения. В законе Кулона коэффициент пропорциональности равен 1. Если принять это за основу, что и сделано в некоторых системах единиц, то электрическая основная единица не нужна, т. к. единицу силы тока можно получить из соотношения

(1.22)

где q - заряд, определенный законом Кулона; t - время. Все остальные единицы электрических величин определяются из законов электростатики и электродинамики. Тем не менее в большинстве систем единиц, в том числе и в системе СИ, для электрических явлений вводится произвольно своя электрическая основная единица. В системе СИ это Ампер. Выбрав Ампер произвольно, заряд выразится из соотношения как

(1.23)

В результате повторилась ситуация, рассмотренная выше, когда одна и та же физическая величина определяется дважды. Один раз через величины механические - формула (1.21) .другой раз через Ампер-формула (1.23). Такая неоднозначность заставляет ввести в закон Кулона дополнительный коэффициент, получивший название «диэлектрическая проницаемость вакуума». Закон Кулона приобретает вид:

О физическом смысле диэлектрической постоянной вакуума часто задают вопросы, когда хотят выяснить степень понимания сущности закона Кулона. С метрологической точки зрения все просто и понятно: вводя произвольно основную единицу электричества - ампер - мы должны принять меры к тому, чтобы имелось соответствие механических единиц, введенных ранее, их новому возможному выражению с использованием ампера.

Точно такая же ситуация может быть прослежена в температурных измерениях с введением произвольно основной единицы - Кельвина, а также в оптических измерениях с введением канделы.

Здесь подробно рассмотрена ситуация с выбором единиц основных физических величин и с выбором их размера для того, чтобы доказать суть главного принципа построения систем единиц физических единиц.

Этот принцип - удобство практического использования. Только этими соображениями определяется число основных единиц, выбор их размера, и все дополнительные, вторичные принципы отталкиваются от этого как от основного. Таковым, например, является известный принцип, гласящий, что в качестве основной величины нужно выбрать такую, единица которой может быть воспроизведена с наивысшей возможной точностью. Однако это желательно, но в ряде случаев нецелесообразно. В частности в механических измерениях единица частоты - герц - воспроизводится с наивысшей точностью, тем не менее в разряд основных единиц частота не попала.

В электрических измерениях точнее Ампера может быть воспроизведен Вольт - единица разности потенциалов. В оптике достигнута предельная точность в измерениях энергии путем счета квантов. По указанным причинам общепризнанность выражения величин и единиц становится преобладающей над стремлением выбрать за основную единицу ту, которая точнее всего воспроизводится.

Окончательным подтверждением выбора системы единиц на основе принципа удобства использования являются два момента.

Первый - это факт присутствия в международной системе СИ двух основных единиц количества вещества - килограмма и моля. Ничем, кроме удобства использования в химических процессах введение еще одной основной единицы - моля, - этот факт не объяснишь.

Второй - факт использования в целом ряде случаев систем единиц, отличных от системы СИ. Многие годы и десятилетия метрологи пытаются оставить одну единственную систему единиц. Тем не менее, в расчетах атомных и молекулярных структур система СИ неудобна, и люди продолжают использовать атомную систему единиц, в которой основными являются величины, определяемые размерами атома и процессами, происходящими в атоме. При рассмотрении различных систем единиц мы подробно остановимся на построении этой системы. Точно также система СИ оказывается неудобной при измерениях расстояний до космических объектов. В этой области сложилась своя специфическая система единиц и величин.

выбор в метрологии системы единиц физических величин в основном связан с удобством их использования и в большой степени опирается на традиции в решении проблемы обеспечения единства измерений.

Билет №2

Государственный стандарт ""Метрология. Термины и определения"". ГОСТ 16263-70. Основные метрологические понятия.

Измерение – процесс нахождения значения искомой физической величины с помощью специальных технических средств.

Средства измерения – специальное техническое средство, используемое при измерениях и имеющее нормированные метрологические свойства.

Эталон – средство измерения, предназначенное для воспроизведения и хранения единицы физической величины с целью передачи ее размера нижестоящим по поверочной схеме средствам измерения и официально утвержденное в установленном порядке в качестве эталона.

Государственный эталон – первичный или специальный эталон, принятый и утвержденный в качестве исходного для страны.

Поверка – определение погрешности средств измерения органами государственной метрологической службы с целью определения пригодности его к дальнейшему использованию.

Калибровка – совокупность операций, выполняемых с целью определения и подтверждения метрологических характеристик с.и. Эти с.и. не подлежат государственному метрологическому контролю и надзору.

Метрологическая служба. Цели и задачи. Структура службы.

Важнейшие задачи ГМС : надзор за состоянием и применением средств измерения (с.и.), аттестованными методами выполнения измерений, эталонами единиц, соблюдением метрологических правил и норм, нормативными документами (НД) по обеспечению единства измерений.

Госстандарт России: ВНИИ, НПО(научно-производственное объединение), ТОГостРФ – центры стандартизации и метрологии, МС всех организаций и предприятий.

Билет №3

Определение понятия ""Единица физической величины"". Классификация единиц ф.в.: основные и производные, системная и внесистемная, кратные и дольные, когерентные и некогерентные.

Единица физической величины – ф.в., которой по определению присвоено числовое значение, равное единице.

Физическая величина – свойство, в качественном отношении присущее многим физическим объектам, но количественно индивидуально для каждого.



Основная единица ф.в. – единица основной ф.в., выбранная произвольно при построении системы единиц.

Основная ф.в. – ф.в., входящая в систему и условно принятая в качестве независимой от других величин системы.

Система ф.в. – совокупность ф.в., связанных между собой зависимостями.

Производная единица ф.в. – единица производной ф.в., образуемая по определяющему эту единицу уравнению из других единиц системы.

Производная ф.в. - ф.в., входящая в систему и определяемая через основные величины этой системы.

Системная единица ф.в. – основная или производная единица системы единиц.

Внесистемная единица ф.в. – единица, которая не входит ни в одну систему единиц.

Система единиц ф.в. – совокупность основных и производных единиц, относящаяся к некоторой системе величин и образованная в соответствии с принятыми принципами.

Кратная единица ф.в. – единица, в целое число раз большая системной или внесистемной единицы.

Дольная единица ф.в . – единица, в целое число раз меньшая системной или внесистемной единицы.

Когерентная производная единица ф.в. – производная единица, связанная с другими единицами системы уравнения, в котором коэффициент пропорциональности принят равным единице.

Структура органов и служб стандартизации.

Госстандарт: ВНИИ, НПО, Территориальные органы – центры стандартизации и метрологии, метрологические службы службы организаций и предприятий.

Билет №4

Система единиц физических величин. Принципы построения.

1) Метод построения системы не связан с когерентными размерами основных единиц. Устанавливаются или выбираются величины, единицы которых должны стать основой системы. Размеры производных зависят от размеров основных.

2) В принципе построение системы единиц возможно для любых величин, между которыми имеется связь, выраженная математической формулой в виде уравнения.

3) Выбор величин, единица которых должны стать основными ограничивается соображением рациональности (выбор минимального числа основных единиц, который позволил бы образовать максимально большее число производных единиц).

4) Система должна быть когерентна, т.е. во всех формулах, определяющих производные единицы в зависимости от основных, коэффициент пропорциональности всегда равен единице.

Закон РФ "О сертификации". Основные положения.

Регламент - документ, содержащий обязательные правовые нормы, принятые органом власти.

Метод испытаний - установленный порядок проведения испытаний.

Технический контроль - проверка соответствия объекта установленным техническим требованиям.

Испытание - экспериментальное установление количественных и качественных характеристик, свойств объекта в условиях эксплуатации, хранения, транспортировки при его функционировании или при моделировании воздействий или объекта.

Сертификация соответствия - действие третьей стороны, доказывающее, что обеспечивается необходимая уверенность в том, что должным образом идентифицированная продукция соответствует конкретному стандарту или н.д.

Соответствие - соблюдение всех установленных требований к продукции, процессу или услуге.

Третья сторона - лицо или орган, признаваемый независимым от участвующих сторон в рассматриваемом вопросе.

Орган по сертификации - орган, проводящий сертификацию соответствия.

Сертификат соответствия - документ, выданный по правилам системы сертификации для подтверждения соответствия сертифицированных ПРУ установленным требованиям.

Знак соответствия - зарегистрированный в установленном порядке знак, которым по правилам, установленным в данной системе сертификации, подтверждается соответствие маркированной продукции установленным требованиям.

Аккредитация - официальное признание правомочий осуществлять какую-либо деятельность (в области сертификации).

Система качества - совокупность организационной структуры, методик, процессов и ресурсов, необходимых для осуществления общего руководства качества.

Схема сертификации - состав и последовательность действий третьей стороны по проведению сертификации.

Билет №5

Международная система единиц СИ: построение и содержание. Преимущества системы СИ перед другими системами единиц.

Семь основных единиц: метр(L), килограмм(M), секунда(T), ампер(I), канделла (J), моль(N), кельвин(q).

Упрощенное вычисление и вывод многих величин, применяемых во многих науках. Является международной. 1954 – 6 основных единиц, 1971 – введен моль.

Первая система единиц физических величин, хотя она и не являлась еще системой единиц в современном понимании, была принята Национальным собранием Франции в 1791 г. Она включала в себя единицы длины, площади, объема, вместимости и массы, основными из которых были две единицы: метр и килограмм.

Систему единиц как совокупности основных и производных единиц впервые в 1832 г. предложил немецкий ученый К. Гаусс. Он построил систему единиц, где за основу принял единицы длины (миллиметр), массы (миллиграмм) и времени (секунда), и назвал ее абсолютной системой.

С развитием физики и техники появились другие системы единиц физических величин, базирующиеся на метрической основе. Все они были построены по принципу, разработанному Гауссом. Эти системы нашли применение в разных отраслях науки и техники. Разработанные в то время измерительные средства градуированы в соответствующих единицах, находят применение и в настоящее время.

Многообразие единиц измерения физических величин и систем единиц осложняло их применение. Одни и те же уравнения между величинами имели различные коэффициенты пропорциональности. Свойства материалов, процессов выражались различными числовыми значениями. Международный комитет по мерам и весам выделил из своего состава комиссию по разработке единой Международной системы единиц. Комиссия разработала проект Международной системы единиц, который был утвержден XI Генеральной конференцией по мерам и весам в I960 г. Принятая система была названа Международной системой единиц, сокращенно СИ (SI - начальные буквы наименования System International).

Учитывая необходимость охвата Международной системой единиц всех областей науки и техники, в ней в качестве основных выбраны семь единиц. В механике такими являются единицы длины, массы и времени, в электричестве добавляется единица силы электрического тока, в теплоте - единица термодинамической температуры, в оптике - единица силы света, в молекулярной физике, термодинамике и химии - единица количества вещества. Эти семь единиц соответственно: метр, килограмм, секунда, ампер, Кельвин, кандела и моль - и выбраны в качестве основных единиц СИ (табл. 2.1).

Единица длины (метр) - длина пути, проходимого светом в вакууме за 1/299 792 458 долю секунды.

Единица массы (килограмм) - масса, равная массе международного прототипа килограмма.

Единица времени (секунда) - продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Единица силы электрического тока (ампер) - сила неизменяющегося тока, который, проходя по двум нормальным прямолинейным проводникам бесконечной длины и ничтожно малой площади круглого поперечного сечения, расположенным на расстоянии I м один от другого в вакууме, вызывает между проводниками силу взаимодействия, равную 2- Ю~7Н на каждый метр длины.

Единица термодинамической температуры (Кельвин) - 1/273,16 термодинамической температуры тройной точки воды. Допускается использовать также шкалу Цельсия.

Единица силы света (кандела) - сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Единица количества вещества (моль) - количество веществ системы, содержащей столько же структурных элементов, сколько атомов содержится вуглероде-12 массой 0,012 кг.

Основные единицы Международной системы имеют удобные для практических целей размеры и широко применяются в соответствующих областях измерений.

Международная система единиц содержит также две дополнительные единицы: для плоского угла - радиан и для телесного угла - стерадиан (табл. 2.1).

Радиан (рад) - единица плоского угла, равная углу между двумя радиусами окружности, длина дуги между которыми равна радиусу. В градусном исчислении I рад = 57° 1744,8".

Стерадиан (ср) - единица, равная телесному углу с вершиной в центре сферы, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы. Телесный угол £} измеряют косвенно - путем измерения плоского угла а при вершине конуса с последующим вычислением по формуле

Телесному углу в I ср соответствует плоский угол, равный 65°32", углу л-ср - плоский угол 120°, углу 2яср - плоский угол 180°. Дополнительные единицы используются только для теоретических расчетов и образования производных единиц, например угловой скорости, углового ускорения. Для измерения углов применяют угловые градусы, минуты и секунды. Приборов для измерения углов в радианах нет.

Угловые единицы не могут быть введены в число основных, гак как это вызвало бы затруднение в трактовке размерностей величин, связанных с вращением (дуги окружности, площади круга, работы пары сил и т. д.). Вместе с тем угловые единицы нельзя считать и производными, так как они не зависят от выбора основных единиц. Действительно, при любых единицах длины размеры радиана и стерадиана остаются неизменными.

Из семи основных единиц и двух дополнительных в качестве производных выводят единицы для измерений физических величин во всех областях науки и техники.

В решениях XI и XII Генеральных конференций по мерам и весам даны 33 производные единицы СИ. Примеры производных единиц, имеющих собственные наименования, приведены в табл. 2.2.

Важным принципом, который соблюден в Международной системе единиц, является ее когерентность (согласованность). Так, выбор основных единиц системы обеспечил полную согласованность механических и электрических единиц. Например, ватт - единица механической мощности (равный джоулю в секунду) равняется мощности, выделяемой электрическим током силой I ампер при напряжении I вольт.

В СИ, подобно другим когерентным системам единиц, коэффициенты пропорциональности в физических уравнениях, определяющих производные единицы, равны безразмерной единице.

Когерентные производные единицы Международной системы образуются с помощью простейших уравнений связи между величинами (определяющих уравнений), в которых величины приняты равными единицам СИ.

Например, единица скорости образуется с помощью уравнения, определяющего скорость прямолинейно и равномерно движущейся точки V=у, где V- скорость;/ - длина пройденного пути;/ - время. Подстановка вместо /, / и К их единиц СИ дает [ V = [/]/М = I м/с.

Следовательно, единицей скорости СИ является метр в секунду. Он равен скорости прямолинейно и равномерно движущейся точки, при которой эта точка за время / I с перемешается на расстояние 1 м.

Например, для образования единицы энергии используется уравнение Т = тУ где Т - кинетическая энергия; т - масса тела; V - скорость движения точки, то когерентная единица энергии СИ образуется следующим образом:

То есть единицей энергии в СИ является джоуль (равный ньютон-метру). Он равен кинетической энергии тела массой 2 кг, движущегося со скоростью I м/с.

В Международной системе единиц, как и в других системах единиц физических величин, важную роль играет размерность.

Размерностью называют символическое (буквенное) обозначение зависимости производных величин (или единиц) от основных.

Например, если какая-либо физическая величина выражается через длину L, массу М и время Г(являющихся основными величинами в системе единиц типа LMT) формулой X = f(L, М, 7), то можно показать, что результаты измерений будут независимы от выбора единиц в том случае, если функция/будет однородной функцией длины, массы и времени. Пусть X = LpM"Tr. Размерность величины А выражается формулой 6тХ= 11МЯТ где dim - сокращение от слова dimension - размерность.

Данная формула показывает, как производная величина связана с основными величинами, и называется формулой размерности.

Так как всякая величина может быть представлена как произведение ее числового значения {Л} на единицу Х X = {ЩХ, ее можно представить в виде {ХХ = ЩР{М)Я{Т)Г1ЛРМЯТГ.

Равенство величин в этой формуле распадается на два равенства: равенство числовых значений

Размерность служит качественной характеристикой величины и выражается произведением степеней основных величин, через которые может быть определена.

Размерность не полностью отражает все качественные особенности величин. Встречаются различные величины, имеющие одинаковую размерность. Например, работа и момент силы, сила тока и магнитодвижущая сила и др.

Размерность играет важную роль при проверке правильности сложных расчетных формул в теории подобия и теории размерностей.

Преимущества Международной системы единиц

Основными преимуществами Международной системы единиц являются:

  • - унификация единиц физических величин на базе СИ. Для каждой физической величины устанавливается одна единица и система образования кратных и дольных единиц от нее с помощью множителей (табл. 2.3);
  • - система СИ является универсальной системой. Она охватывает все области науки, техники и отрасли экономики;
  • - основные и большинство производных единиц СИ имеют удобные для практического применения размеры. В системе разграничены единицы массы (килограмм) и силы (ньютон);
  • - упрощается запись уравнений и формул в различных областях науки и техники. В СИ для всех видов энергии (механической, тепловой, электрической и др.) установлена одна, общая единица - джоуль.

основных единиц физических величин), так и в выборе их размера. По этой причине, определяя основные величины и их единицы, системы единиц физических величин могут быть построены самые разные. К этому следует добавить, что и производные единицы физических величин также могут определяться по-разному. Сказанное означает, что систем единиц может быть построено очень много. Остановимся на общих чертах всех систем.

Основная общая черта - четкое определение сущности и физического смысла основных физических единиц и величин системы. Желательно, но, как указывалось в предыдущем разделе, необязательно, чтобы основная физическая величина могла быть воспроизведена с высокой точностью и могла быть передана средством измерения с минимальной потерей точности.

Следующий важный в построении системы шаг - установить размер основных единиц, т. е. договориться и законодательно закрепить процедуру воспроизведения основной единицы.

Поскольку все физические явления связаны между собой законами, записываемыми в виде уравнений, выражающими связь между физическими величинами, при установлении производных единиц, нужно выбрать определяющее соотношение для производной величины. Затем в таком выражении следует приравнять единице или другому постоянному числу коэффициент пропорциональности, входящий в определяющее соотношение. Таким образом, образуется производная единица, которой можно дать следующее определение: «Производная единица физической величины - единица, размер которой связывается с размерами основных единиц соотношениями, выражающими физические законы, или определениями соответствующих величин».

При построении системы единиц, состоящей из основных и производных единиц, следует подчеркнуть два наиболее важных момента:

Первое - разделение единиц физических величин на основные и производные не означает, что первые имеют какое-либо преимущество или более важны, чем последние. В разных системах основными могут быть различные единицы, и число основных единиц в системе также может быть разным.

Второе - следует отличать уравнения связи между величинами и уравнения связи между их числовым и значения ми. Уравнения связи представляют собой соотношения в общем виде, не зависящие от единиц. Уравнения связи между числовыми значениями могут иметь различный вид в зависимости от выбранных единиц для каждой из величин. Например если выбрать в качестве основных величин метр, килограмм массы и секунду, то соотношения между механическими производными единицами, такими как сила, работа, энергия, скорость и т. д., будут отличаться от таковых, если основными единицами будут выбраны сантиметр, грамм, секунда или метр, тонна, секунда.

Характеризуя различные системы единиц физических величин, вспомним, что первый шаг в построении систем был связан с попыткой связать основные единицы с величинами, встречающимися в природе. Так, в эпоху Великой французской революции в 1790-1791 гг. было предложено единицей длины считать одну сорокамиллионную долю земного меридиана. В 1799 г. эта единица была узаконена в виде прототипа метра - специальной платино-иридиевой линейки с делениями. Одновременно был определен килограмм как вес одного кубического дециметра воды при 4°С. Для хранения килограмма была изготовлена образцовая гиря - прототип килограмма. В качестве единицы времени была узаконена 1/86400 доля средних солнечных суток.

В дальнейшем от естественного воспроизведения этих величин пришлось отказаться, поскольку процесс воспроизведения связан с большими погрешностями. Указанные единицы были закреплены законодательно по характеристикам их прототипов, а именно:

Эта основа всех современных систем единиц физических величин сохранилась до настоящего времени. К механическим основным единицам добавлялись тепловые (Кельвин), электрические (Ампер), оптические (кандела), химические (моль), но основа сохранилась до сих пор. Следует добавить, что развитие измерительной техники и в особенности открытие и внедрение лазеров в измерения позволили найти и узаконить новые, очень точные способы воспроизведения основных единиц физических величин. На таких моментах мы остановимся в следующих разделах, посвященных отдельным видам измерений.

Здесь же кратко перечислим наиболее употребительные в естествознании XX века системы единиц, часть из которых существует до сих пор в виде внесистемных или жаргонных единиц.

На территории Европы за последние десятилетия широко применялись три системы единиц: СГС (сантиметр, грамм, секунда), МКГСС (метр, килограмм-сила, секунда) и система СИ, являющаяся основной международной системой и предпочтительной на территории бывшего СССР «во всех областях науки, техники и народного хозяйства, а также при преподавании».

Последняя цитата, взятая в кавычки, приведена из государственного стандарта СССР ГОСТ 9867-61 «Международная система единиц», введенного в действие с 1 января 1963 г. Подробнее на этой системе мы остановимся в следующем параграфе. Здесь лишь укажем, что основными механическими единицами в системе СИ являются метр, килограмм-масса и секунда.

Система СГС существует более ста лет и очень удобна в некоторых научных и инженерных областях. Основным достоинством системы СГС является логичность и последовательность ее построения. При описании электромагнитных явлений присутствует только одна константа - скорость света. Эта система была разработана в период с 1861 по 1870 гг. Комитетом по электрическим эталонам Британии. Основана система СГС была на системе единиц немецкого математика Гаусса, который предложил метод построения системы, основанной на трех основных единицах - длины, массы и времени. Система Гаусса использовала миллиметр, миллиграмм и секунду.

Для электрических и магнитных величин были предложены два различных варианта системы СГС - абсолютная электростатическая система СГСЭ и абсолютная электромагнитная система СГСМ. Всего в развитии системы СГС существовало семь различных систем, имевших в составе основных единиц сантиметр, грамм и секунду.

В конце прошлого века появилась система МКГСС , основными единицами в которой являлись метр, килограмм-сила и секунда. Эта система получила широкое распространение в прикладной механике, в теплотехнике и родственных областях. У этой системы много недостатков, начиная с путаницы в названиях основной единицы - килограмма, означавшего килограмм-силу в отличие от широко используемого килограмма-массы. Для единицы массы в системе МКГСС не нашлось даже названия и ее обозначали как т. е. м. (техническая единица массы). Тем не менее система МКГСС частично используется до сих пор хотя бы в определении мощности двигателей в лошадиных силах. - мощность, равная 75 кгс м/с -до сих пор используется в технике как жаргонная единица.

В 1919 г. во Франции была принята система МТС - метр, тонна, секунда. Эта система также первым советским стандартом на механические единицы, принятым в 1929 г.

В 1901 г. итальянский физик П. Джорджи предложил систему механических единиц, построенную на трех механических основных единицах - метре , килограмме массы и секунде . Преимуществом этой системы было то, что ее было легко связать с абсолютной практической системой электрических и магнитных единиц, т. к. единицы работы (джоуль) и мощности (ватт) в этих системах совпадали. Так была найдена возможность использовать преимущества всеобъемлющей и удобной системы СГС со стремлением «сшить» электрические и магнитные единицы с единицами механическими.

Достигнуто это было путем введения двух постоянных - электрической (ε 0) проницаемости вакуума и магнитной проницаемости вакуума (μ 0). Появляется некоторое неудобство в записи формул, описывающих силы взаимодействия покоящихся и движущихся электрических зарядов и, соответственно, в определении физического смысла этих констант. Однако эти недостатки в большой степени окупаются такими удобствами, как единство выражения энергии при описании как механических, так и электро-магнитных явлений, т. к.

1 джоуль = 1 ньютон, метр = 1 вольт, кулон = 1 ампер, вебер.

В результате поисков оптимального варианта международной системы единиц в 1948 г. IX Генеральная конференция по мерам и весам на основе опроса стран-членов Метрической конвенции приняла вариант, в котором предлагалось в качестве основных единиц принять метр, килограмм массы и секунду. Килограмм-силу и связанные с ней производные единицы предлагалось исключить из рассмотрения. Окончательное решение на основании результатов опроса 21 страны было сформулировано на Х Генеральной конференции по мерам и весам в 1954 г.

Резолюция гласила:

«В качестве основных единиц практической системы для международных сношений принять:

Позднее по настоянию химиков международная система была дополнена седьмой основной единицей количества вещества - молем.

В дальнейшем международная система СИ или в английской транскрипции Sl (System International) несколько уточнялась, например единица температуры получила название Кельвин вместо «градус Кельвина», система эталонов электрических единиц была переориентирована с Ампера на Вольт, поскольку был создан эталон разности потенциалов на основе квантового эффекта - эффекта Джозефсона, который позволил уменьшить погрешность воспроизведения единицы разности потенциалов - Вольта -более чем на порядок. В 1983 г. на XVIII Генеральной конференции по мерам и весам было принято новое определение метра. По новому определению метр представляет собой расстояние, проходимое светом за 1/2997925 долю секунды. Такое определение, точнее переопределение, понадобилось в связи с внедрением в эталонную технику лазеров. Следует сразу указать, что размер единицы, в данном случае метра, не изменяется. Изменяются только методы и средства ее воспроизведения, отличающиеся меньшей погрешностью (большей точностью).


Утверждено

Редакционно-издательским советом Воронежского

государственного технического университета в качестве

учебного пособия для студентов машиностроительных

специальностей

Воронеж 2006

Метрология, стандартизация, сертификация: практикум учеб. пособие / И.А.Фролов, В.А.Нилов, В.А. Муравьев, О.К. Битюцких. Воронеж: ГОУ ВПО «Воронежский государственный технический университет», 2006. 114 с.

Рассматриваются основные вопросы, входящие в дисциплину «Метрология, стандартизация, сертификация» и составляющие основу практических занятий.

По каждой теме практического занятия в учебном пособии приведены необходимые теоретические материалы, варианты заданий, примеры их решений и оформления в соответствии с требованиями курса дисциплины, а также вопросы для проверки знаний.

Практикум предназначен для проведения занятий со студентами специальностей 150201 «Машины и технология обработки металлов давлением» и 150202 «Оборудование и технология сварочного производства», 151001 «Технология машиностроения», 151002 «Металлообрабатывающие станки и комплексы», 220402 «Роботы и робототехнические системы», 200503 «Стандартизация и сертификация» всех форм обучения.

Ил. 26 Табл. 25 Библиогр.: 10 назв.

Научный редактор к.т. н., доц. Б.Б. Еськов

Рецензенты: кафедра строительных и дорожных машин ВГАСУ (зав. кафедрой д-р техн. наук, проф. П.И. Никулин)

канд. техн. наук И.Г. Радченко

© Фролов И.А., Нилов В.А.,

Муравьев В.А., Битюцких О.К., 2006

© Оформление ГОУ ВПО

«Воронежский государственный

Технический университет», 2006


Введение

Метрология – наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

В метрологии решаются следующие основные задачи: разработка общей теории измерений единиц физических величин и их систем, разработка методов и средств измерений, методов определения точности измерений, основ обеспечения единства и единообразие средств измерений, эталонов и образцов средств измерений, методов передачи размеров единиц от эталонов и образцовых средств измерений к рабочим средствам измерений.

Элементы стандартизации появились тогда, когда еще не существовало понятия об этом термине. Примерами могут служить: строительство в ІІІ тысячелетии до н. э. самой высокой египетской пирамиды Хеопса из камней, обработанных до строго определенных размеров; применение кирпичей размером 410 × 200 × 130 мм при сооружении в Египте дворцов фараонов, метода пропорциональных чисел при создании водяных колес и катапульт в Древнем Риме; использование римлянами труб определенных диаметров при сооружении городских водопроводов; оснащение флота в Венеции в ΧΙV-ΧV вв. одинаковыми мачтами, парусами, веслами, рулями.

Примеры использования элементов стандартизации в прошлые времена можно найти и в истории республик распавшегося СССР. Зодчие Армении в ΙΧ-Χ вв. широко применяли стандартные детали при возведении ажурных сводов кафедрального собора «Майр тачара», в конструкциях четырех городских ворот и прокладке водопровода; кирпичи единого образца в это же время использовались при строительстве в Таджикистане.

Стандартизация явилась радикальным средством совершенствования машинного производства, призванного выпускать изделия крупными партиями. Значительным событием было введение в Англии в 1841 г. Единой системы винтовой резьбы, разработанной Джоном Витвортом.

В России стандартизация впервые была применена в середине ΧVΙ в. при изготовлении снарядов для пушек. В ΧVΙΙΙ в. (1706-1715 гг.) Петр Ι предписал мастерам при изготовлении ружей следить за правильным применением калибров, по которым делались детали, и за однородностью отдельных частей ружей. В1826 г. принцип взаимозаменяемости в производстве оружия на Тульском оружейном заводе был блестяще продемонстрирован иностранным представителям. Взятые со склада без выбора тридцать ружей были разобраны и детали их перемешаны. Затем ружья были снова собраны из первых попавших деталей и действовали безотказно. В начале ΧΙΧ в. очередной импульс развития стандартизация получила в связи с началом железнодорожного строительства. Были стандартизованы ширина колеи, цвет вагонов, высота сцепных устройств, диаметры колес и другие элементы.

В современном машиностроении взаимозаменяемость является основным и необходимым условием массового и серийного производства. Например, при массовом выпуске специализированными заводами типовых деталей крепежа (болтов, шпилек, винтов, гаек, шайб и др.), подшипников, зубчатых колес и ряда др. деталей и узлов ускоряется процесс конструирования и изготовления новых машин: конструктору не нужно создавать на них чертежи, а заводу – тратить время и средства на их изготовление.

Измерения имеют большое значение в современном обществе. Они дают возможность обеспечить взаимозаменяемость узлов и деталей, совершенствовать технологию, безопасность труда и других видов человеческой деятельности, качество продукции.

Круг величин, подлежащих измерению, определяется разнообразием явлений, с которыми приходится сталкиваться человеку. Если «Теория механизмов и машин», «Детали машин и основы конструирования», «Технологии металлов» и др. служат теоретической основой проектирования машин и механизмов, то данный курс «Метрология, стандартизация, сертификация» рассматривает вопросы обеспечения точности геометрических параметров как необходимого условия взаимозаменяемости и таких важнейших показателей качества, как надежность и долговечность.

Цель практикума – выработка у будущих инженеров знаний и практических навыков использования и соблюдения требований ГОСТ (государственных стандартов), выполнения точностных расчетов и метрологического обеспечения при изготовлении, эксплуатации и ремонте как строительно-дорожной техники, так и других машин. Задачи практикума: в результате выполнения индивидуальных заданий на практических занятиях по курсу «Метрология, стандартизация и сертификация» студенты должны:

Изучить основные понятия и терминологию, используемые в курсе «Метрология, стандартизация и сертификация»;

Научиться пользоваться стандартами с целью выбора оптимальных допусков при конструировании деталей машин;

Приобрести навыки в расчете размерных цепей при конструировании деталей, узлов или механизмов;

Научиться отличать посадки в системе «Отверстия» от посадок в системе «Вала»;

Приобрести навыки построения полей допусков размеров деталей; посадок с зазором, натягом и переходных с обоснованием условий их применения.

Учебное пособие состоит из восьми разделов:

1. Расчет (выбор) допусков и посадок гладких цилиндрических соединений: а) с зазором; б) с натягом; в) переходные.

2. Определение элементов соединений, подвергаемых селективной сборке.

3. Расчет размерных цепей: прямая и обратная задачи.

4. Расчет исполнительных размеров калибров.

5. Расчет посадок подшипников качения.

6. Расчет допусков и посадок резьбовых соединений.

7. Расчет допусков и посадок шпоночных соединений.

8. Расчет допусков и посадок шлицевых соединений прямобочных и с эвольвентным профилем зуба.

Название раздела соответствует теме практического занятия.

Принципы построения Международной системы

Единиц. Основные понятия и определения допусков

И посадок

Учитывая необходимость охвата Международной системой единиц (System International) всех областей науки и техники, в ней в качестве основных выбраны семь единиц.

В механике такими являются единицы длины, массы и времени, в электричестве добавляется единица силы электрического тока, в теплоте - единица термодинамической температуры, в оптике - единица силы света, в молекулярной физике, термодинамике и химии – единица количества вещества. Эти семь единиц – метр, килограмм, секунда, ампер, Кельвин, кандела и моль - и выбраны в качестве основных единиц СИ.

Единица длины (метр) – длина пути, проходимого светом в вакууме за 1 / 299792458 долю секунды.

Единица массы (килограмм) – масса, равная массе международного прототипа килограмма.

Единица времени (секунда) – продолжительность 9192631770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Единица силы электрического тока (ампер) – сила неизменяющегося тока, который, проходя по двум нормальным прямолинейным проводникам бесконечной длины и ничтожно малой площади круглого поперечного сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает между проводниками силу взаимодействия равную 2×10 -7 Н на каждый метр длины.

Единица термодинамической температуры (Кельвин) – 1 / 273,16 термодинамической температуры тройной точки воды. Допускается использовать также шкалу Цельсия.

Единица силы света (кандела) – сила света в заданном направлении источника, испускающего монохроматические излучения частотой 540×10 12 Гц , энергетическая сила света которого в этом направлении составляет 1 / 683 Вт / ср .

Единица количества вещества (моль) – количество вещества системы, содержащей столько же структурных элементов, сколько атомов содержится в углероде – 12 массой 0,012 кг .

Международная система единиц содержит также две дополнительные единицы: для плоского угла – радиан и для телесного угла – стерадиан.

Радиан (рад ) – единица плоского угла, равная углу между двумя радиусами окружности, длина дуги между которыми равна радиусу. В градусном исчислении 1 рад = 57 0 17"44,8"".

Стерадиан (ср .) – единица, равная телесному углу с вершиной в центре сферы, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы. Телесный уголΩ измеряют косвенно – путем измерения плоского угла α при вершине конуса с последующим вычислением по формуле

Ω = 2π .

Основные понятия и определения допусков и посадок

В соединении двух деталей, входящих одна в другую, различают охватывающую и охватываемую поверхности соединения. В цилиндрических соединениях охватывающая поверхность носит общее название“отверстие” , а охватываемая -“вал” . Названия “отверстие” и “вал” условно применимы также и к другим охватывающим и охватываемым поверхностям. Обозначают: D – номинальный размер отверстия, d – номинальный размер вала. Эти размеры одинаковы.

Предельными называются два предельных значения размера, между которыми должен находиться действительный размер. Большее из них называется наибольшим предельным размером, меньшее - наименьшим предельным размером . Они для отверстия обозначаются D max и D min , а для вала – d max и d min .

Верхнее предельное отклонение – алгебраическая разность между наибольшим предельным размером и номинальным. Обозначают: ES – верхнее предельное отклонение отверстия, es – верхнее предельное отклонение вала.

ES = D max - D;

es = d max - d .

ES

Ecart – отклонение;

Superieur – верхнее.

Нижнее предельное отклонение – алгебраическая разность между наименьшим предельным размером и номинальным. Обозначают: EI – нижнее предельное отклонение отверстия, ei – нижнее предельное отклонение вала.

EI = D min - D;

ei = d min - d.

EI – начальные буквы французских слов;

Ecart – отклонение;

Inferieur – нижнее;

ES – верхнее отклонение отверстия;

EI – нижнее отклонение отверстия;

es – верхнее отклонение вала;

ei – нижнее отклонение вала.

Допуск размера – это разность между наибольшим и наименьшим предельным размером. Обозначают: TD – допуск отверстия, Td – допуск вала. Допуск всегда положительное число.

TD = D max - D min = ES – E;

Td = d max - d min = es - ei .

Рис. 1. Графическое изображение деталей соединения:

а) схема деталей соединения; б) схема расположения полей допусков деталей соединения

Линия, соответствующая номинальному размеру, от которой откладываются отклонения размеров при графическом изображении допусков и посадок, называетсянулевой линией . Если нулевая линия расположена горизонтально, то положительные отклонения откладываются вверх от нее, а отрицательные – вниз.

Действительное отклонение – алгебраическая разность между действительным и номинальным размерами.

Поле допуска – интервал значений размеров, ограниченный предельными размерами; оно определяется величиной допуска и его расположением относительно номинального размера.

На схеме поле допуска изображается зоной между линиями, соответствующими верхнему и нижнему предельным отклонениям. Верхняя граница поля допуска соответствует наибольшему предельному размеру, нижняя – наименьшему предельному размеру.

Зазор S – положительная разность между размерами отверстия и вала (размер отверстия больше размера вала).

Натяг N – положительная разность между размерами вала и отверстия до сборки деталей (размер вала больше, чем размер отверстия).

Наибольший зазор S max – положительная разность между наибольшим предельным размером отверстия D max и наименьшим предельным размером вала d min .

S max = D max – d min = ES – ei.

Наименьший зазор S min – положительная разность между наименьшим предельным размером отверстия D min и наибольшим предельным размером вала d max .

S min = D min – d max = EI – es.

Наибольший натяг N max – положительная разность между наибольшим предельным размером вала d max и наименьшим предельным размером отверстия D min .

N max = d max – D min =es – EI.

Наименьший натяг N min – положительная разность между наименьшим предельным размером вала d min и наибольшим предельным размером отверстия D max .

N min = d min - D max = ei – ES.

Посадка – это характер соединения деталей, определяемый величиной получающихся в нем зазоров или натягов. Посадка характеризует большую или меньшую свободу относительного перемещения соединяемых деталей в случае зазора или степень сопротивления их взаимному смещению (в случае натяга).


Похожая информация.