Примеры фенотипической изменчивости у растений. Типы модификационной изменчивости

Изменчивость, её виды. Характеристика модификационной изменчивости, примеры

Изменчивость организмов проявляется в разнообразии особей (одного вида, породы или сорта), отличающихся друг от друга по комплексу признаков, свойств и качеств. Причины тому могут быть разными. В одних случаях данные различия (при одинаковых генотипах у организмов) определяются условиями среды, в которых происходит развитие особей. В других - различия обусловлены неодинаковыми генотипами организмов. На основании этого выделяют два типа изменчивости: ненаследственную (модификационную, фенотипическую ) инаследственную (генотипическую ).

Модификационная (фенотипическая) изменчивость заключается в том, что под действием разных условий внешней среды у организмов одного вида, генотипически одинаковых, наблюдается изменение признаков (фенотипа). Изменения эти индивидуальны и не наследуются, т. е. не передаются особям следующих поколений. Рассмотрим проявление подобной закономерности на нескольких примерах.

В одном из опытов корневище одуванчика разрезали вдоль острой бритвой и высадили половинки в разных условиях - в низине и в горах. К концу сезона из этих проростков выросли совершенно не похожие друг на друга растения. Первое из них (в низине) было высоким, с большими листьями и крупным цветком. Второе, выросшее в горах, в суровых условиях, оказалось низкорослым, с мелкими листьями и цветком (рис. 1).

Генотип у этих двух растений абсолютно идентичен (ведь они выросли из половинок одного корневища), но их фенотипы существенно различались в результате разных условий произрастания. Потомки этих двух растений, выращенные в одинаковых условиях, ничем не отличались друг от друга. Следовательно, фенотипические изменения не наследуются.

Рис. 1. Изменение одуванчика под влиянием внешних условий среды (по Боннье): à - растение, выращенное в низине; á - в горах; оба растения - отводки одной особи

Биологическое значение модификационной изменчивости заключается в обеспечении индивидуальной приспособляемости организма к различным условиям внешней среды.

Рассмотрим другой пример. Представим себе, что два брата, однояйцовых близнеца (т. е. с идентичными генотипами) выбрали еще в детстве разные увлечения: один посвятил себя тяжелой атлетике, а другой - игре на скрипке. Очевидно, через десяток лет между ними будет наблюдаться существенное физическое различие. И также ясно, что у спортсмена его новорожденный сын не родится с «атлетическими» признаками.

Изменения фенотипа под воздействием условий внешней среды могут происходить не беспредельно, а только в ограниченном диапазоне (широком или узком), который обусловлен генотипом. Диапазон, в пределах которого признак может изменяться, носит название нормы реакции . Так, например, признаки у коров, учитываемые в животноводстве, - удойность (т. е. количество вырабатываемого молока) и жирность молока - могут изменяться, но в разных пределах. В зависимости от условий содержания и кормления животных удойность варьируется существенно (от стаканов до нескольких ведер в сутки). В данном случае говорят о широкой норме реакции. А вот жирность молока очень незначительно колеблется в зависимости от условий содержания (всего на сотые доли процента), т. е. этот признак характеризуется узкой нормой реакции.

Итак, условия внешней среды обусловливают изменения признака в пределах нормы реакции. Границы же последней продиктованы генотипом. Следовательно, изменения самой нормы реакции могут произойти только в результате изменения генотипа (т. е. в результате генотипической изменчивости).

2.49. Комбинативная изменчивость и её механизм

Комбинативная изменчивость имеет две основные составляющие; 1) случайное, равновероятное расхождение хромосом в мейозе (оно обеспечивает перекомбинацию родительских хромосом и служит цитологическим обоснованием закона свободного комбинирования, сформулированного Г. Менделем) и 2) рекомбинация сцепленных генов, локализованных в гомологичных хромосомах. В более узком смысле под рекомбинацией подразумевают перекомбинацию генов, и потому предпосылкой для нее, в частности, и для комбинативной изменчивости вообще, является гетерозиготность организма по одному или более генам. Эта гетерозиготность, а следовательно, и рекомбинация возникают у эу- и прокариот разными путями: для их реализации у прокариот существуют конъюгация, трансформация и транедукция, а также - совместная инфекция (у вирусов). У эукариот гетерозиготность обеспечивается диплоидностью генома, а сама рекомбинация может происходить как в половых, так и в соматических клетках. Результатом рекомбинации в конечном итоге является перенос участков ДНК с одной молекулы на другую. В случае реципрокной рекомбинации этот перенос - взаимный, а при нереципрокной - односторонний.

Существуют два подхода к изучению процесса рекомбинации . Первый из них, классический, анализирует наследование признаков и, если признаки имеют тенденцию наследоваться совместно, оценивает степень их сцепления, или частоту рекомбинации между соответствующими локусами. Этот подход возник в «домо-лекулярное» время и представляет собой статистический анализ наблюдаемого расхождения признаков при передаче их последующим поколениям. Второй подход к изучению генетической рекомбинации, молекулярный, направлен на анализ тонких механизмов этого процесса. Хотя для обоих подходов предметом исследования является один и тот же процесс, само понятие генетической рекомбинации неоднозначно.

Можно выделить три типа рекомбинации :
общую (происходит между гомологичными последовательностями ДНК; это - рекомбинация между гомологичными хроматидами в мейозе, реже - в митозе);
сайт-специфическую (затрагивает молекулы ДНК, характеризующиеся ограниченным структурным сходством, и наблюдается при интеграции фагового генома и бактериальную хромосому);
незаконную (происходит во время транспозиции, не основанной на гомологии последовательностей ДНК).

Модификационная изменчивость - изменения в фенотипе организма, что в большинстве случаев носят приспособительный характер и образуются в результате взаимодействиягенотипа с окружающей средой. Изменения в организме, или модификации, не наследуются. В целом понятие "модификационная изменчивость" соответствует понятию "определена изменчивость", которое ввел Дарвин.

Условная классификация модификационной изменчивости

  • По характеру изменений в организме
    • Морфологические изменения
    • Физиологические и биохимические адаптации - гомеостаз
  • По спектру нормы реакции
    • Узкие
    • Широкие
  • По значению
    • Приспособительные модификации
    • Морфозы
    • Фенокопии
  • По продолжительности
    • Наблюдаются лишь у особей, подвергшихся воздействию определенных факторов окружающей среды (однотерминови)
    • Наблюдаются у потомков этих особей (длительные модификации) в течение определенного количества поколений

Механизм модификационной изменчивости

Ген → белок → изменение в фенотипе организма Окружающая среда

Модификайна изменчивость - результат не изменений генотипа, а его реакции на условия окружающей среды. То есть структура генов не изменяется, - меняется экспрессия генов.

Вследствие этого под действием факторов окружающей среды на организм меняется интенсивность ферментативных реакций, что обуславливается изменением интенсивности их биосинтеза. Некоторые ферменты, например, МАР-киназа, обусловливают регуляцию транскипции генов, которая зависит от факторов окружающей среды. Таким образом, факторы окружающей среды способны регулировать активность генов и выработку ими специфического белка, функции которого наиболее соответствуют среде.

Как пример приспособительных модификаций, рассмотрим механизм образования пигмента меланина. По его выработки соответствуют четыре гена, которые находятся в разных хромосомах. Наибольшее количество аллелей этих генов - 8 - имеющаяся у людей с темным окрасом покровов тела. Если на покровы интенсивно действует фактор среды, ультрафиолетовое излучение, то при проникновении его в мижних слоев эпидермиса клетки последнего разрушаются. Происходит высвобождение эндотелина-1 и эйкозаноидов(продуктов распада жирных кислот), что обуславливает активацию и усиленный биосинтез фермента тирозиназы. Тирозиназа, в свою очередь, катализирует окисление аминокислоты тирозина. Дальнейшее формирование меланина происходит без участия тирозиназы, но усиление биосинтеза тирозиназы и ее активация обусловливает образование загара, соответствующий факторам среды.

Другой пример - сезонная смена окраски меха у животных (линька). Линьки и последующая окраска обусловлены действием температурных показателей на гипофиз, который стимулирует выработку тиреотропного гормона. Это обусловливает действие на щитовидную железу, под действием гормонов которой наступает линька.

Норма реакции

Норма реакции - спектр экспрессии генов при неизменном генотипе, из которого выбирается наиболее соответствующий условиям среды уровень активности генетического аппарата, и формирует специфический фенотип. Например, есть аллель гена X a, обуславливающей продуцирования большего количества колосья пшеницы, и аллель гена Y b, которая производит малое количество колосьев пшеницы. Экспрессия аллелей этих генов взаимосвязана. Весь спектр экспрессии размещается между максимальной экспрессией аллеля а и максимальной экспрессией аллеля b, и интенсивность проявления этих аллелей зависит от условий окружающей среды. При благоприятных условиях (при достаточном количестве влаги, питательных веществ) происходит "доминирования" аллели а при неблагоприятных преобладает проявление аллеля b.

Норма реакции имеет предел проявления для каждого вида - например, усиленное кормление животных обусловит рост ее массы, однако она будет находиться в пределах спектра выявления этого признака для данного вида. Норма реакции генетически детерминирована и наследуется. Для различных изменений есть разные грани проявления нормы реакции.Например, сильно варьирует величина удоя, производительность злаков (количественные изменения), слабо - интенсивность окраски животных и т.п. (качественные изменения). В соответствии с этим, норма реакции может быть узкой (качественные изменения - окраска куколок и имаго некоторых бабочек) и широкой (количественные изменения - размеры листьев растений, размеры тела насекомых в зависимости от питания их куколок. Однако для некоторых количественных изменений характерна узкая норма реакции (жирность молока, число пальцев на ногах у морских свиней), а для некоторых качественных изменений широкая (сезонные изменения окраски у животных северных широт). В общем, норма реакции и интенсивность экспрессии генов на основе нее предопределяют непохожесть внутривидовых единиц.

Характеристика модификационной изменчивости

  • Оборачиваемость - изменения исчезают при исчезновении специфических условий среды, которые привели к появлению модификации;
  • Групповой характер;
  • Изменения в фенотипе не наследуются - наследуется норма реакции генотипа;
  • Статистическая закономерность вариационных рядов;
  • Модификации дифференцируют фенотип, не изменяя генотип.

Анализ и закономерности модификационной изменчивости

Ранжированы отображения проявления модификационной изменчивости - вариационный ряд - ряд модификационной изменчивости свойства организма, состоящий из отдельных связанных между собой свойств фенотипа организма, расположенных в порядке возрастания или убывания количественного выражения свойства (размеры листа, изменения интенсивности окраски меха и др.). Единичный показатель соотношения двух факторов в вариационном ряду (например, длина меха и интенсивность ее пигментации) называетсяварианта. Например, пшеница, растущая на одном поле, может сильно варьировать по количеству колосков и колосья в силу различных показателей почвы. Сопоставив число колосков в одном колоске и количество колосьев, можно получить такой вариационный ряд:

Вариационная кривая

Графическое отображение проявления модификационной изменчивости - вариационная кривая - отражает как диапазон вариации властивоств, так и частоту встречаемости отдельных вариант.

После построения кривой видно, что наиболее часто встречаются средние варианты проявления свойства (закон Кетле). Причиной этого является действие факторов окружающей среды на ход онтогенеза. Некоторые факторы подавляют экспрессию генов, другие усиливают. Почти всегда эти факторы, равно действуя на онтогенез, нейтрализуют друг друга, т.е. крайние проявления признака минимизируются по частоте встречаемости. Это и является причиной большей встречаемости особей со средним проявлением признака. Например, средний рост мужчины - 175 см - встречается наиболее часто.

При построении вариационной кривой можно рассчитать величину среднеквадратического отклонения и, на основе этого, построить график среднеквадратичного отклонения от медианы - проявления признака, который встречается наиболее часто.

График среднеквадратичного отклонения, построенный на основе вариационной кривой "модификационная изменчивость пшеницы"

Формы модификационной изменчивости

Фенокопии

Фенокопии - изменения фенотипа под действием неблагоприятных факторов окружающей среды, похожие на мутации. Генотип при этом не меняется. Их причинами являются тератогены - определенные физические, химические (лекарства и т.п.) и биологические агенты (вирусы) с возникновением морфологических аномалий и пороков развития. Фенокопии часто похожи на наследственные болезни. Иногда фенокопии берут свое начало из эмбрионального развития. Но чаще примерами фенокопий являются изменения в онтогенезе - спектр фенокопий зависит от стадии развития организма.

Морфозы

Морфозы - это изменения в фенотипе под действием экстремальных факторов окружающей среды. Впервые морфозы проявляются именно в фенотипе и могут приводить к адаптационных мутаций, берется эпигенетической теории эволюции как основа движения естественного отбора на основе модификационной изменчивости. Морфозы имеют неадаптивных и необратимый характер, то есть, как и мутации, лабильные.Примерами морфоз есть шрамы, определенные травмы, ожоги и т.п.

Длительная модификационная изменчивость

Большинство модификаций не наследуются и является лишь реакцией генотипа на условия окружающей среды. Конечно, потомки особи, которая подверглась воздействию определенных факторов, сформировавших более широкую норму реакции, также могут иметь такие же широкие изменения, однако они будут проявляться лишь при воздействии определенных факторов, что, воздействуя на гены, обусловливающие более интенсивные ферментативные реакции. Однако в некоторых простейших, бактерий и даже эукариот является так называемая длительная модификационная изменчивость, обусловленная цитоплазматической наследственностью. Для выяснения механизма длительной модификационной изменчивости рассмотрим сначала регуляцию триггера факторами окружающей среды.

Регуляция триггеру модификациями

Как пример долговременной модификационной изменчивости рассмотрим оперон бактерий. Оперон - это способ организации генетического материала, при котором гены, кодирующие совместно или последовательно работающие белки, объединяются под одним промотором. В оперона бактерий содержатся, кроме генных структур, два участка - промотор и оператор. Оператор находится между промотором (участок, с которой начинается транскрипция) и структурными генами. Если оператор связан с определенными белками-репрессор, то вместе они не дают двигаться РНК-полимеразе по цепи ДНК, начинается с промотора. Если оперона два и если они взаимосвязаны (структурный ген первого оперона кодирует белок-репрессор для второго оперона и наоборот), то они образуют систему, которая называется триггер. При активном состоянии первой составляющей триггеру другая составляющая пассивна. Но, при воздействии определенных факторов окружающей среды, может произойти переключение триггера на второй оперон вследствие прерывания кодирования белка-репрессор для него.

Эффект переключения триггеров можно наблюдать в некоторых неклеточных форм жизни, например, в бактериофагов, и у прокариот, таких как кишкивна палочка. Рассмотрим оба случая.

Кишкивна палочка - совокупность видов бактерий, взаимодействующих с определенными организмами с получением общей выгоды (мутуализм). Они имеют высокую ферментативную активность в отношении сахаров (лактозы, глюкозы), при чем, они не могут одновременно расщеплять глюкозу и лактозу. Регуляцию возможности расщепления лактозы выполняет лактозной оперон, состоящий из промотора, оператора и терминатора, а также - с гена, кодирующего белок-репрессор для промотора. При отсутствии лактозы в окружающей среде происходит соединение белка-репрессор с оператором и прекращение транскрипции. Если лактоза попадает в клетку бактерии, происходит ее соединение с белком-репрессор, изменение его конформации и диссоциация белка-репрессор от оператора.

Бактериофаги - вирусы, поражающие бактерии. При попадании в клетку бактерии, при неблагоприятных условиях окружающей среды, бактериофаги остаются неактивными, проникая в генетический материал и передаваясь в дочерние клетки при бинарном разделении материнской клетки. При появлении благоприятных условий в клетке бактерии происходит переключение триггера в бактериофага результате попадания питательных веществ-индукторов, и бактериофаги размножаются и вырываются из бактерии.

Такое явление часто наблюдается у вирусов и прокариот, однако у многоклеточных организмов оно почти никогда не встречается.

Цитоплазматическое наследования

Цитоплазматическая наследственность - это наследственность, которая заключается в попадании в цитоплазму вещества-индуктора, которое запускает экспрессию генов (активирует оперон) или в ауторепродукуванни частей цитоплазмы.

Например, при почкования бактерии происходит наследования бактериофага, который находится в цитоплазме и играет роль плазмиды. При благоприятных условиях уже происходит репликация ДНК и генетический аппарат клетки замещается генетическим аппаратом вируса. Похожим примером изменчивости в кишкивнои палочки является работа лактозного оперона E. Coli - при отсутствии глюкозы и наличия лактозы эти бактерии производят фермент для расщепления лактозы вследствие переключения лактозного оперона. Это переключение оперона может наследоваться при почкования путем попадания лактозы к дочерней бактерии в процессе ее формирования, и дочерние бактерии также вырабатывают фермент (лактазу) для расщепления лактозы даже при отсутствии этого дисахарида в окружающей среде.

Также цитоплазматическую наследственность, связанную с длительным модификационной изменчивостью, встречающихся в таких представителей эукариот, как колорадский картофельный жук и наездники Habrobracon. При действии интенсивных термических показателей в куколки колорадского жука окраски жуков менялось. При обязательном условии того, что действия интенсивных термических показателей испытывала и самка жука, у потомков таких жуков настоящее проявление признака держался в течение нескольких поколений, а затем предыдущая норма признаки возвращалась. Данная продолжалась модификационная изменчивость также является примером цитоплазматической наследственности. Причиной наследования является ауторепродукування тех частей цитоплазмы, которые претерпевали изменения. Рассмотрим механизм ауторепродукування как причину цитоплазматической наследственности детально. В цитоплазме ауторепродукуватись могут такие органеллы, имеющие собственные ДНК и РНК, и другие плазмогены.Органеллами, которые способны ауторепродукуватись, есть митохондрии и пластиды, которые способны к самоудвоения и биосинтеза белка путем репликации и этапов транскрипции, процессинга и трансляции. Таким образом обеспечивается непрерывность ауторепродукування этих органелл. Плазмогены также способны ауторепродукуватись. Если под действием окружающей среды плазмоген претерпел изменений, которые обусловили активность этого гена, например, при диссоциации белка-репрессор или ассоциации кодирующие белка, то он начинает продуцировать белок, который формирует определенную признак. Поскольку плазмогены способны транспортироваться через мембрану женских яйцеклеток и, таким образом наследоваться при, то специфический их состояние также наследуется. При этом, сохраняются также модификации, которые вызвал ген активацией собственной экспрессии. Если фактор, вызвавший активацию экспрессии гена и биосинтеза белка ним сохраняется за онтогенеза потомству особи, то признак будет передаваться следующему потомству . Таким образом, длительная модификация сохраняется до тех пор, пока существует фактор, обуславливающий эту модификацию. При исчезновении фактора модификация медленно угасает на протяжении нескольких поколений. Именно этим длительные модификации отличаются от обычных модификаций.

Модификационная изменчивость и теории эволюции

Естественный отбор и его влияние на модификационную изменчивость

Естественный отбор - это выживание наиболее приспособленных особей и появление потомства с закрепленными удачными изменениями. Четыре типа естественного отбора:

Стабилизирующий отбор . Эта форма отбора приводит: а) обезвреживания мутаций путем отбора, нейтрализует их противоположно направленное действие, б) совершенствование генотипа и процесса индивидуального развития при постоянном фенотипе и в) образование резерва обезвреженных мутаций. Как результат этого отбора организмы со средней нормой реакции доминируют в малозминних условиях существования.

Движущий отбор . Эта форма отбора приводит: а) раскрытие мобилизационных резервов, состоящие из обезвреженных мутаций, б) осуществление отбора обезвреженных мутаций и их соединений и в) формирование новых фенотипа и генотипа. Как результат этого отбора доминируют организмы с новой средней нормой реакции, что больше соответствует меняющимся условиям окружающей среды, в которых они живут.

Дизруптивного отбор . Эта форма отбора приводит те же процессы, что и при движущего отбора, но она направлена не на формирование новой средней нормы реакции, а на выживание организмов с крайними нормами реакции.

Половой отбор . Эта форма отбора приводит облегчения встречи между полами, ограничивая участие в репродукции вида особей с менее развитыми половыми признаками.

В общем, большинство ученых считает субстрат естественного отбора, вкупе с другими постоянными факторами (дрейф генов, борьба за существование), наследственную изменчивость. Эти взгляды реализовались в консервативном дарвинизм и в неодарвинизм (синтетическая теория эволюции). Однако в последнее время часть ученых стала придерживаться другого взгляда, согласно которому субстратом до естественного отбора является морфоз - отдельный тип модификационной изменчивости. Этот взгляд сформировался в эпигенетические теорию эволюции.

Дарвинизм и неодарвинизм

С точки зрения дарвинизма, одним из основных факторов естественного отбора, который определяет приспособленность организмов, является наследственная изменчивость. Это приводит к доминированию лиц с удачными мутациями, как следствие этого - к естественному отбору, и, если изменения сильно выражены, в видообразования. Модификационная изменчивость зависит от генотипа. Такого же взгляда относительно модификационной изменчивости придерживается синтетическая теория эволюции, созданная в XX в. М. Воронцовым. Как видно из вышеприведенного текста, основой для естественного отбора эти две теории считают именно генотип, который изменяется под действием мутаций, которые являются одной из форм наследственной изменчивости. Изменения генотипа обусловливают изменение нормы реакции, поскольку именно генотип обуславливает ее. Норма реакции обусловливает изменение фенотипа, и таким образом мутации проявляются в фенотипе, что обусловливает большую его соответствие условиям окружающей среды в случае целесообразности мутаций. Этапы естественного отбора согласно дарвинизмом и неодарвинизмом состоят из следующих стадий:

1) Сначала появляется особь с новыми свойствами (которые обусловлены мутациями);

2) Затем она оказывается способной или неспособной оставить потомков;

3) Если особь оставляет потомков, то изменения ее генотипа закрепляются в поколениях, и это, наконец, приводит естественный отбор.

Эпигенетическая теория эволюции

Эпигенетическая теория эволюции рассматривает фенотип как субстрат естественного отбора, причем отбор не только фиксирует полезные изменения, но и принимает участие в их создании. Основное влияние на наследственность имеет не геном, а Эпигенетическая система - совокупность факторов, действующих на онтогенез. При морфоз, который является одним из типов модификационной изменчивости, в особи формируется устойчивая траектория развития (креод) - Эпигенетическая система, которая адаптируется к морфоз. Эта система развития основана на генетической ассимиляции организмов, заключающееся в соответствии модификации определенной мутации - модификационной генокопиюванни, обусловленное эпигенетической изменением структуры хроматина. Это означает, что изменение активности гена может быть результатом как мутаций, так и факторов окружающей среды. Т.е. на основе определенной модификации при интенсивном воздействии окружающей среды происходит отбор мутаций, которые адаптируют организм к новым переменам.Так формируется новый генотип, который формирует новый фенотип. Естественный отбор, согласно ете, состоит из следующих стадий:

1) Экстремальные факторы окружающей среды приводят к морфоз;

2) морфоз приводят к дестабилизации онтогенеза;

3) Дестабилизация онтогенеза приводит к появлению аномального фенотипа, который наиболее соответствует морфоз;

4) При удачной соответствия нового фенотипа происходит генокопиювання модификаций, которое приводит к стабилизации - образуется новая норма реакции;

Сравнительная характеристика наследственной и ненаследственной изменчивости

Сравнительная характеристика форм изменчивости
Свойство Ненаследственная (модификационная) Наследственная
Объект изменений Фенотип в пределах нормы реакции Генотип
Фактор возникновения Изменения условий окружающей среды Рекомбинация генов результате слияния гамет, кроссинговера и мутаций
Наследования признаков Не наследуется (только норма реакции) Наследуется
Значение для особи Адаптация к условиям окружающей среды, повышения жизнеспособности Полезные изменения приводят к выживанию, вредные - к гибели
Значение для вида Способствует выживанию Приводит к появлению новых популяций, видов в результате дивергенции
Роль в эволюции Адаптация организмов Материал к естественному отбору
Форма изменчивости Групповая Индивидуальная, комбинированная
Закономерность Статистическая (вариационный ряд) Закон гомологических рядов наследственной изменчивости

Модификационная изменчивость в жизни человека

Человек, в общем, издавна использовала знания модификационной изменчивости, например, в хозяйстве. При знании определенных индивидуальных особенностей каждого растения (например, потребность в свете, воде, температурные условия) можно спланировать максимальный уровень использования (в пределах нормы реакции) этого растения - достичь наивысшего плодоносности. Поэтому разные виды растений люди размещают для их формирования в разных условиях - в разных сезонах т.д. Похожая ситуация и с животными - знание о необходимости, например, коров обуславливает усиленное создание молока и, как следствие, повышение удоя.

Поскольку у функциональная асимметрия полушарий головного мозга формируется с достижением определенного возраста и у неграмотных необразованных людей она меньше, можно допустить, что асимметрия является следствием модификационной изменчивости. Поэтому на этапах обучения очень целесообразно выявить способности ребенка, чтобы наиболее полно реализовать ее фенотип.

Примеры модификационной изменчивости

  • У насекомых и животных
  • Увеличение уровня эритроцитов при подъеме в горы у животных (гомеостаз)
    • Увеличение пигментации кожи при иненсивний воздействию ультрафиолетового излучения
    • Развитие двигательного аппарата в результате тренировок
    • Шрамы (морфоз)
    • Изменение окраски колорадских жуков при длительном воздействии на их куколки высоких или низких температур
    • Изменение окраски меха у некоторых животных при изменении погодных условий
    • Способность бабочек из рода Ванесса (Vanessa) изменять свою окраску при изменениях температуры
  • У растений
    • Различное строение подводного и надводного листья у растений водяного лютики
    • Развитие низкорослих форм из семян равнинных растений, выращенных в горах
  • У бактерий
    • работа генов лактозного оперона кишечной палочки

Изменчивость в биологии - это возникновение индивидуальных различий между особями одного вида. Благодаря изменчивости популяция становится разнородной, а у вида появляется больше шансов приспособиться к меняющимся условиям окружающей среды.

В такой науке, как биология, наследственность и изменчивость идут рука об руку. Существуют два вида изменчивости:

  • Ненаследственная (модификационная, фенотипическая).
  • Наследственная (мутационная, генотипическая).

Ненаследственная изменчивость

Модификационная изменчивость в биологии - это способность единичного живого организма (фенотипа) подстраиваться под факторы внешней среды в пределах своего генотипа. Благодаря такому свойству особи приспосабливаются к изменениям климата и других условий существования. лежит в основе адаптационных процессов, протекающих в любом организме. Так, у беспородных животных при улучшении условий содержания увеличивается продуктивность: надои молока, яйценоскость и прочее. А животные, завезенные в горные районы, вырастают низкорослыми и с хорошо развитым подшерстком. Изменение факторов внешней среды и обуславливают изменчивость. Примеры этого процесса можно легко найти в повседневной жизни: кожа человека под воздействием ультрафиолетовых лучей становится темной, в результате физических нагрузок развиваются мышцы, растения, выросшие в затененных местах и на свету, имеют разную форму листьев, а зайцы меняют окрас шерсти зимой и летом.

Для ненаследственной изменчивости характерны следующие свойства:

  • групповой характер изменений;
  • не наследуется потомством;
  • изменение признака в пределах генотипа;
  • соотношение степени изменения с интенсивностью воздействия внешнего фактора.

Наследственная изменчивость

Наследственная или генотипическая изменчивость в биологии - это процесс, в результате которого изменяется геном организма. Благодаря ей особь приобретает признаки, ранее несвойственные ее виду. По Дарвину, генотипическая изменчивость является основным двигателем эволюции. Различают следующие виды наследственной изменчивости:

  • мутационная;
  • комбинативная.

Возникает в результате обмена генами при половом размножении. При этом признаки родителей по-разному комбинируются в ряду поколений, повышая разнообразие организмов в популяции. Комбинативная изменчивость подчиняется правилам наследования Менделя.

Пример такой изменчивости - инбридинг и аутбридинг (близкородственное и неродственное скрещивание). Когда черты отдельного производителя хотят закрепить в породе животных, то применяют близкородственное скрещивание. Таким образом, потомство становится более однообразным и закрепляет качества основателя линии. Инбридинг ведет к проявлению рецессивных генов и может приводить к вырождению линии. Для повышения жизнеспособности потомства применяют аутбридинг - неродственное скрещивание. При этом нарастает гетерозиготность потомства и увеличивается разнообразие внутри популяции, и, как следствие, возрастает устойчивость особей к неблагоприятным воздействиям факторов внешней среды.

Мутации, в свою очередь, разделяются на:

  • геномные;
  • хромосомные;
  • генные;
  • цитоплазматические.

Изменения, затрагивающие половые клетки, передаются по наследству. Мутации в могут передаваться потомству, если особь размножается вегетативным способом (растения, грибы). Мутации могут быть полезными, нейтральными или вредными.

Геномные мутации

Изменчивость в биологии посредством геномных мутаций может быть двух видов:

  • Полиплоидия - мутация часто встречается у растений. Она вызвана кратным увеличением всего числа хромосом в ядре, образуется в процессе нарушения их расхождения к полюсам клетки при делении. Полиплоидные гибриды широко используются в сельском хозяйстве - в растениеводстве насчитывают более 500 полиплоидов (лук, гречка, сахарная свекла, редис, мята, виноград и другие).
  • Анеуплоидия - увеличение или уменьшение числа хромосом по отдельным парам. Такой вид мутации характеризуется низкой жизнеспособностью особи. Широко распространенная мутация у человека - одна по 21-ой паре вызывает синдром Дауна.

Хромосомные мутации

Изменчивость в биологии путем появляется при изменении структуры самих хромосом: потери концевого участка, повторение набора генов, поворот отдельного фрагмента, перенос сегмента хромосомы в другое место или к другой хромосоме. Такие мутации часто возникают под воздействием радиации и химического загрязнения окружающей среды.

Генные мутации

Значительная часть таких мутаций не проявляется внешне, так как является рецессивным признаком. Обусловлены генные мутации изменением последовательности нуклеотидов - отдельных генов - и приводят к появлению молекул белка с новыми свойствами.

Генные мутации у человека обуславливают проявление некоторых наследственных заболеваний - серповидно-клеточная анемия, гемофилия.

Цитоплазматические мутации

Цитоплазматические мутации связаны с изменениями в структурах цитоплазмы клетки, содержащих ДНК-молекулы. Это митохондрии и пластиды. Передаются такие мутации по материнской линии, так как зигота получает всю цитоплазму от материнской яйцеклетки. Пример цитоплазматической мутации, вызвавшей изменчивость в биологии - это перистолистность растений, которая вызывается изменениями в хлоропластах.

Для всех мутаций характерны следующие свойства:

  • Они возникают внезапно.
  • Передаются по наследству.
  • У них нет какой-либо направленности. Мутации может подвергнуться как незначительный участок, так и жизненно важный признак.
  • Возникают у отдельных особей, то есть индивидуальны.
  • По своему проявлению мутации могут быть рецессивными или доминантными.
  • Одна и та же мутация может повторяться.

Каждая мутация вызывается определенными причинами. В большинстве случаев точно установить ее не удается. В экспериментальных условиях для получения мутаций используют направленный фактор воздействия внешней среды - радиационное облучение и тому подобное.

Изменчивость – это возникновение индивидуальных различий. На основе изменчивости организмов появляется генетическое разнообразие форм, которые в результате действия естественного отбора преобразуются в новые подвиды и виды. Различают изменчивость модификационную, или фенотипическую, и мутационную, или генотипическую.

ТАБЛИЦА Сравнительная характеристика форм изменчивости (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Формы изменчивости Причины появления Значение Примеры
Ненаследственная модификационная (фенотипическая) Изменение условий среды, в результате чего организм изменяется в пределах нормы реакции, заданной генотипом Адаптация – приспособление к данным условиям среды, выживание, сохранение потомства Белокочанная капуста в условиях жаркого климата не образует кочана. Породы лошадей и коров, завезенных в горы, становятся низкорослыми

Мутационная
Влияние внешних и внутренних мутагенных факторов, в результате чего происходит изменение в генах и хромосомах Материал для естественного и искусственного отбора, так как мутации могут быть полезные, вредные и безразличные, доминантные и рецессивные Появление полиплоидных форм в популяции растений или у некоторых животных (насекомых, рыб) приводит к их репродуктивной изоляции и образованию новых видов, родов – микроэволюции
Наследственная (генотипическая)
Комбинатнвная
Возникает стихийно в рамках популяции при скрещивании, когда у потомков появляются новые комбинации генов Распространение в популяции новых наследственных изменений, которые служат материалом для отбора Появление розовых цветков при скрещивании белоцветковой и красноцветковой примул. При скрещивании белого и серого кроликов может появиться черное потомство
Наследственная (генотипическая)
Соотносительная (коррелятивная)
Возникает в результате свойства генов влиять на формирование не одного, а двух и более признаков Постоянство взаимосвязанных признаков, целостность организма как системы Длинноногие животные имеют длинную шею. У столовых сортов свеклы согласованно изменяется окраска корнеплода, черешков и жилок листа

Модификационная изменчивость

Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Так, продуктивность беспородных животных в условиях улучшенного содержания и ухода повышается (надои молока, нагул мяса). В этом случае все особи с одинаковым генотипом отвечают на внешние условия одинаково (Ч. Дарвин этот тип изменчивости назвал определенной изменчивостью). Однако другой признак – жирность молока – слабо подвержен изменениям условий среды, а масть животного – еще более устойчивый признак. Модификационная изменчивость обычно колеблется в определенных пределах. Степень варьирования признака у организма, т. е. пределы модификационной изменчивости, называется нормой реакции.

Широкая норма реакции свойственна таким признакам, как удои молока, размеры листьев, окраска у некоторых бабочек; узкая норма реакции – жирности молока, яйценоскости у кур, интенсивности окраски венчиков у цветков и др.

Фенотип формируется в результате взаимодействий генотипа и факторов среды. Фенотипические признаки не передаются от родителей потомкам, наследуется лишь норма реакции, т. е. характер реагирования на изменение окружающих условий. У гетерозиготных организмов при изменении условий среды можно вызвать различные проявления данного признака.

Свойства модификаций: 1) ненаследуемость; 2) групповой характер изменений; 3) соотнесение изменений действию определенного фактора среды; 4) обусловленность пределов изменчивости генотипом.

Генотипическая изменчивость

Генотипическая изменчивость подразделяется на мутационную и комбинативную. Мутациями называются скачкообразные и устойчивые изменения единиц наследственности – генов, влекущие за собой изменения наследственных признаков. Термин «мутация» был впервые введен де Фризом. Мутации обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов.

Классификация мутаций. Мутации можно объединять, в группы – классифицировать по характеру проявления, по месту или, по уровню их возникновения.

Мутации по характеру проявления бывают доминантными и рецессивными. Мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными а несовместимые с жизнью – летальными. Мутации подразделяют по месту их возникновения. Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся – мутировавший – ген, мутации могут передаваться потомству. Такие мутации называют соматическими.

Мутации классифицируют по уровню их возникновения. Существуют хромосомные и генные мутации. К мутациям относится также изменение кариотипа (изменение числа хромосом).. Полиплоидия – увеличение числа хромосом, кратное гаплоидному набору. В соответствии с этим у растений различают триплоиды (Зп), тетраплоиды (4п) и т. д. В растениеводстве известно более 500 полиплоидов (сахарная свекла, виноград, гречиха, мята, редис, лук и др.). Все они выделяются большой вегетативной массой и имеют большую хозяйственную ценность.

Большое многообразие полиплоидов наблюдается в цветоводстве: если одна исходная форма в гаплоидном наборе имела 9 хромосом, то культивируемые растения этого вида могут иметь 18, 36, 54 и до 198 хромосом. Полиплоиды пблучают в результате воздействия на растения температуры, ионизирующей радиации, химических веществ (колхицин), которые разрушают веретено деления клетки. У таких растений гаметы диплоидны, а при слиянии с гаплоидными половыми клетками партнера в зиготе возникает триплоидный набор хромосом (2п + п = Зп). Такие триплоиды не образуют семян, они бесплодны, но высокоурожайны. Четные полиплоиды образуют семена.

Гетероплоидия – изменение числа Хромосом, не кратное гаплоидному набору. При этом набор хромосом в клетке может быть увеличен на одну, две, три хромосомы (2п + 1; 2п + 2; 2п + 3) или уменьшен на одну хромосому (2л-1). Например, у человека с синдромом Дауна оказывается одна лишняя хромосома по 21-й паре и кариотип такого человека составляет 47 хромосом У людей с синдромом Шерешевского – Тернера (2п-1) отсутствует одна Х-хромосома и в кариотипе остается 45 хромосом. Эти и другие подобные отклонения числовых отношений в кариотипе человека сопровождаются расстройством здоровья, нарушением психики и телосложения, снижением жизнеспособности и др.

Хромосомные мутации связаны с изменением структуры хромосом. Существуют следующие виды перестроек хромосом: отрыв различных участков хромосомы, удвоение отдельных фрагментов, поворот участка хромосомы на 180° или присоединение отдельного участка хромосомы к другой хромосоме. Подобное изменение влечет за собой нарушение функции генов в хромосоме и наследственных свойств организма, а иногда и его гибель.

Генные мутации затрагивают структуру самого гена и влекут за собой изменение свойств организма (гемофилия, дальтонизм, альбинизм, окраска венчиков цветков и т. д.). Генные мутации возникают как в соматических, так и в половых клетках. Они могут быть доминантными и рецессивными. Первые проявляются как у гомозигот, так и. у гетерозигот, вторые – только у гомозигот. У растений возникшие соматические генные мутации сохраняются при вегетативном размножении. Мутации в половых клетках наследуются при семенном размножении растений и при половом размножении животных. Одни мутации оказывают на организм положительное действие, другие безразличны, а третьи вредны, вызывая либо гибель организма, либо ослабление его жизнеспособности (например, серповидноклеточная анемия, гемофилия у человека).

При выведении новых сортов растений и штаммов микроорганизмов используют индуцированные мутации, искусственно вызываемые теми или иными мутагенными факторами (рентгеновские или ультрафиолетовые лучи, химические вещества). Затем проводят отбор полученных мутантов, сохраняя наиболее продуктивные. В нашей стране этими методами получено много хозяйственно перспективных сортов растений: неполегающие пшеницы с крупным колосом, устойчивые к заболеваниям; высокоурожайные томаты; хлопчатник с крупными коробочками и др.

Свойства мутаций:

1. Мутации возникают внезапно, скачкообразно.
2. Мутации наследственны, т. е. стойко передаются из поколения в поколение.
3. Мутации ненаправденны – мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков.
4. Одни и те же мутации могут возникать повторно.
5. По своему проявлению мутации могут быть полезными и вредными, доминантными и рецессивными.

Способность к мутированию – одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, но в большинстве случаев эти причины неизвестны. Мутации связаны с изменениями во внешней среде. Это убедительно доказывается тем, что путем воздействия внешними факторами удается резко повысить их число.

Комбинативная изменчивость

Комбинативная наследственная изменчивость возникает в результате обмена гомологичными участками гомологичных хромосом в процессе мейоза, а также как следствие независимого расхождения хромосом при мейозе и случайного их сочетания при скрещивании. Изменчивость может быть обусловлена не только мутациями, но и сочетаниями отдельных генов и хромосом, новая комбинация которых при размножении приводит к изменению определенных признаков и свойств организма. Такой тип изменчивости называют комбинативной наследственной изменчивостью. Новые комбинации генов возникают: 1) при кроссинговере, во время профазы первого мейотического деления; 2) во время независимого расхождения гомологичных хромосом в анафазе первого мейотического деления; 3) во время независимого расхождения дочерних хромосом в анафазе второго мейотического деления и 4) при слиянии разных половых клеток. Сочетание в зиготе рекомбинированных генов может привести к объединению признаков разных пород и сортов.

В селекции важное значение имеет закон гомблогических рядов наследственной изменчивости, сформулированный советским ученым Н. И. Вавиловым. Он гласит: внутри разных видов и родов, генетически близких (т. е. имеющих единое происхождение), наблюдаются сходные ряды наследственной изменчивости. Такой характер изменчивости выявлен у многих злаков (рис, пшеница, овес, просо и др.), у которых сходно варьируют окраска и консистенция зерна, холодостойкость и иные качества. Зная характер наследственных изменений у одних сортов, можно предвидеть сходные изменения у родственных видов и, воздействуя на них мутагенами, вызывать у них подобные полезные изменения, что значительно облегчает получение хозяйственно ценных форм. Известны многие примеры гомологической изменчивости и у человека; например, альбинизм (дефект синтеза клетками красящего вещества) обнаружен у европейцев, негров и индейцев; среди млекопитающих – у грызунов, хищных, приматов; малорослые темнокожие люди – пигмеи – встречаются в тропических лесах экваториальной Африки, на Филиппинских островах и в джунглях полуострова Малакки; некоторые наследственные дефекты и уродства, присущие человеку, отмечены и у животных. Таких животных используют в качестве модели для изучения аналогичных дефектов у человека. Например, катаракта глаза бывает у мыши, крысы, собаки, лошади; гемофилия – у мыши и кошки, диабет – у крысы; врожденная глухота – у морской свинки, мыши, собаки; заячья губа – у мыши, собаки, свиньи и т. д. Эти наследственные дефекты – убедительное подтверждение закона гомологических рядов наследственной изменчивости Н. И. Вавилова.

Таблица. Сравнительная характеристика форм изменчивости (Т.Л. Богданова. Биология. Задания и упражнения. Пособие для поступающих в ВУЗы. М.,1991)

Характеристика Модификационная изменчивость Мутационная изменчивость
Объект изменения Фенотип в пределах нормы реакции Генотип
Отбирающий фактор Изменение условий окружающей
среды
Изменение условий окружающей среды
Наследование при
знаков
Не наследуются Наследуются
Подверженность изменениям хромосом Не подвергаются Подвергаются при хромосомной мутации
Подверженность изменениям молекул ДНК Не подвергаются Подвергаются в случае
генной мутации
Значение для особи Повышает или
понижает жизнеспособность. продуктивность, адаптацию
Полезные изменения
приводят к победе в борьбе за существование,
вредные – к гибели
Значение для вида Способствует
выживанию
Приводит к образованию новых популяций, видов и т. д. в результате дивергенции
Роль в эволюции Приспособление
организмов к условиям среды
Материал для естественного отбора
Форма изменчивости Определенная
(групповая)
Неопределенная (индивидуальная), комбинативная
Подчиненность закономерности Статистическая
закономерность
вариационных рядов
Закон гомологических
рядов наследственной изменчивости

У человека:увеличение уровня эритроцитов при подъеме в горы; увеличение пигментации кожи при интенсивном воздействии ультрафиолетовых лучей; развитие костно-мышечной системы в результате тренировок; шрамы (пример морфоза)

У насекомых и других животных: изменение окраски у колорадского жука вследствие длительного влияния на их куколки высоких или низких температур; смена окраски шерсти у некоторых млекопитающих при изменении погодных условий (например, у зайца); различная окраска бабочек-нимфалид (например, Araschnia levana), развивавшихся при разной температуре

У растений: различное строение подводных и надводных листьев у водяного лютика, стрелолиста и др.;развитие низкорослых форм из семян равнинных растений, выращенных в горах

У бактерий: работа генов лактозного оперона кишечной палочки (при отсутствии глюкозы и при присутствии лактозы они синтезируют ферменты для переработки этого углевода)

Мутационная изменчивость

Мутационной называется изменчивость, вызванная возникновением мутации. Мутации -- это наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Основные положения мутационной теории разработаны Г. Де Фризом в 1901--1903 гг. и сводятся к следующему:

  • · Мутации возникают внезапно как дискретные изменения признаков;
  • · Новые формы устойчивы;
  • · В отличие от ненаследственных изменений мутации не образуют непрерывных рядов. Они представляют собой качественные изменения;
  • · Мутации проявляются по-разному и могут быть как полезными, так и вредными;
  • · Вероятность обнаружения мутаций зависит от числа исследованных особей;
  • · Сходные мутации могут возникать повторно;
  • · Мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

По характеру изменения генома различают несколько типов мутаций -- геномные, хромосомные и генные.

Геномные мутации (анеуплоидия и полиплоидия) -- это изменение числа хромосом в геноме клетки.

Хромосомные мутации , или хромосомные перестройки , выражаются в изменении структуры хромосом, которые можно выявить и изучить под световым микроскопом. Известны перестройки разных типов (нормальная хромосома -- ABCDEFG):

  • · нехватки, или дефишенси, -- это потеря концевых участков хромосомы;
  • · делеции -- выпадение участка хромосомы в средней ее части (ABEFG);
  • · дупликации -- двух- или многократное повторение набора генов, локализованных в определенном участке хромосомы (ABCDECDEFG);
  • · инверсии -- поворот участка хромосомы на 180° (ABEDCFG);
  • · транслокации -- перенос участка к другому концу той же хромосомы либо к другой, негомологичной хромосоме (ABFGCDE).

При дефишенси, делениях и дупликациях изменяется количество генетического материала хромосом. Степень фенотипического изменения зависит от того, насколько велики соответствующие участки хромосом и содержат ли они важные гены. Примеры хромосомных перестроек известны у многих организмов, включая человека. Тяжелое наследственное заболевание синдром «кошачьего крика» (назван так по характеру звуков, издаваемых больными младенцами) обусловлено гетерозиготностью по дефишенси в 5-й хромосоме. Этот синдром сопровождается умственной отсталостью. Обычно дети с таким синдромом рано умирают.

Дупликации играют существенную роль в эволюции генома, поскольку могут служить материалом для возникновения новых генов, так как в каждом из двух ранее одинаковых участков могут происходить различные мутационные процессы.

При инверсиях и транслокациях общее количество генетического материала остается прежним, изменяется только его расположение. Такие мутации тоже играют значительную роль в эволюции, так как скрещивание мутантов с исходными формами затруднено, а их гибриды F 1 чаще всего стерильны. Поэтому здесь возможно только скрещивание исходных форм между собой. Если у таких мутантов окажется благоприятный фенотип, они могут стать исходными формами для возникновения новых видов. У человека все указанные мутации приводят к патологическим состояниям.