Отражение звука. Тема: Громкость и высота звука

Распостранение звука в свободном пространстве

Если источник звука всенаправленный , другими словами, звуковая энергия распространяется равномерно во всех направлениях, как например, звук от самолета в воздушном пространстве, то распределение звукового давления зависит только от расстояния и уменьшается на 6 дБ с каждым удвоением расстояния от источника звука.


Если же источник звука направленный , как, например, рупор, то уровень звукового давления зависит как от расстояния, так и от угла восприятия относительно оси излучения звука.

Взаимодействие звука с препятствием

Звуковые (слышимые) волны, встречая на своём пути препятствие, частично поглощаются им, частично отражаются от него, то есть переизлучаются препятствием обратно в помещение и частично проходят через него насквозь.

Сразу следует отметить, что процентное соотношение этих процессов будет различным для звуковых волн разной длины, что обусловлено особенностями поведения ВЧ, СЧ и НЧ волн. Помимо этого немаловажную роль играют характеристики самого препятствия такие, как его толщина, плотность материала из которого оно изготовлено, а также свойства поверхности (гладкая/рельефная, плотная/рыхлая).


Распостранение звука в замкнутом пространстве

Распространение звука в замкнутом пространстве (в условиях помещения) кардинальным образом отличается от условий его распространения в свободном пространстве, так, как звуковая волна встречает на своём пути множество преград (стены, потолок, пол, мебель, предметы интерьера и т.п.).

Возникающие в результате этого многочисленные отражения основного звука взаимодействуют, как с прямым звуком, исходящим непосредственно из динамика и достигающего ушей слушателя кратчайшим путём, то есть, по прямой, так и между собой. Схематически это различие иллюстрирует следующая диаграмма:

1) Открытое пространство: прямой звук;

2) Замкнутое пространство: прямой звук + ранние отражения + реверберация.

Всем известно, что звук отражается от стен, пола и потолка, но как это происходит?

Как уже было рассмотрено выше, звуковая волна, ударяясь о преграду, частично отражается от неё, частично поглощается, а частично проходит сквозь препятствие.

Естественно, чем тверже и плотнее стена, тем большую часть акустической энергии она будет отражать назад во внутреннее пространство помещения.

Звуковые волны отражаются от препятствий остронаправленно, поэтому в местах их отражений от стен, потолка и пола, то есть, в стороне от основного источника звука появляются его дополнительные "образы" (вторичные, «мнимые» источники звука или, так называемые «фантомы». В некоторых зарубежных источниках информации их также называют «горячими областями»).

Отражения, взаимодействуя между собой и с прямым звуком, искажают его и ухудшают отчетливость звуковой картины. А теперь представьте себе, что происходит, когда многочастотный звук сразу от двух или более акустических систем отражается сразу от шести поверхностей комнаты (четырёх стен, потолка и пола), и Вы поймете, какое колоссальное влияние оказывает акустика помещения на качество звука, воспроизводящегося в нём.

Итак, в замкнутом пространстве (в условиях помещения) выделяют три источника звука:

1. Прямой звук - это звук, исходящий непосредственно из динамиков АС (акустической системы) и достигающий ушей слушателя кратчайшим путём - по прямой, то есть, не отражаясь от поверхностей стен, пола и потолка помещения (условно можно считать его оригинальным звуком, записанном на музыкальном носителе).

2. Ранние отражения (первые отражения) - это отражения основного звука от стен, пола и потолка помещения, а также от предметов интерьера, находящихся в нём, достигающие ушей слушателя самыми короткими путями, то есть, претерпевая одно единственное отражение, благодаря чему они сохраняют достаточно большую амплитуду и формируют в областях отражения на поверхностях стен, пола и потолка помещения «образы» (вторичные, виртуальные, «мнимые» источники, «фантомы») прямого звука. Именно поэтому первые отражения являются наиболее важными в общей структуре отражений и, соответственно, оказывают серьёзное влияние на качество звучания и формирование стереокартины.

3. Реверберационные отражения (поздние отражения, реверберация, эхо) . В отличие от ранних отражений, они являются результатом многократных переотражений основного звука от поверхностей стен, пола и потолка помещения. Они достигают ушей слушателя сложными, длинными путями и поэтому имеют низкую амплитуду.

Под основным звуком подразумевается звук, исходящий непосредственно из динамика, но, в отличие от прямого звука, имеет круговую направленность.


Чем же отличаются ранние и поздние отражения?

Чтобы ответить на данный вопрос, необходимо ознакомиться с некоторыми субъективными особенностями человеческого звуковосприятия, связанными с временной характеристикой звука.

Это - так называемый эффект Хааса (Haas effect) , суть которого состоит в том, что, если звук прибывает от нескольких разноудаленных источников, то наша система ухо/мозг идентифицирует (воспринимает) только тот звук, который пришел раньше.

Если разница во времени прибытия нескольких звуковых сигналов составляет до 50 мс , то ранее прибывший звук доминирует над пришедшим позже, даже в случае, если последний на 10 дБ громче (т.е. громче в 3 раза!!!).

Таким образом, все отражения, достигающие ушей слушателя в течение первых 50 мс вслед за прямым звуком, воспринимаются человеческим ухом слитно с прямым сигналом, то есть, как один общий сигнал.

С одной стороны, это приводит к улучшению восприятия речи и субъективному увеличению её громкости, однако, в случае звуковоспроизведения это значительно ухудшает его качество за счёт искажения оригинальной музыкальной информации сливающимися с ней отражёнными звуковыми сигналами.

Если же отражения поступают с задержкой больше, чем 50 мс и имеют сопоставимый уровень с прямым сигналом, человеческое ухо воспринимает их как повторение прямого сигнала, то есть - в виде отдельных звуковых сигналов. В таких случаях эти отражения называют «эхом» (реверберацией) . Эхо существенно ухудшает разборчивость речи и восприятие музыкальной информации.


1) Особое практическое значение имеют ранние отражения (первые отражения) , достигающие уха слушателя во временном промежутке до 20 мс. после прямого сигнала.

Как уже говорилось, они сохраняют большую амплитуду и воспринимаются человеческим ухом слитно с прямым сигналом и, следовательно, искажают его первоначальную (оригинальную) структуру. Таким образом, первые отражения являются одним из основных врагов качественного звука .

Геометрические характеристики ранних отражений напрямую зависят от формы помещения, местоположения источника звука (в нашем случае это АС) и слушателя в нём, являясь уникальными для каждой конкретной точки данного помещения.

Амплитудные же характеристики первых отражений зависят от:

Расстояния между источником звука и отражающей поверхностью;

Расстояния от ушей слушателя до отражающей поверхности;

От акустических свойств самой отражающей поверхности.

Таким образом, акустическая характеристика каждой точки внутреннего пространства помещения, главным образом, определяется сочетанием характеристик прямого звука и ранних отражений, приходящих в данную точку.


2) Реверберация (поздние отражения, эхо).

При воспроизведении звука в помещении мы слышим не только прямой звук от источника и ранние отражения, но и более слабые (тихие) отражённые сигналы, являющиеся результатом многократных длительных переотражений основного звука от стен, пола и потолка помещения. Естественно, что эти звуковые сигналы достигают ушей слушателя с большим опозданием относительно момента прибытия прямого звука и первых отражений. Субъективно это воспринимается в
виде эха.

Таким образом, эффект, при котором затухание звука происходит не сразу, а постепенно, за счет многочисленных его переотражений от стен, пола и потолка помещения, называется реверберацией .

Спектральный состав отраженных сигналов в больших и малых помещениях отличается, так как реверберация несёт в себе информацию о размерах помещения. Помимо этого спектр реверберационных сигналов также содержит информацию о свойствах материалов, из которых изготовлены отражающие поверхности.

Например, реверберация с высоким уровнем высокочастотных составляющих, ассоциируется с комнатой, имеющей твердые стены, которые хорошо отражают высокие частоты. Если же звук реверберации глухой, то слушатель приходит к выводу, что стены комнаты покрыты коврами или драпировками, поглощающими высокие частоты.

Также следует отметить, что спектр реверберационных сигналов позволяет определить расстояние до источника звука.

Наша система ухо/мозг, автоматически оценивая соотношение между уровнями прямого звука и реверберации, самостоятельно делает вывод о том, находится ли источник звука близко (слабая реверберация) или далеко (сильная реверберация).

Кроме того, орган слуха человека устроен таким образом, что качество звуковосприятия зависит не только от количественного соотношения между прямым звуком и реверберацией, но также и от времени запаздывания реверберационного сигнала по отношению к моменту восприятия прямого звука.

Время реверберации представляет собой промежуток времени, в течение которого звуковая волна, многократно переотражаясь эхом по комнате, постепенно затухает. Этот параметр является одним из главных критериев акустической характеристики помещения.

Этот параметр характеризует размеры помещения: в малых помещениях за единицу времени происходит большее количество переотражений, что, в отличие от ситуации в больших комнатах, ведёт к быстрому ослаблению и последующему затуханию реверберации. А также и свойства его отражающих поверхностей: твёрдые глянцевые поверхности, в отличие от рельефных и мягких, хорошо отражают звук, практически не ослабляя его, что в свою очередь, естественно, продлевает время реверберации.

Для обозначения данного параметра было принято сокращение RT60 , то есть время (в секундах), за которое уровень звукового давления (SPL) в помещении снижается на 60 дБ, после того, как источник звука прекратит излучение.

Многократное эхо субъективно воспринимается как гулкость помещения . Чем меньше затухание, тем больше время реверберации и, соответственно, тем сильнее гулкость.

Как уже отмечалось, время реверберации определяется не только размерами помещения, но и отражающей способностью его стен, пола и потолка. Вам приходилось замечать, как непривычен звук в пустой комнате, подготовленной для ремонта, или в громадном ангаре, где имеет место сильная реверберация?

В связи с вышесказанным, целесообразно рассмотреть ещё одну категорию, а именно, радиус гулкости . Что это такое?

Речь идёт о соотношении уровней прямого и отражённого звука. В общем, чем ближе находится слушатель к источнику звука, тем громче прямой звук и, соответственно, тише - отражённый. По мере удаления от источника звука прямой звук ослабевает, а отражённый, наоборот, усиливается.

Логически следуя данному принципу, можно вполне справедливо предположить, что на некотором определённом расстоянии от источника звука прямой и отражённый звук будут восприниматься слушателем с одинаковой громкостью. Так вот окружность, с радиусом, соответствующим радиусу гулкости, и является границей между двумя областями: внутренней с преобладанием прямого звука и наружную, где доминирует отражённый звук.

Особенности поведения звуковых волн разной длины в условиях замкнутого пространства

Очевидно, что поведение звука в музыкальной студии подчиняется законам его распространения в замкнутом пространстве. Рассмотрим этот процесс более детально.

Поведение звуковых волн в замкнутом пространстве зависит от их длины и, соответственно, от частоты их колебаний, варьирующих в пределах от 17 метров (20 Гц - в начале слышимого басового диапазона) до 17 миллиметров (20 КГц - в конце слышимого высокочастотного диапазона).

Упрощенно поведение звуковых волн внутри помещения, в зависимости от их длины, можно представить в виде двух независимых моделей.

Одна - для НЧ выглядит как чисто волновой процесс - интерференция (сложение) всех источников НЧ (как баса от динамиков, так и низкочастотных отражений от стен, пола и потолка), приводящий к образованию трёхмерной картинки для каждой частоты подобно горному рельефу с чередующимися пиками и провалами громкости.

Вторая - для ВЧ, подобна излучению света с известными законами преломления, отражения и дифракции. Она использует наглядные методы геометрической оптики, поскольку в этих областях действуют аналогичные правила. Например, часть энергии звуковой волны, достигшей твердой поверхности, отражается ею под углом, равном углу падения.

Общую картину дополняет смешение этих двух процессов для СЧ.

Средне- и высокочастотные волны (волны малой длины).

Как уже говорилось, поведение звуковых волн ВЧ диапазона в общих чертах подчиняется законам распространения света. Это напрямую относится к волнам ВЧ диапазона и более или менее справедливо по отношению к ВСЧ поддиапазону.

Первой особенностью звуковых волн данного диапазона является их выраженная направленность , то есть изменение (усиление или ослабление) восприятия уровня ВЧ даже при незначительном отклонении от оси их излучения. Проще говоря, высокие частоты распространяются в направлении слушателя подобно лучу прожектора.

Направленность растёт с увеличением частоты сигнала, достигая максимума на самых высоких частотах. Именно направленность определяет основную значимость ВЧ волн в формировании стереокартины.

Второй характерной особенностью ВЧ, является способность к многократному отражению от твёрдых поверхностей, подобно рекошетящей пуле или бильярдному шару, что, в свою очередь, обуславливает их лёгкую рассеиваимость (диффузию).

Третья особенность - лёгкая поглощаемость даже тонкими мягкими поверхностями, такими как, непример, шторы.

Именно благодаря направленности и способности к отражению ВЧ, как отмечалось выше, принимают активное участие в формировании реверберационной картины.

Низкочастотные или басовые волны (волны большой длины).

Итак, поведение НЧ в условиях замкнутого пространства выглядит как чисто волновой процесс, в основе которого лежит интерференция, то есть, процесс сложения (наложения) звуковых волн, исходящих абсолютно от всех НЧ источников, находящихся в помещении, а также множества НЧ-отражений от стен, пола и потолка данного помещения.

Это обусловлено тем, что в отличии от СЧ и ВЧ волн, являющихся направленными, басовые волны равномерно распространяются во всех направлениях подобно сферам, расходящимся от излучающего центра. Таким образом, НЧ звуковые волны являются всенаправленными , именно поэтому, с закрытыми глазами невозможно определить местоположение вуфера.

Это свойство НЧ волн объясняет неспособность участия их в формировании стереокартины.

Помимо этого, благодаря большой длине волны и высокой энергии, НЧ волны способны не только огибать препятствие, но и, частично отражаясь, «проходить» насквозь даже через бетонные стены (это как раз тот случай, когда Ваши дальние соседи по «многоэтажке» слышат низкочастотное «гудение», во время прослушивания Вами музыки).

Таким образом, в отличии от ВЧ, которые легко отражаются от твёрдых поверхностей, басовые волны отражаются гораздо хуже, частично поглощаясь и частично проходя сквозь препятствие, причём с понижением частоты они всё больше утрачивают способность к отражению и предпочитают «идти напролом».

А ещё НЧ волны «умеют» «вытекать» из помещения через открытые оконные и дверные проёмы, а также легко проникать через стекло, как будто его вообще нет.

Учитывая все вышеперечисленные моменты, а также принимая во внимание тот факт, что длины НЧ волн соизмеримы с линейными размерами комнаты (длиной, шириной и высотой), становится понятным, почему на поведение басовых волн основное влияние оказывают именно параметры помещения.

Если длина волны звукового сигнала в два раза больше одного из линейных размеров комнаты, то на её частоте между данной парой стен возникает самое грозное и трудноподавляемое акустическое явление, буквально, «убивающее» звук, - резонанс воздушного объёма .

Субъективно это выражается в усилении сигнала этой конкретной частоты по отношению к уровню остальных частот и появлению гулкости звучания.

Низкочастотные резонансы и стоячие волны возникают между двумя параллельными поверхностями (например, между фронтальной и тыловой стенами или между боковыми стенами, или между полом и потолком) при возбуждении в данном помещении звуковой волны с соответствующей частотой.

Причём абсолютно неважно, что возбудит эту волну: воспроизведение музыки, игра на музыкальном инструменте, тембр голоса при разговоре, звуки коммуникаций или проходящего мимо транспорта, работа электробытовых приборов и т.д.).

Низкочастотные звуковые волны распространяются всенаправленно («... мы не можем локализовать басы, ниже 80 Гц...» - Anthony Grimani) и они обладают огромной энергией. Самые низкие из них - басовые частоты, практически не отражаясь, способны проходить через любые препятствия.

По мере повышения частоты их способность к отражению возрастает, а проникающая способность снижается.

«Считается, что звук распространяется прямолинейно, как любые волны. Но это справедливо лишь для лишенного препятствий широкого пространства. В реальности движение звуковых волн неизмеримо сложнее. Они сталкиваются с препятствиями и друг с другом, и порой распространяются, образуя вихри, по неописуемым траекториям.

На мой взгляд, тем, кто занимается аудиотехникой, необходимо обладать пространственным воображением, чтобы ясно представлять визуальные образы звуковых волн и их поведение, которое невозможно объяснить, опираясь только на теорию электричества.

Похоже, по сей день, огромное количество факторов, влияющих на звуковоспроизведение, остаются неизученными, бросая вызов всем накопленным знаниям и опыту звукоинженеров. Чем больше я размышляю над этим, тем отчетливее понимаю, что мир звука намного глубже, чем мы можем себе представить.»

Звуковое давление р зависит от скорости v колеблющихся частиц среды. Вычисления показывают, что

где р - плотность среды, с - скорость звуковой волны в среде. Произведение рс называют удельным акустическим импедансом, для плоской волны его называют также волновым сопро­тивлением.

Волновое сопротивление - важнейшая характеристика среды, определяющая условия отражения и преломления волн на ее гра­нице.

Представим себе, что звуковая волна попадает на границу раздела двух сред. Часть волны отражается, а часть - преломляется. Законы отражения и преломления звуковой волны аналогичны Законам отражения и преломления света. Преломленная волна может поглотиться во второй среде, а может выйти из нее.

Допустим, что плоская волна падает нормально к границе раз­дела, интенсивность ее в первой среде I 1 интенсивность прелом­ленной (прошедшей) волны во второй среде 1 2 . Назовем

коэффициентом проникновения звуковой волны.

Рэлей показал, что коэффициент проникновения звука опреде­ляется формулой


Если волновое сопротивление второй среды весьма велико по сравнению с волновым сопротивлением первой среды (с 2 р 2 >> с 1 ρ 1), то вместо (6.7) имеем

так как с 1 ρ 1 /с 2 р 2 >>1. Приведем волновые сопротивления некоторых веществ при 20 °С (табл. 14).

Таблица 14

Используем (6.8) для вычисления коэффициента проникнове­ния звуковой волны из воздуха в бетон и в воду:

Эти данные производят впечатление: оказывается, только очень малая часть энергии звуковой волны проходит из воздуха в бетон и в воду.

Во всяком закрытом помещении отраженный от стен, потолков, мебели звук падает на другие стены, полы и пр., вновь отражается и поглощается и постепенно угасает. Поэтому даже после того, как источник звука прекратит действие, в помещении все еще имеются звуковые волны, которые создают гул. Особенно это заметно в больших просторных залах. Процесс постепенного затухания звука в закрытых помещениях после выключения источника называют реверберацией.



Реверберация, с одной стороны, полезна, так как восприятие звука усиливается за счет энергии отраженной волны, но, с другой стороны, чрезмерно длительная реверберация может существенно ухудшить восприятие речи, музыки, так как каждая новая часть текста перекрывается предыдущими. В связи с этим обычно указывают некоторое оптимальное время реверберации, которое учитывается при постройке аудиторий, театральных и концертных залов и т. п. Например, время реверберации заполненного Колонного зала Дома союзов в Москве равно 1,70 с, заполненного в большого театра - 1,55 с. Для этих помещений (пустых) время реверберации соответственно 4,55 и 2,06 с.

Физика слуха

Рассмотрим некоторые вопросы физики слуха на примере наружного, среднего и внутреннего уха. Наружное ухо состоит из ушной раковины 1 и наружного слухового прохода 2 (рис. 6.8).В Ушная раковина у человека не играет существенной роли для слуха. Она способствует определению локализации источника звука при его расположении в передне-заднем направлении. Поясним это. Звук от источника попадает в ушную раковину. В зависимости от положения источника в вертикальной плоскости

(рис. 6.9) звуковые волны будут по-разному дифрагировать на ушной раковине из-за ее специфической формы. Это приведет и к из­менению спектрального состава звуковой волны, попадающей в слуховой проход (более детально вопросы дифракции рассматри­ваются в гл. 19). Человек в результате опыта научился ассоцииро­вать изменение спектра звуковой волны с направлением на источ­ник звука (направления А, Б и Б на рис. 6.9).

Обладая двумя звукоприемниками (ушами), человек и живот­ные способны установить направление на источник звука и в гори­зонтальной плоскости (бинауральный эффект; рис. 6.10). Это объ­ясняется тем, что звук от источника до разных ушей проходит раз­ное расстояние и возникает разность фаз для волн, попадающих в правую и левую ушные раковины. Связь между разностью этих расстояний (5) и разностью фаз (∆φ) выведена в § 19.1 при объясне­нии интерференции света [см. (19.9)]. Если источник звука нахо­дится прямо перед лицом человека, то δ = 0 и ∆φ = 0, если источник звука расположен сбоку против одной из ушных раковин, то в дру­гую ушную раковину он попадет с запаздыванием. Будем считать приближенно, что в этом случае 5 есть расстояние между ушными раковинами. По формуле (19.9) можно рассчитать для v = 1 кГц и δ = 0,15 м разность фаз. Она приблизительно равна 180°.

Различным направлениям на источник звука в горизонтальной плоскости будут соответствовать разности фаз между 0° и 180° (для приведенных выше данных). Считают, что человек с нормальным слухом может фиксировать направления на источник звука с точ­ностью до 3°, этому соответствует разность фаз 6°. Поэтому можно полагать, что человек способен различать изменение разности фаз звуковых волн, попадающих в его уши, с точностью до 6°.



Кроме фазового различия бинауральному эффекту способству­ет неодинаковость интенсивностей звука у разных ушей, а также и «акустическая тень» от головы для одного уха. На рис. 6.10 схе­матично показано, что звук от источника попадает в левое

ухо в результате дифракции (гл. 19).

Звуковая волна проходит через слуховой проход и частично от­ражается от барабанной перепонки 3 (см. рис. 6.8). В результате интерференции падающей и отраженной волн может возникнуть акустический резонанс. В этом случае длина волны в четыре раза, больше длины наружного слухового прохода. Длина слухового прохода у человека приблизительно равна 2,3 см; следовательно, акустический резонанс возникает при частоте

Наиболее существенной частью среднего уха являются барабан­ная перепонка 3 и слуховые косточки: молоточек 4, наковальня 5 и стремечко 6 с соответствующими мышцами, сухожилиями и связ­ками. Косточки осуществляют передачу механических колебаний от воздушной среды наружного уха к жидкой среде внутреннего. Жидкая среда внутреннего уха имеет волновое сопротивление, при­близительно равное волновому сопротивлению воды. Как было по­казано (см. § 6.4), при прямом переходе звуковой волны из воздуха в воду передается лишь 0,123% падающей интенсивности. Это слиш­ком мало. Поэтому основное назначение среднего уха - способство­вать передаче внутреннему уху большей интенсивности звука. Ис­пользуя технический язык, можно сказать, что среднее ухо согласует волновые сопротивления воздуха и жидкости внутреннего уха.

Система косточек (см. рис. 6.8) на одном конце молоточком связана с барабанной перепонкой (площадь S 1 = 64 мм 2), на дру­гом - стремечком - с овальным окном 7 внутреннего уха (пло­щадь S 2 = 3 мм 2).


На овальное окно внутреннего уха при этом действует сила F 2 , создающая Звуковое давление р 2 в жидкой среде. Связь между ними:
Разделив (6.9) на (6.10) и сопоставляя это соотношение с (6.11), получаем
откуда



или в логарифмических единицах (см. § 1.1)

На таком уровне увеличивает среднее ухо передачу наружного звукового давления внутреннему уху.

Еще одна из функций среднего уха - ослабление передачи ко­лебаний в случае звука большой интенсивности. Это осуществля­ется рефлекторным расслаблением мышц косточек среднего уха.

Среднее ухо соединяется с атмосферой через слуховую (евста­хиеву) трубу.

Наружное и среднее ухо относятся к звукопроводящей систе­ме. Звуковоспринимающей системой является внутреннее ухо.

Главной частью внутреннего уха является улитка, преобразую­щая механические колебания в электрический сигнал. Кроме улитки к внутреннему уху относится вестибулярный аппарат (см. § 4.3), который к слуховой функции отношения не имеет.

Улитка человека является костным образованием длиной около 35 мм и имеет форму конусообразной спирали с 2 3 / 4 завитков. Диа­метр у основания около 9 мм, высота равна приблизительно 5 мм.

На рис. 6.8 улитка (ограничена штриховой линией) показана схематично развернутой для удобства рассмотрения. Вдоль улитки проходят три канала. Один из них, который начинается от овального окна 7, называется вестибулярной лестницей 8. Дру­гой канал идет от круглого окна 9, он называется барабанной лестницей 10. Вестибулярная и барабанная лестницы соединены в области купола улитки посредством маленького отверстия - геликотремы 11. Таким образом, оба эти канала в некотором роде представляют единую систему, наполненную перилимфой. Колебания стремечка 6 передаются мембране овального окна 7, от нее перилимфе и «выпячивают» мембрану круглого окна 9. Простран­ство между вестибулярной и барабанной лестницами называется улитковым каналом 12, он заполнен эндолимфой. Между улит­ковым каналом и барабанной лестницей вдоль улитки проходит основная (базилярная) мембрана 13. На ней находится кортиев орган, содержащий рецепторные (волосковые) клетки, от улитки идет слуховой нерв (на рис. 6.8 эти подробности не показаны).

Кортиев орган (спиральный орган) и является преобразовате­лем механических колебаний в электрический сигнал.

Длина основной мембраны около 32 мм, она расширяется и утончается в направлении от овального окна к верхушке улитки (от ширины 0,1 до 0,5 мм). Основная мембрана - весьма интересная для физики структура, она обладает частотно-избирательными свойствами. На это обратил внимание еще Гельмгольц, который

представлял основную мембрану аналогично ряду настроенных струн пианино. Лауреат Нобелевской премии Бекеши установил ошибочность этой резонаторной теории. В работах Бекеши было показано, что основная мембрана является неоднородной линией, передачи механического возбуждения. При воздействии акустическим стимулом по основной мембране распространяется волна. В зависимости от частоты эта волна по-разному затухает. Чем меньше частота, тем дальше от овального окна распространится волна по основной мембране, прежде чем она начнет затухать. Так, например, волна с частотой 300 Гц до начала затухания распространятся приблизительно до 25 мм от овального окна, а волна с частотой 100 Гц достигает своего максимума вблизи 30 мм. На основании этих наблюдений были разработаны теории, согласно которым восприятие высоты тона определяется положением максимума колебания основной мембраны. Таким образом, во внутреннем ухе прослеживается определенная функциональная цепь: колебание мембраны овального окна - колебание перилимфы - сложные колебания основной мембраны - сложные колебания основной мембрны - раздражение волосковых клеток (рецепторы кортиева органа) - генерация электрического сигнала.

Некоторые формы глухоты связаны с поражением рецепторного аппарата улитки. В этом случае улитка не генерирует электрические сигналы при воздействии механических колебаний. Можно помочь таким глухим, для этого необходимо имплантировать электроды в улитку и подавать на них электрические сигналы, соответствующие тем, которые возникают при воздействии механического стимула.

Такое протезирование основной функции, улитки (кохлеарное протезирование) разра­батывается в ряде стран. В России кохлеар­ное протезирование разработано и осуществ­лено в Российском медицинском университе­те. Кохлеарный протез показан на рис. 6.12, здесь 1 - основной корпус, 2 - заушина с микрофоном, 3 - вилка электрического разъема для подсоединения к имплантируе­мым электродам.

Когда звуковая волна достигает границы раздела среды, в которой она распространяется (например, падает на стену помещения или из воздуха переходит в воду), происходят следующие процессы. Часть звуковой энергии отражается, при этом угол отражения равен углу падения волны; часть звуковой энергии теряется из-за поглощения; часть проходит через границу раздела в другую среду (рис. 13.4).

Для количественного описания этих процессов вводятся следующие коэффициенты:

– коэффициент отражения – β = I отр /I пад;

– коэффициент поглощения – α = I погл /I пад;

– коэффициент прохождения – γ = I пр /I пад,

где I пад, I отр, I погл, I пр - интенсивности падающей, отраженной, поглощенной и прошедшей волны.

Общая сумма коэффициентов всегда равна единице: α + β + γ = 1.

Каждый из коэффициентов меньше единицы, поскольку отраженная, поглощенная и прошедшая волна имеют меньшую интенсивность, чем волна падающая.

Коэффициенты β и γ – величины безразмерные, однако для коэффициента α используется размерность «сэбин ». Коэффициент поглощения в 1 сэбин равен поглощению звука открытым окном площадью в 1 м 2 .


Величина коэффициента поглощения приводится обычно в справочниках для различных материалов. Например, на частоте 500 Гц коэффициент поглощения дерева равен 0,1, мрамора – 0,01, ковра – 0,23. Следует заметить, что величина коэффициента поглощения зависит от частоты: с повышением частоты она увеличивается. Например, для ковра 0,23 на 500 Гц и 0,43 на 4000 Гц. Кроме того, коэффициент поглощения зависит от величины угла падения звуковой волны - максимальное значение он имеет при угле падения 90°. Поэтому в таблицах обычно приводится значение, усредненное для различных углов падения.

Таким образом, при падении звуковой волны на препятствие (например, стену) отраженная волна имеет меньшую амплитуду и некоторый сдвиг по фазе по отношению к падающей волне. Величина этого сдвига зависит от отношения акустических сопротивлений отражающей среды и среды, где волна распространяется.

Структура звуковых волн, отраженных от стен и других предметов в помещении, определяет акустику концертных залов, студий, помещений прослушивания и др. Подбирая различные соотношения коэффициентов, можно менять структуру отраженных волн и тем самым влиять на качество звучания музыки и речи в помещении.

Общий закон отражения звуковой волны «угол падения равен углу отражения» приводит к тому, что если отражения происходит от негладких (шероховатых) поверхностей, то отраженные волны распространяются в разных направлениях, и в помещении создается диффузное рассеянное звуковое поле, что в ряде случаев улучшает общее качество звучания в зале.

Направление отраженных волн зависит от формы отражающей поверхности. Если выбрать поверхность в виде вогнутой или выпуклой чаши, то можно концентрировать (усиливать) или рассеивать звук в определенной точке или направлении («шепчущие» галереи, открытые эстрады, архитектурные формы – эркеры, ниши, купола и пр.) (рис.13.5).


Интересно отметить, что при падении сферической волны на отражающую плоскую поверхность появляется отраженная сферическая волна с центром, находящимся как бы за барьером. Этот центр называется «мнимый источник» (рис. 13.6). Метод мнимых источников используется при расчетах структуры звукового поля в архитектурной акустике.

Рефракция (преломление)

Рефракция – это изменение направления распространения звуковой волны при переходе из одной среды в другую. Как уже отмечалось, звуковая волна, падая на границу раздела двух сред, частично отражается от нее, частично переходит в другую среду. Если эта среда имеет другие физические свойства, значительно отличающиеся от свойств первой (плотность, температура и пр.), то скорость звука в ней меняется, и звуковая волна вследствие этого меняет направление своего распространения (рис. 13.7). Эффект рефракции имеет место и тогда, когда звуковая волна распространяется в одной среде (например, в атмосфере), физические свойства которой постепенно меняются. Примером может служить звуковая волна, распространяющаяся над поверхностью воды. Поскольку воздух над водой имеет более низкую температуру, чем в более высоких слоях, скорость звуковой волны в более холодных слоях становится меньше и направление распространения волны изменяется вниз (звуковые лучи изгибаются в сторону той среды, где скорость звука меньше) (рис. 13.8).


Соотношение изменения углов распространения звуковой волны (а 1 и а 2) и ее скоростей (С 1 и С 2) выражается следующей формулой:

sin a 1 / sin a 2 = с 1 / с 2 .

Явление рефракции может приводить к различным звуковым эффектам (звуковым миражам, т.е. слышимости на больших расстояниях над морем, пустыней и пр.).

Дифракция звуковых волн

Звуковые волны обладают способностью огибать встретившиеся на их пути препятствия и проникать в область за ними. Эта способность к огибанию препятствий называется дифракцией . Благодаря этому явлению звуковые волны могут огибать углы, проникать через щели и отверстия и распространяться за ними. В противном случае звук можно было бы услышать только в пределах прямой видимости источника (рис. 13.9).


Способность к дифракции зависит от соотношения длины волны (т.е. частоты) и размера препятствия:

Если длина волны много больше размеров препятствия (λ >>d ), то звуковая волна огибает его и проходит дальше, почти не меняя своей структуры и интенсивности. Так же она проходит и через отверстие, которое в этом случае становится как бы новым источником сферической волны (рис. 13.10);


Если длина волны сопоставима с размерами препятствия (λ ~ d ), то звуковая волна огибает его частично (рис. 13.9), за препятствием ее интенсивность становится меньше, появляются области «акустической тени», в случае отверстия звуковая волна начинает концентрироваться вперед, при этом края ее становятся «размытыми»;

Если длина волны меньше размеров препятствия (λ << d ), то звуковая волна отражается от него, и за препятствием образуется «акустическая тень», а через отверстие проходит только узкий звуковой пучок. Поэтому за балконом или колонной тембр звука меняется (низкие и средние частоты огибают их, а высокочастотные – нет).

Явление дифракции лежит в основе бинауральной локализации звука. Вся современная пространственная стереофония построена на использовании этого явления. Звуки разной частоты огибают голову и ушные раковин по-разному. В то время как низкочастотные звуки проходят без изменения интенсивности, среднечастотные и высокочастотные образуют «акустическую тень» (за счет дифракции), граница между ними находится примерно в области 2 кГц. В связи с этим интенсивность звука и тембр меняются в зависимости от расположения источника по отношению к голове, что и позволяет локализовать его в пространстве. Дифракция звука на корпусе микрофонов, на углах корпусов акустических систем и пр. также имеет существенное значение для качества воспроизведения звука и учитывается при их проектировании.

Рассеяние

Рассеяние – это процесс отражения части звуковой волны от препятствия, в то время как остальная ее часть это препятствие огибает. Например, для сферы радиуса a мощность рассеянной волны в области высоких частот равна

Р а = 2πа 2 I 0 , (13.11)

где I 0 интенсивность падающей плоской волны, а – ее радиус.

В общем случае под рассеянием звука понимается возникновение дополнительных звуковых полей на препятствиях, границах и неоднородностях среды.

Именно эти процессы, т.е. дифракция и рассеяние волны на поверхности микрофона приводят к значительному искажению структуры звукового поля вокруг него и изменению его чувствительности.

В ходе урока все желающие смогут получить представление о теме «Отражение волн. Звуковой резонанс». На этом уроке мы исследуем такое интересное явление отражения волн, как эхо, и рассчитаем необходимые для его возникновения условия. Также мы проведем увлекательный опыт с музыкальным камертоном, чтобы лучше понять, что такое звуковой резонанс.

Итак, завершаем 7 главу - «Колебания и волны» - интересными явлениями. Это отражение волн и звуковой резонанс. Вы знаете, что в пустом помещении, в горах или под сводами здания какой-нибудь арки можно замечательное явление наблюдать - эхо. Что такое эхо? Эхо - это явление отражения звуковых волн от плотных объектов. Когда человек может услышать эхо? Оказывается, чтобы человек смог различить (его слуховой аппарат смог различить два сигнала), необходимо, чтобы запаздывание во времени было 0,06 с. Давайте посчитаем: скорость распространения волны 340 м/с в воздухе, поэтому можно рассчитать расстояние до объекта, от которого будет отражаться волна. Должно быть понятно: при перемножении скорости на эту величину, запаздывания мы получаем 20,4 м. L=V . ∆t = 340 м/с 0,06 м/с = 20,4 м.

Но, вы понимаете, что отражение - это движение волны в одну сторону, в другую потом претерпевает отражение, поэтому расстояние, которое мы получили, можно спокойно разделить пополам и поставить человека на расстояние от преграды, от которой будет отражаться звук, и тогда можно эхо услышать. Нужно еще хорошо отражающую поверхность, потому что, если, например, комната достаточно большая, она заставлена большим количеством мебели (мягкой мебели) и людьми, то все эти объекты поглощают звуковую волну, поэтому эхо неразличимо. Просто энергии не хватает для звуковой волны, чтобы было это явление. Где это явление используют? Конечно, занимательно слушать эхо в горах, здорово петь под музыкальными арками, которые в архитектуре XIX века часто используются, но есть реальные устройства, которые используют это свойство. Например, рупор. Если я сейчас сложу вот так ладошки, вы сразу услышали, что мой звук стал мощнее, хотя люди, которые стояли бы у меня сбоку, звук от моих голосовых связок был бы намного тише. Поэтому происходит интересное явление: стенки рупора усиливают звуковую волну, увеличивая мощность сигнала. Что такое эхолот? Это сложное слово, полученное из двух слов: «эхо» - «отражение», «лот» - прибор, который мерит глубину водоема. Лот - это простой камень на веревке у рыбаков. Эхолот у людей, которые плавают на больших суднах, устроен следующим образом. Под бортом корабля располагается приемник и источник звуковых волн. От источника звуковых волна идет звуковая волна, доходит до дна, отражается и попадает в приемник звуковых волн. Время фиксируется, которое проходит между подачей сигнала и приходом его обратно. ∆ t = 0,06 с. И расстояние, которое получается вот таким расчетом, делится пополам, и мы находим глубину водоема. Используются эхолоты не только на звуковых частотах, но и на инфразвуке или на ультразвуке. Мы в прошлом параграфе говорили, как это используется. Принцип один и тот же. Используется явление отражения звуковых волн. Давайте рассмотрим еще одно интересное звуковое явление - это звуковой резонанс . Напоминаю: это явление увеличения амплитуды вынужденных колебаний при соблюдении частоты собственных колебаний системы и вынужденных. Напоминаю: любая система, которая может колебаться, имеет собственную частоту. Эта частота сформирована самой конструкцией прибора, который умеет колебаться. Если мы этот прибор заставим колебаться с внешней силой, которая имеет вот такую частоту вынужденных колебаний n 0 = n ВЫН, произойдет усиление звуковых колебаний, потому что увеличение амплитуды влечет за собой усиление звука, мощности энергетической. Чтобы объяснить это явление подробно, чтобы вы поняли, что значит резонанс , мы будем работать с таким специальным прибором, который используется в музыке. Этот прибор называется камертон. Вилочка сделана из стали, имеет собственную частоту, соответствующую в данном опыте ноте ля. К этому камертону подобран специальный, путем проб и ошибок, путем вычислений математических, резонаторный ящик. Что это за ящик такой? Что он делает со звуком, мы сейчас с вами увидим на опыте. Перед нами камертон. У меня есть резиновый молоточек, которым мы будем вызывать колебания. У этого камертона колебания будут вынужденные. Вот сначала, чтобы понять, для чего нужен резонаторный ящик, я попробую прикрывать простым листом бумаги резонаторный ящик вот так. Слушайте внимательно, что будет происходить с самим звуком. Если вы что-то заметили, давайте повторим еще раз опыт. Я попробую вызвать более серьезное колебание, увеличив энергию в системе. Итак, резонаторный ящик увеличивает амплитуду результирующих колебаний. Как он это делает? Он перераспределяет энергию, которую я сообщила в систему. Значит, камертон вызывает в резонаторном ящике колебание самой деки ящика и воздуха, который находится внутри этого ящика. Колебания складываются и усиливают звук. При этом у нас закон сохранения энергии выполняется, т.е. с резонаторным ящиком камертон звучит меньше по времени, но зато сильнее. Продолжим эксперимент. Давайте посмотрим, как можно колебание это звуковое прекратить. Я коснулась ножек камертона, и коэффициент затухания у данной системы очень большой стал, колебание прекратилось практически мгновенно. Повторим, колебаний нет. Теперь мы посмотрим явление резонанса, что произойдет, если я возьму точно такой, имеющий точно такую звуковую частоту, другой камертон. Посмотрите, резонаторные ящики будут направлены друг на друга, чтобы зазор воздушный был незначительный и чтобы не затухали колебания, и эффект был максимальный. Итак, вызываю колебания вот в этом камертоне. Звуковая волна распространяется, в пространство уходит, и если частота точно такая же у камертона, то должен возникнуть резонанс. Посмотрим, мне слышно, как звучит второй камертон. Давайте повторим еще раз: камертон звучит, прекратил звучание. Давайте проверим, может быть, у меня специальный такой слева камертон стоит. Попробуем вызвать колебание во втором камертоне и послушаем, что будет происходить с первым. Колебание налицо. Итак, выполняется условие резонанса: частоты совпадают, увеличение амплитуды происходит. Откликается система на колебание внешнее избирательно. Выбирает только ту частоту, на которую сам настроен. Давайте это проверим, если я сейчас изменю частоту колебаний одного из камертонов (просто муфточку прикручу вот сюда), у меня изменится по массе то тело, которое колеблется, и у него изменится частота. Поэтому резонанса не будет. Я в этом уверена, давайте проверим на опыте, действительно ли это так. Резонанса нет, и поэтому звучания тоже не было. Давайте посмотрим, если я в обратном порядке выполню, если зазвучит этот камертон, то, возможно, я вас обманываю, посмотрим. Явление резонанса не было.

Итак, мы сегодня изучили важные звуковые явления. Это отражение звуковых волн и явление звукового резонанса. Спасибо за внимание.

ОТРАЖЕНИЕ ЗВУКА - явление, возникающее при падении звуковой волны на границу раздела двух упругих сред и состоящее в образовании волн, распространяющихся от границы раздела в ту же среду, из к-рой пришла падающая волна. Как правило, О. з. сопровождается образованием преломлённых волн во второй среде. Частный случай О. з. - отражение от свободной поверхности. Обычно рассматривается отражение на плоских границах раздела, однако можно говорить об О. з. от препятствий произвольной формы, если размеры препятствия значительно больше длины звуковой волны. В противном случае имеет место рассеяние звука или дифракция звука .
Падающая волна вызывает движение границы раздела сред, в результате к-рого и возникают отражённые и преломлённые волны. Их структура и интенсивность должны быть таковы, чтобы по обе стороиы от границы раздела скорости частиц и упругие напряжения, действующие на границу раздела, были равны. Граничные условия на свободной поверхности состоят в равенстве нулю упругих напряжений, действующих на эту поверхность.
Отражённые волны могут совпадать по типу поляризации с падающей волной, а могут иметь и др. поляризацию. В последнем случае говорят о преобразовании, или конверсии, мод при отражении или преломлении. Конверсия отсутствует только при отражении звуковой волны, распространяющейся в жидкости, поскольку в жидкой среде существуют лишь продольные волны. При прохождении звуковой волной границы раздела твердых тел образуются, как правило, и продольные и поперечные отражённые и преломлённые волны. Сложный характер О. з. имеет место на границе кристаллич. сред, где в общем случае возникают отражённые и преломлённые волны трёх разл. поляризаций.
Отражение плоских волн . Особую роль играет отражение плоских волн, поскольку плоские волны, отражаясь и преломляясь, остаются плоскими, а отражение волн произвольной формы можно рассматривать как отражение совокупности плоских волн. Кол-во возникающих отражённых и преломлённых волн определяется характером упругих свойств сред и числом акустич. ветвей, существующих в них. В силу граничных условий проекции на плоскость раздела волновых векторов падающей, отражённых и преломлённых волн равны между собой (рис. 1).

Рис. 1. Схема отражения и преломления плоеной звуковой волны на плоской границе раздела.

Отсюда следуют законы отражения и преломления, согласно к-рым: 1) волновые векторы падающей k i , отражённых k r и преломлённых k t волн и нормаль NN" к границе раздела лежат в одной плоскости (плоскости падения); 2) отношения синусов углов падения отраженияи преломленияк фазовым скоростям c i , и соответствующих волн равны между собой:
(индексы и обозначают поляризации отражённых и преломлённых волн). В изотропных средах, где направления волновых векторов совпадают с направлениями звуковых лучей, законы отражения и преломления принимают привычную форму закона Снелля. В анизотропных средах законы отражения определяют только направления волновых нормалей; как будут распространяться преломлённые или отражённые лучи, зависит от направления лучевых скоростей, соответствующих этим нормалям.
При достаточно малых углах падения все отражённые и преломлённые волны представляют собой плоские волны, уносящие энергию падающего излучения от границы раздела. Однако, если скорость для к--л. преломлённой волныбольше скорости c i падающей волны, то для углов падения, больших т. н. критич. угла= arcsin, нормальная компонента волнового вектора соответствующей преломлённой волны становится мнимой, а сама прошедшая волна превращается в неоднородную волну, бегущую вдоль поверхности раздела и экспоненциально убывающую в глубь среды 2 . Однако падение волны на границу раздела под углом, большим критического, может и не приводить к полному отражению, поскольку энергия падающего излучения может проникать во 2-ю среду в виде волн другой поляризации.
Критич. угол существует и для отражённых волн, если при О. з. происходит конверсия мод и фазовая скорость волны, возникающей в результате конверсии, больше скорости c i падающей волны. Для углов падения, меньших критич. угла часть падающей энергии уносится от границы в виде отражённой волны с поляризацией; при такая волна оказывается неоднородной, затухающей в глубь среды 1, и не принимает участия в переносе энергии от границы раздела. Напр., критич. угол = arcsin(c т /c L) возникает при отражении поперечной акустич. волны Т от границы изотропного твёрдого тела и конверсии её в продольную волну L (с т и C L - скорости поперечной и продольной звуковой волны соответственно).
Амплитуды отражённых и преломлённых волн в соответствии с граничными условиями линейным образом выражаются через амплитуду А i падающей волны, подобно тому, как эти величины в оптике выражаются через амплитуду падающей эл--магн. волны с помощью Френеля формул . Отражение плоской волны количественно характеризуется амплитудными коэф. отражения, представляющими собой отношения амплитуд отражённых волн к амплитуде падающей:= Амплитудные коэф. отражения в общем случае комплексны: их модули определяют отношения абс. значении амплитуд, а фазы задают фазовые сдвиги отражённых волн. Аналогично определяются и амплитудные коэф. прохождения Перераспределение энергии падающего излучения между отражёнными и преломлёнными волнами характеризуется коэф. отражения и прохождения по интенсивности, представляющими собой отношения нормальных к границе раздела компонент средних по времени плотностей потоков энергии в отражённой (преломлённой) и в падающей волнах:

где - интенсивности звука в соответствующих волнах, и - плотности соприкасающихся сред. Баланс энергии, подводимой к границе раздела и уносимой от неё, сводится к балансу нормальных компонент потоков энергии:

Коэф. отражения зависят как от акустич. свойств соприкасающихся сред, так и от угла падения. Характер угл. зависимости определяется наличием критич. углов, а также углов нулевого отражения, при падении под к-рыми отражённая волна с поляризацией не образуется.

О. з. на границе двух жидкостей . Наиб. простая картина О. з. возникает на границе раздела двух жидкостей. Конверсия волн при этом отсутствует, и отражение происходит по зеркальному закону, а коэф. отражения равен

где и c 1,2 - плотности и скорости звука в граничащих средах 1 и 2 . Если скорость звука для падающей волны больше скорости звука для преломлённой (с 1 >c 2), то критич. угол отсутствует. Коэф. отражения действителен и плавно меняется от значения

при нормальном падении волны на границу раздела до значения R = - 1 при скользящем падении Если акустич. импеданс r 2 с 2 среды 2 больше импеданса среды 1 , то при угле падения

коэф. отражения обращается в нуль и всё падающее излучение полностью проходит в среду 2 .
Когда с 1 <с 2 , возникает критический угол=arcsin (c 1 /c 2). При < коэф. отражения - действительная величина; фазовый сдвиг между падающей и отражённой волнами отсутствует. Величина коэф. отражения меняется от значения R 0 при нормальном падении до R = 1 при угле падения, равном критическому. Нулевое отражение и в этом случае может иметь место, если для акустич. импедансов сред выполняется обратное неравенство угол нулевого отражения по-прежнему определяется выражением (6). Для углов падения, больших критического, имеет место полное внутр. отражение: и падающее излучение в глубь среды 2 не проникает. В среде 2 , однако, формируется неоднородная волна; с её возникновением связаны комплексность коэф. отражения и соответствующий фазовый сдвиг между отражённой и падающей волнами. Этот сдвиг объясняется тем, что поле отражённой волны формируется в результате интерференции двух полей: зеркально отражённой волны и волны, пе-реизлучаемой в среду 1 неоднородной волной, возникшей в среде 2 . При отражении неплоских (напр., сферических) волн такая переизлучённая волна наблюдается реально в эксперименте в виде т. н. боковой волны (см. Волны , раздел Отражение и преломление волн).

О. з. от границы твёрдого тела . Характер отражения усложняется, если отражателем является твёрдое тело. Когда скорость звука с в жидкости меньше скоростей продольного с L и поперечного с т звука в твёрдом теле, при отражении на границе жидкости с твёрдым телом возникают два критич. угла: продольный= arcsin (с/с L )и поперечный= arcsin (с/с т ) . При этом , поскольку всегда с L > с т. При углах падения коэф. отражения действителен (рис. 2). Падающее излучение проникает в твёрдое тело в виде как продольной, так и поперечной преломлённых волн. При нормальном падении звука в твёрдом теле возникает только продольная волна и значение R 0 определяется отношением продольных акустич. импедансов жидкости и твёрдого тела аналогично ф-ле (5) ( - плотности жидкости и твёрдого тела).

Рис. 2. Зависимость модуля коэффициента отражения звука | R | (сплошная линия) и его фазы (штрих-пунктирная линия) на границе жидкости и твёрдого тела от угла падения.

При > коэф. отражения становится комплексным, поскольку в твёрдом теле вблизи границы образуется неоднородная волна. При углах падения, заключённых между критич. углами и часть падающего излученпя проникает в глубь твёрдого тела в виде преломлённой поперечной волны. Поэтому для<<величина лишь при поперечная волна не образуется и |R| = 1. Участие неоднородной продольной волны в формировании отражённого излучения обусловливает, как и на границе двух жидкостей, фазовый сдвиг у отражённой волны. При > имеет место полное внутр. отражение: 1. В твёрдом теле вблизи границы образуются лишь экспоненциально спадающие в глубь тела неоднородные волны. Фазовый сдвиг у отражённой волны для углов связан в основном с возбуждением на границе раздела вытекающей Рэлея волны . Такая волна возникает на границе твёрдого тела с жидкостью при углах падения, близких к углу Рэлея = arcsin (с/с R) , где C R - скорость волны Рэлея на поверхности твёрдого тела. Распространяясь вдоль поверхности раздела, вытекающая волна полностью переизлучается в жидкость.
Если с > с т, то полное внутр. отражение на границе жидкости с твёрдым телом отсутствует: падающее излучение проникает в твёрдое тело при любом угле падения, по крайней мере в виде поперечной волны. Полное отражение возникает при падении звуковой волны под критич. углом или при скользящем падении. При c>c L коэф. отражения действительный, т. к. неоднородные волны на границе раздела не образуются.
О. з., распространяющегося в твёрдом теле . При распространении звука в изотропном твёрдом теле наиб. простой характер носит отражение сдвиговых волн, направление колебаний в к-рых параллельно плоскости раздела. Конверсия мод при отражении или преломлении таких волн отсутствует. При падении на свободную границу или границу раздела с жидкостью такая волна отражается полностью (R = 1) по закону зеркального отражения. На границе раздела двух изотропных твёрдых тел наряду с зеркально отражённой волной в среде 2 образуется преломлённая волна с поляризацией, также параллельной границе раздела.
При падении поперечной волны, поляризованной в плоскости падения, на свободную поверхность тела, на границе возникает как отражённая поперечная волна той же поляризации, так и продольная волна. При углах падения, меньших критического угла = = arcsin (c T /c L) , коэф. отражения R T и R L - чисто действительные: отражённые волны уходят от границы точно в фазе (или в противофазе) с падающей волной. При > от границы уходит только зеркально отражённая поперечная волна; вблизи свободной поверхности образуется неоднородная продольная волна.
Коэф. отражения становится комплексным, и между отражённой и падающей волнами возникает фазовый сдвиг, величина к-рого зависит от угла падения. При отражении от свободной поверхности твёрдого тела продольной волны при любом угле паденпя возникают как отражённая продольная волна, так и поперечная волна, поляризованная в плоскости падения.
Если граница твёрдого тела находится в контакте с жидкостью, то при отражении волн (продольной или поперечной, поляризованной в плоскости падения) в жидкости дополнительно возникает преломлённая продольная волна. На границе раздела двух изотропных твёрдых сред к этой системе отражённых и преломлённых волн добавляется ещё преломлённая поперечная волна в среде 2 . Её поляризация также лежит в плоскости падения.

О. з. на границе раздела анизотропных сред . О. з. на границе раздела кристаллич. сред носит сложный характер. Скорости и отражённых и преломлённых волн в этом случае сами являются ф-циями углов отражения и преломления (см. Кристаллоакустика ; )поэтому даже определение углови по заданному углу падения сталкивается с серьёзными матем. трудностями. Если известны сечения поверхностей волновых векторов плоскостью падения, то используется графич. метод определения углов и концы волновых векторов k r и k t лежат на перпендикуляре NN" , проведённом к границе раздела через конец волнового вектора k i падающей волны, в точках, где этот перпендикуляр пересекает разл. полости поверхностей волновых векторов (рис. 3). Кол-во отражённых (или преломлённых) волн, реально распространяющихся от границы раздела в глубь соответствующей среды, определяется тем, со сколькими полостями пересекается перпендикуляр NN" . Если пересечение с к--л. полостью отсутствует, то это означает, что волна соответствующей поляризации оказывается неоднородной и энергию от границы не переносит. Перпендикуляр NN" может пересекать одну и ту же полость в неск. точках (точки a 1 и а 2 на рис. 3). Из возможных положений волнового вектора k r (или k t )реально наблюдаемым волнам соответствуют лишь те, для к-рых вектор лучевой скорости, совпадающий по направлению с внеш. нормалью к поверхности волновых векторов, направлен от границы в глубь соответствующей среды.

Рис. 3. Графический метод определения углов отражения и преломления на границе раздела кристаллических сред 1 и 2. L, FT и ST - поверхности волновых векторов для квазипродольных, быстрых и медленных квазипоперечных волн соответственно.

Как правило, отражённые (преломлённые) волны принадлежат разл. ветвям акустич. колебании. Однако в кристаллах со значит. анизотропией, когда поверхность волновых векторов имеет вогнутые участки (рис. 4), возможно отражение с образованием двух отражённых или преломлённых волн, принадлежащих одной и той же ветви колебаний.
На опыте наблюдаются конечные пучки звуковых волн, направления распространения к-рых определяются лучевыми скоростями. Направления лучей в кристаллах значительно отличаются от направлении соответствующих волновых векторов. Лучевые скорости падающей, отражённых и преломлённых волн лежат в одной плоскости лишь в исключительных случаях, напр. когда плоскость падения является плоскостью симметрии для обеих крпсталлич. сред. В общем случае отражённые и преломлённые лучи занимают разнообразные положения как по отношению друг к другу, так и по отношению к падающему лучу и нормали NN" к границе раздела. В частности, отражённый луч может лежать в плоскости падения по ту же сторону от нормали N , что и падающий луч. Предельным случаем такой возможности является наложение отражённого пучка на падающий при наклонном падении последнего.

Рис. 4. Отражение акустической волны, падающей на свободную поверхность кристалла с образованием двух отраженных волн той же поляризации: а - определение волновых векторов отражённых волн (с g - векторы лучевой скорости); б - схема отражения звуковых пучков конечного сечения.

Влияние затухания на характер О. з . . Коэф. отражения и прохождения не зависят от частоты звука, если затухание звука в обеих граничных средах пренебрежимо мало. Заметное затухание приводит не только к частотной зависимости коэф. отражения R , но и искажает его зависимость от угла падения, в особенности вблизи критич. углов (рис. 5, а ). При отражении от границы раздела жидкости с твёрдым телом эффекты затухания существенно меняют угловую зависимость R при углах падения, близких к рэлеевскому углу (рис. 5,б) . На границе сред с пренебрежимо малым затуханием при таких углах падения имеет место полное внутреннее отражение и |R | = 1 (кривая 1 на рис. 5, б) . Наличие затухания приводит к тому, что |R | становится меньше 1, а вблизи образуется минимум |R | (кривые 2 - 4) . По мере увеличения частоты и соответствующего роста коэф. затухания глубина минимума увеличивается, пока, наконец, на нек-рой частоте f 0 , наз. частотой нулевого отражения, мин. значение |R | не обратится в нуль (кривая 3 , рис. 5,б ). Дальнейший рост частоты приводит к уширенпю минимума (кривая 4 )и влиянию эффектов затухания на О. з. практически для любых углов падения (кривая 5) . Уменьшение амплитуды отражённой волны по сравнению с амплитудой падающей не означает, что падающее излучение проникает в твёрдое тело. Оно связано с поглощением вытекающей волны Рэлея, к-рая возбуждается падающим излучением и участвует в формировании отражённой волны. Когда звуковая частота f равна частоте f 0 , вся энергия падающей волны диссипируется на границе раздела.

Рис. 5. Угловая зависимость |R | на границе вода - сталь с учётом затухания: а - общий характер угловой зависимости |R |; сплошная линия - без учёта потерь, штриховая линия - то же с учётом затухания; б - угловая зависимость | R \ вблизи рэлеевского угла при различных значениях поглощения поперечных волн в стали на длине волны. Кривые 1 - 5 соответствуют увеличению этого параметра от значения 3 x 10 -4 (кривая 1 )до значения = 1 (кривая 5) за счёт соответствующего возрастания частоты падающего УЗ-излучения.

О. з. от слоев и пластин . О. з. от слоя или пластины носит резонансный характер. Отражённая и прошедшая волны формируются в результате многократных переотражений волн на границах слоя. В случае жидкого слоя падающая волна проникает в слой под углом преломления определяемым из закона Снелля. За счёт переотражений в самом слое возникают продольные волны, распространяющиеся в прямом и обратном направлениях под углом к нормали, проведённой к границам слоя (рис. 6, а ). Уголпредставляет собой угол преломления, отвечающий углу падения на границу слоя. Если скорость звука в слое с 2 больше скорости звука с 1 в окружающей жидкости, то система переотражённых волн возникает лишь тогда, когда меньше угла полного внутр. отражения = arcsin (c 1 /c 2). Однако для достаточно тонких слоев прошедшая волна образуется и при углах падения, больших критического. В этом случае коэф. отражения от слоя оказывается по абс. величине меньше 1. Это связано с тем, что при в слое вблизи той его границы, на к-рую падает извне волна, возникает неоднородная волна, экспоненциально спадающая в глубь слоя. Если толщина слоя d меньше или сравнима с глубиной проникновения неоднородной волны, то последняя возмущает противоположную границу слоя, в результате чего с неё излучается в окружающую жидкость прошедшая волна. Это явление просачивания волны аналогично просачиванию частицы через потенциальный барьер в квантовой механике.
Коэф. отражения от слоя

где - нормальная компонента волнового вектора в слое, ось z - перпендикулярна границам слоя, R 1 и R 2 - коэф. О. з. соответственно на верхней и нижней границах. При представляет собой периодич. ф-цию звуковой частоты f и толщины слоя d . При когда имеет место просачивание волны через слой, | R | при увеличении f или d монотонно стремится к 1.

Рис. 6. Отражение звуковой волны от жидкого слоя: а - схема отражения; 1 - окружающая жидкость; 2 - слой; б - зависимость модуля коэффициента отражения |R| от угла падения.

Как ф-ция угла падениязначение | R | имеет систему максимумов и минимумов (рис. 6, б) . Если по обе стороны слоя находится одна и та же жидкость, то в точках минимума R = 0. Нулевое отражение возникает, когда набег фазы на толщине слоя равен целому числу полупериодов

и волны, выходящие в верхнюю среду после двух последовательных переотражений, будут находиться в противофазе и взаимно гасить друг друга. Наоборот, в нижнюю среду все переотражённые волны выходят с одной и той же фазой, и амплитуда прошедшей волны оказывается максимальной. При нормальном падении волны на слой полное пропускание имеет место, когда на толщине слоя укладывается целое число полуволн: d = где п = 1,2,3,..., - длина звуковой волны в материале слоя; поэтому слои, для к-рых выполнено условие (8), наз. полуволновымн. Соотношение (8) совпадает с условием существования нормальной волны в свободном жидком слое. В силу этого полное пропускание через слои возникает, когда падающее излучение возбуждает в слое ту или иную нормальную волну. За счёт контакта слоя с окружающей жидкостью нормальная волна является вытекающей: при своём распространении она полностью переизлучает энергию падающего излучения в нижнюю среду.
Когда жидкости по разные стороны от слоя различны, наличие полуволнового слоя никак не сказывается на падающей волне: коэф. отражения от слоя равен коэф. отражения от границы этих жидкостей при их непо-средств. контакте. Помимо полуволновых слоев в акустике, как и в оптике, большое значение имеют т. н. четвертьволновые слои, толщины к-рых удовлетворяют условию(п= 1,2,...). Подбирая соответствующим образом акустич. импеданс слоя, можно получить нулевое отражение от слоя волны с заданной частотой f при определённом угле падения её на слой. Такие слои используются в качестве просветляющих акустических слоев.
Для отражения звуковой волны от бесконечной твёрдой пластины, погружённой в жидкость, характер отражения, описанный выше для жидкого слоя, в общих чертах сохранится. При переотражениях в пластине дополнительно к продольным будут также возбуждаться сдвиговые волны. Углы и, под к-рыми распространяются соответственно продольные и поперечные волны в пластине, связаны с углом падения законом Снелля. Угл. и частотная зависимости |R | будут представлять собой, как и в случае отражения от жидкого слоя, системы чередующихся максимумов и минимумов. Полное пропускание через пластину возникает в том случае, когда падающее излучение возбуждает в ней одну из нормальных волн, представляющих собой вытекающие Лэмба волны .Резонансный характер О. з. от слоя или пластины стирается по мере того, как уменьшается отличие их акустич. свойств от свойств окружающей среды. Увеличение акустич. затухания в слое также приводит к сглаживанию зависимостей и |R(fd )|.

Отражение неплоских волн . Реально существуют только неплоские волны; их отражение может быть сведено к отражению набора плоских волн. Монохроматич. волну с волновым фронтом произвольной формы можно представить в виде совокупности плоских волн с одной и той же круговой частотой, но с разл. направлениями волнового вектора k. Осн. характеристикой падающего излучения является его пространственный спектр - набор амплитуд A (k) плоских волн, образующих в совокупности падающую волну. Абс. величина k определяется частотой, поэтому его компоненты не являются независимыми. При отражении от плоскости z = 0 нормальная компонента k z задаётся тангенциальными компонентами k x , k y: k z = Каждая плоская волна, входящая в состав падающего излучения, падает на границу раздела под своим углом и отражается независимо от других волн. Поле Ф(r ) отражённой волны возникает как суперпозиция всех отражённых плоских волн и выражается через пространственный спектр падающего излучения A(k x , k y )и коэф. отражения R(k x , k y):

Интегрирование распространяется на область сколь угодно больших значений k x и k y . Если пространственный спектр падающего излучения содержит (как при отражении сферич. волны) компоненты с k x (или k y ), большими, то в формировании отражённой волны помимо волн с действительными k z принимают участие также неоднородные волны, для к-рых k, - чисто мнимая величина. Этот подход, предложенный в 1919 Г. Вейлем (Н. Weyl) и получивший своё дальнейшее развитие в представлениях фурье-оптики, даёт последоват. описание отражения волны произвольной формы от плоской грашщы раздела.
При рассмотрении О. з. возможен также лучевой подход, к-рый основан на принципах геометрической акустики . Падающее излучение рассматривается как совокупность лучей, взаимодействующих с границей раздела. При этом учитывается, что падающие лучи не только отражаются и преломляются обычным образом, подчиняясь законам Снелля, но и что часть лучей, падающих на поверхность раздела под определёнными углами, возбуждает т. н. боковые волны, а также вытекающие поверхностные волны (Рэлея и др.) или вытекающие волноводные моды (Лэмба волны и др.). Распространяясь вдоль поверхности раздела, такие волны вновь переизлучаются в среду и участвуют в формировании отражённой волны. Для практики осн. значение имеет отражение сферич. волн, коллимнрованных акустпч. пучков конечного сечения и фокусированных звуковых пучков.

Отражение сферических волн . Картина отражения сферич. волны, создаваемой в жидкости I точечным источником О , зависит от соотношения между скоростями звука с 1 и с 2 в соприкасающихся жидкостях I и II (рис. 7). Если c t > с 2 , то критич. угол отсутствует и отражение происходит по законам геом. акустики. В среде I возникает отражённая сферич. волна: отражённые лучи пересекаются в точке О" . образуя мнимое изображение источника, а волновой фронт отражённой волны представляет собой часть сферы с центром в точке О" .

Рис. 7. Отражение сферической волны на границе раздела двух жидкостей: О и О" - действительный и мнимый источники; 1 - фронт отражённой сферической волны; 2 - фронт преломлённой волны; 3 - фронт боковой волны.

Когда c 2 >c l и имеется критич. угол в среде I помимо отражённой сферич. волны возникает ещё одна компонента отражённого излучения. Лучи, падающие на границу раздела под критич. углом возбуждают в среде II волну, к-рая распространяется со скоростью с 2 вдоль поверхности - раздела и переизлучается в среду I, формируя т. н. боковую волну. Её фронт образуют точки, до к-рых в один и тот же момент времени дошли лучи, вышедшие из точки О вдоль ОА и затем перешедшие снова в среду I в разл. точках границы раздела от точки А до точки С , в к-рой в этот момент находится фронт преломлённой волны. В плоскости чертежа фронт боковой волны представляет собой прямолинейный отрезок СВ , наклонённый к границе под углом и простирающийся до точки В , где он смыкается с фронтом зеркально отражённой сферич. волны. В пространстве фронт боковой волны представляет собой поверхность усечённого конуса, возникающего при вращении отрезка СВ вокруг прямой ОО" . При отражении сферич. волны в жидкости от поверхности твёрдого тела подобная же конич. волна образуется за счёт возбуждения на границе раздела вытекающей рэлеевской волны. Отражение сферич. волн - один из основных эксперим. методов геоакустики, сейсмологии, гидроакустики и акустики океана.

Отражение акустических пучков конечного сечения . Отражение коллимированных звуковых пучков, волновой фронт к-рых в осн. части пучка близок к плоскому, происходит для большинства углов падения так, будто отражается плоская волна. При отражении пучка, падающего из жидкости на границу раздела с твёрдым телом, возникает отражённый пучок, форма к-рого является зеркальным отражением распределения амплитуды в падающем пучке. Однако при углах падения, близких к продольному критич. углу или рэлеевскому углу наряду с зеркальным отражением происходит эфф. возбуждение боковой или вытекающей ролеевской волны. Поле отражённого пучка в этом случае является суперпозицией зеркально отражённого пучка и переизлучённых волн. В зависимости от ширины пучка, упругих и вязких свойств граничащих сред возникает либо латеральный (параллельный) сдвиг пучка в плоскости раздела (т. н. смещение Шоха) (рис. 8), либо существенное уширение пучка и появление тонкой

Рис. 8. Латеральное смещение пучка при отражении: 1 - падающий пучок; 2 - зеркально отражённый пучок; 3 - реально отражённый пучок.

структуры. При падении пучка под углом Рэлея характер искажений определяется соотношением между шириной пучка l и радиац. затуханием вытекающей рэлеевской волны

где - длина звуковой волны в жидкости, А - числовой множитель, близкий к единице. Если ширина пучка значительно больше длины радиац. затухания происходит лишь смещение пучка вдоль поверхности раздела на величину В случае узкого пучказа счёт переизлучения вытекающей поверхностной волны пучок существенно уширяется и перестаёт быть симметричным (рис. 9). Внутри области, занятой зеркально отражённым пучком, в результате интерференции возникает нулевой минимум амплитуды и пучок распадается на две части. Незеркальное отражение коллимиров. пучков возникает и на границе двух жидкостей при углах падения, близких к критическому, а также при отражении пучков от слоев или пластин.

Рис. 9. Отражение звукового пучка конечного сечения, падающего из жидкости Ж на поверхность твёрдого тела Т под углом Рэлея: 1 - падающий пучок; 2 - отражённый пучок; а - область нулевой амплитуды; б - область хвоста пучка.

В последнем случае незеркальный характер отражения обусловлен возбуждением в слое или пластине вытекающих волноводных мод. Существенную роль играют боковые и вытекающие волны при отражении фокусированных УЗ-пучков. В частности, эти волны используются в микроскопии акустической для формирования акустич. изображений и проведения количеств, измерений.

Лит.: 1) Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973; 2) Ландау Л. Д., Лифшиц Е. М., Гидродинамика, 4 изд., М., 1988; 3) Бреховских Л. М., Годин О. А., Акустика слоистых сред, М., 1989; 4) Саgniаrd L., Reflexion et refraction des ondes seismiques progressives, P., 1939; 5) Ewing W. M., Jardetzky W. S., Press F., Elastic waves in layered media, N. Y. - , 1957, ch. 3; 6) Au1d B. A., Acoustic fields and waves in solids, v. 1 - 2, N. Y. - , 1973; 7) Веrtоni H. L., Таmir Т., Unified theory of Rayleigh-angle phenomena for acoustic beams at liquid-solid interfaces, "Appl. Phys.", 1973, v. 2, № 4, p. 157; 8) Mоtt G., Reflection and refraction coefficients at a fluid-solid interface, "J. Acoust. Soc. Amer.", 1971, v. 50, № 3 (pt 2), p. 819; 9) Вескеr F. L., Riсhardsоn R. L., Influence of material properties on Rayleigh critical-angle reflectivity, "J. Acoust. Soc. Amer.", 1972, v. 51. .V" 5 (pt 2), p. 1609; 10) Fioritо R., Ubera11 H., Resonance theory of acoustic reflection and transmission through a fluid layer, ".I. Acoust. Soc. Amer.", 1979, v. 65, № 1, p. 9; 11) Fiоrft о R., Madigоsky W., С berа 11 H., Resonance theory of acoustic waves interacting with an clastic plate. "J. Acoust. Soc. Amer.", 1979, v. 66, № 6, p. 1857; 12) Neubauer W. G., Observation of acoustic radiation from plane and curved surfaces, в кн.: Physical acoustics. Principles and methods, ed. by W. P. Mason, R. N. Thurston, v. 10, N. Y. - L., 1973, ch. 2.