Краткая история развития микробиологии: ученые, открытия, достижения. Роль микробиологии в жизни человека

Микробиология – наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами.

Микроорганизмы – наиболее древняя форма организации жизни на Земле. По количеству они представляют собой самую значительную и самую разнообразную часть организмов, населяющих биосферу.

К микроорганизмам относят:

1) бактерии;

2) вирусы;

4) простейшие;

5) микроводоросли.

Общий признак микроорганизмов – микроскопические размеры; отличаются они строением, происхождением, физиологией.

Бактерии – одноклеточные микроорганизмы растительного происхождения, лишенные хлорофилла и не имеющие ядра.

Грибы – одноклеточные и многоклеточные микроорганизмы растительного происхождения, лишенные хлорофилла, но имеющие черты животной клетки, эукариоты.

Вирусы – это уникальные микроорганизмы, не имеющие клеточной структурной организации.

Основные разделы микробиологии: общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная.

Общая микробиология изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т. д.

Основной задачей технической микробиологии является разработка биотехнологии синтеза микроорганизмами биологически активных веществ: белков, ферментов, витаминов, спиртов, органических веществ, антибиотиков и др.

Сельскохозяйственная микробиология занимается изучением микроорганизмов, которые участвуют в круговороте веществ, используются для приготовления удобрений, вызывают заболевания растений и др.

Ветеринарная микробиология изучает возбудителей заболеваний животных, разрабатывает методы их биологической диагностики, специфической профилактики и этиотропного лечения, направленного на уничтожение микробов-возбудителей в организме больного животного.

Предметом изучения медицинской микробиологии являются болезнетворные (патогенные) и условно-патогенные для человека микроорганизмы, а также разработка методов микробиологической диагностики, специфической профилактики и этиотропного лечения вызываемых ими инфекционных заболеваний.

Разделом медицинской микробиологии является иммунология, которая занимается изучением специфических механизмов защиты организмов людей и животных от болезнетворных микроорганизмов.

Предметом изучения санитарной микробиологии являются санитарно-микробиологическое состояние объектов окружающей среды и пищевых продуктов, разработка санитарных нормативов.

2. Систематика и номенклатура микроорганизмов

Основной таксономической единицей систематики бактерий является вид.

Вид – это эволюционно сложившаяся совокупность особей, имеющая единый генотип, который в стандартных условиях проявляется сходными морфологическими, физиологическими, биохимическими и другими признаками.

Вид не является конечной единицей систематики. Внутри вида выделяют варианты микроорганизмов, отличающиеся отдельными признаками. Так, различают:

1) серовары (по антигенной структуре);

2) хемовары (по чувствительности к химическим веществам);

3) фаговары (по чувствительности к фагам);

4) ферментовары;

5) бактериоциновары;

6) бактериоциногеновары.

Бактериоцины – вещества, продуцируемые бактериями и губительно действующие на другие бактерии. По типу продуцируемого бактериоцина различают бактериоциновары, а по чувствительности – бактерициногеновары.

Для видовой идентификации бактерий необходимо знать следующие их свойства:

1) морфологические (форму и структуру бактериальной клетки);

2) тинкториальные (способность окрашиваться различными красителями);

3) культуральные (характер роста на питательной среде);

4) биохимические (способность утилизировать различные субстраты);

5) антигенные.

Виды, связанные генетическим родством, объединяют в роды, роды – в семейства, семейства – в порядки. Более высокими таксономическими категориями являются классы, отделы, подцарства и царства.

Согласно современной систематике патогенные микроорганизмы относятся к царству прокариот, патогенные простейшие и грибы – к царству эукариот, вирусы объединяются в отдельное царство – Vira.

Все прокариоты, имеющие единый тип организации клеток, объединены в один отдел – Bacteria. Однако отдельные их группы отличаются структурными и физиологическими особенностями. На этом основании выделяют:

1) собственно бактерии;

2) актиномицеты;

3) спирохеты;

4) риккетсии;

5) хламидии;

6) микоплазмы.

В настоящее время для систематики микроорганизмов используется ряд таксономических систем.

1. Нумерическая таксономия. Признает равноценность всех признаков. Для ее применения необходимо иметь информацию о многих десятках признаков. Видовая принадлежность устанавливается по числу совпадающих признаков.

2. Серотаксономия. Изучает антигены бактерий с помощью реакций с иммунными сыворотками. Наиболее часто применяется в медицинской бактериологии. Недостаток – бактерии не всегда cодержат видоспецифический антиген.

3. Хемотакcономия. Применяются физико-химические методы, с помощью которых исследуется липидный, аминокислотный состав микробной клетки и определенных ее компонентов.

4. Генная систематика. Основана на способности бактерий с гомологичными ДНК к трансформации, трансдукции и конъюгации, на анализе внехромосомных факторов наследственности – плазмид, транспозонов, фагов.

Совокупность основных биологических свойств бактерий можно определить только у чистой культуры – это бактерии одного вида, выращенные на питательной среде.

3. Питательные среды и методы выделения чистых культур

Для культивирования бактерий используют питательные среды, к которым предъявляется ряд требований.

1. Питательность. Бактерии должны содержать все необходимые питательные вещества.

2. Изотоничность. Бактерии должны содержать набор солей для поддержания осмотического давления, определенную концентрацию хлорида натрия.

3. Оптимальный рН (кислотность) среды. Кислотность среды обеспечивает функционирование ферментов бактерий; для большинства бактерий составляет 7,2–7,6.

4. Оптимальный электронный потенциал, свидетельствующий о содержании в среде растворенного кислорода. Он должен быть высоким для аэробов и низким для анаэробов.

5. Прозрачность (чтобы был виден рост бактерий, особенно для жидких сред).

6. Стерильность (чтобы не было других бактерий).

Классификация питательных сред

1. По происхождению:

1) естественные (молоко, желатин, картофель и др.);

2) искусственные – среды, приготовленные из специально подготовленных природных компонентов (пептона, аминопептида, дрожжевого экстракта и т. п.);

3) синтетические – среды известного состава, приготовленные из химически чистых неорганических и органических соединений (солей, аминокислот, углеводов и т. д.).

2. По составу:

1) простые – мясопептонный агар, мясопептонный бульон, агар Хоттингера и др.;

2) сложные – это простые с добавлением дополнительного питательного компонента (кровяного, шоколадного агара): сахарный бульон, желчный бульон, сывороточный агар, желточно-солевой агар, среда Китта-Тароцци, среда Вильсона-Блера и др.

3. По консистенции:

1) твердые (содержат 3–5 % агар-агара);

2) полужидкие (0,15-0,7 % агар-агара);

3) жидкие (не содержат агар-агара).

4. По назначению:

1) общего назначения – для культивирования большинства бактерий (мясопептонный агар, мясопептонный бульон, кровяной агар);

2) специального назначения:

а) элективные – среды, на которых растут бактерии только одного вида (рода), а род других подавляется (щелочной бульон, 1 %-ная пептонная вода, желточно-солевой агар, казеиново-угольный агар и др.);

б) дифференциально-диагностические – среды, на которых рост одних видов бактерий отличается от роста других видов по тем или иным свойствам, чаще биохимическим (среда Эндо, Левина, Гиса, Плоскирева и др.);

в) среды обогащения – среды, в которых происходит размножение и накопление бактерий-возбудителей какого-либо рода или вида, т. е. обогащение ими исследуемого материала (селенитовый бульон).

Для получения чистой культуры необходимо владеть методами выделения чистых культур.

Методы выделения чистых культур.

1. Механическое разобщение на поверхности плотной питательной среды (метод штриха обжигом петли, метод разведений в агаре, распределение по поверхности твердой питательной среды шпателем, метод Дригальского).

2. Использование элективных питательных сред.

3. Создание условий, благоприятных для развития одного вида (рода) бактерий (среды обогащения).

Чистую культуру получают в виде колоний – это видимое невооруженным глазом, изолированное скопление бактерий на твердой питательной среде, представляющее собой, как правило, потомство одной клетки.

И других кисломолочных продуктов, получения алкоголя , уксуса , при мочке льна .

Донаучный этап развития

Люди издревне знали о многих процессах, вызываемых микроорганизмами, однако не знали истинных причин вызывающих эти явления. Отсутствие сведений о природе таких явлений не мешало делать наблюдения и даже использовать ряд этих процессов в быту. Ряд философов и естествоиспытателей делали умозрительные заключения о причинах тех или иных явлений. При этом наиболее близко к открытию микромира подошел Джироламо Фракасторо ( -), предположивший что инфекции вызывают маленькие тельца, передающиеся при контакте и сохраняющиеся на вещах больного. Однако в то время невозможно было удостовериться в правильности его идей и распространение получили совершенно иные гипотезы.

Бактериальную природу инфекционных заболеваний многие учёные продолжали отвергать и после революционных открытий Пастера и Коха . Так, в 1892 году Макс Петтенкофер, уверенный в том что холеру вызывают миазмы, выделяемые окружающей средой, и пытаясь доказать свою правоту, проглотил при свидетелях-медиках культуру холерных вибрионов и не заболел.

Описательный этап

Антони ван Левенгук.

Возможность изучения микроорганизмов возникла лишь с развитием оптических приборов. Первый микроскоп был создан ещё в 1610 году Галилеем . В Роберт Гук впервые увидел растительные клетки. Однако 30 кратного увеличения его микроскопа не хватило чтобы увидеть простейших и тем более бактерии . По мнению В. Л. Омельянского «первым исследователем, перед изумлённым взором которого открылся мир микроорганизмов, был учёный иезуит Афанасий Кирхер ( -), автор ряда сочинений астрологического характера», однако обычно первооткрывателем микромира называют Антони ван Левенгука .

Между тем, наука в целом ещё не была готова к пониманию роли микроорганизмов в природе. Система теорий возникла тогда лишь в физике . Во времена Левенгука отсутствовали представления о ключевых процессах живой природы, так, незадолго до него в 1648 году Ван Гельмонт , не имея никакого понятия о фотосинтезе , заключил из своего опыта с ивой, что растение берёт питание только из дистиллированной воды, которой он его поливал. Более того, даже неживая материя ещё не была достаточно изучена, состав атмосферы, необходимый для понимания того же фотосинтеза, будет определён лишь в -1776 годах . Поэтому неудивительно что «животным» Левенгука не нашлось место нигде, кроме как в коллекции курьёзов.

В течение следующих 100-150 лет развитие микробиологии проходило лишь с описанием новых видов. Видную роль в изучении многообразия микроорганизмов сыграл Отто Фридрих Мюллер [кто? ] , который к описал и назвал по линнеевской биномиальной номенклатуре 379 различных видов. В это время было сделано и несколько интересных открытий. Так, в была определена причина «кровоточения» просфор - бактерия, названная Serratia marcescens (другое название Monas prodigiosa ). Также следует отметить Христиана Готтфрида Эренберга [кто? ] , описавшего множество пигментированных бактерий, первые железобактерии , а также скелеты простейших и диатомовых водорослей в морских и лиманных отложениях, чем положил начало микропалеонтологии. Именно он впервые объяснил окраску воды Красного моря развитием в ней цианобактерий Trichodesmium erythraeum . Он, однако, причислял бактерий к простейшим и рассматривал их вслед за Левенгуком как полноценных животных с желудком, кишечником и конечностями…

В России одним из первых микробиологов был Л. С. Ценковский ( -), описавший большое число простейших, водорослей и грибов и сделавший вывод об отсутствии резкой границы между растениями и животными. Им также была организована одна из первых Пастеровских станций и предложена вакцина против сибирской язвы .

Высказывались в это время и смелые гипотезы, например врач-эпидемиолог Д. С. Самойлович ( -1801) был убеждён в том что болезни вызываются именно микроорганизмами, однако тщетно пытался увидеть в микроскоп возбудитель чумы - возможности оптики тогда ещё не позволяли это сделать. В итальянец А. Басси обнаружил передачу болезни шелковичного червя при переносе микроскопического гриба. Ж. Л. Л. Бюффон и А. Л. Лавуазье связывали брожение с дрожжами, однако общепринятой оставалась чисто химическая теория этого процесса, сформулированная в 1697 году Г. Э. Шталем. Для спиртового брожения, как для любой реакции, Лавуазье и Л. Ж. Гей-Люссаком были посчитаны стехиометрические соотношения. В 1830-х Ш. Каньяр де Латур, Ф. Кютцинг и Т. Шванн независимо друг от друга наблюдали обилие микроорганизмов в осадке и плёнке на поверхности бродящей жидкости и связали брожение с их развитием. Эти представление наткнулись, однако, на резкую критику со стороны таких видных химиков как Фридрих Вёлер , Йёнс Якоб Берцелиус и Юстус Либих . Последний даже написал анонимную статью «О разгаданной тайне спиртового брожения» () - саркастическую пародию на микробиологические исследования тех лет.

Тем не менее, вопрос о причинах брожения, тесно связанный с вопросом о спонтанном самозарождении жизни, стал первым успешно решённым вопросом о роли микроорганизмов в природе.

Споры о самозарождении и брожении

Открытие вирусов

Изучение обмена веществ микроорганизмов

Техническая, или промышленная, микробиология

Техническая микробиология изучает микроорганизмы, используемые в производственных процессах с целью получения различных практически важных веществ: пищевых продуктов, этанола, глицерина, ацетона, органических кислот и др.

Огромный вклад в развитие микробиологии внесли русские и советские учёные: И. И. Мечников ( -), Д. И. Ивановский ( -), Н. Ф. Гамалея ( -), Л. С. Ценковский, С. Н. Виноградский , В. Л. Омелянский , Д. К. Заболотный ( -), В. С. Буткевич, С. П. Костычев, Н. Г. Холодный, В. Н. Шапошников, Н. А. Красильников, А. А. Ишменецкий и др.

Большая роль в развитии технической микробиологии принадлежит С. П. Костычеву, С. Л. Иванову и А. И. Лебедеву, которые изучили химизм процесса спиртового брожения, вызываемого дрожжами. На основании исследований химизма образования органических кислот мицелиальными грибами, проведённым В. Н. Костычевым и В. С. Буткевичем, в 1930 году в Ленинграде было организовано производство лимонной кислоты. На основе изучения закономерностей развития молочнокислых бактерий, осуществлённого В. Н. Шапошниковым и А. Я. Мантейфель, в начале 1920-х годов в СССР было организовано производство молочной кислоты, необходимой в медицине для лечения ослабленных и рахитичных детей. В. Н. Шапошников и его ученики разработали технологию получения ацетона и бутилового спирта с помощью бактерий, и в 1934 году в Грозном был пущен первый в СССР завод по выпуску этих растворителей. Труды Я. Я. Никитинского Ф. М. Чистякова положили начало развитию микробиологии консервного производства и холодильного хранения скоропортящихся пищевых продуктов. Благодаря работам А. С. Королёва , А. Ф. Войткевича и их учеников значительное развитие получила микробиология молока и молочных продуктов.

Частью технической микробиологии является пищевая микробиология, изучающая способы получения пищевых продуктов с использованием микроорганизмов. Например, дрожжи применяют в виноделии, пивоварении, хлебопечении, спиртовом производстве; молочнокислые бактерии - в производстве кисломолочных продуктов, сыров, при квашении овощей; уксусно-кислые бактерии - в производстве уксуса; мицелиальные грибы используют для получения лимонной и других пищевых органических кислот и т. д. К настоящему времени выделились специальные разделы пищевой микробиологии: микробиология дрожжевого и хлебопекарного производства, пивоваренного производства, консервного производства, молока и молочных продуктов, уксуса, мясных и рыбных продуктов, маргарина и т. д.

Методы и цели микробиологии

К методам исследования любых микроорганизмов относят:

  • микроскопия : световая, фазово-контрастная , темнопольная , флуоресцентная , электронная ;
  • культуральный метод (бактериологический, вирусологический);
  • биологический метод (заражение лабораторных животных с воспроизведением инфекционного процесса на чувствительных моделях);
  • молекулярно-генетический метод (ПЦР , ДНК- и РНК-зонды и др.);
  • серологический метод - выявления антигенов микроорганизмов или антител к ним (ИФА).

Цель медицинской микробиологии - глубокое изучение структуры и важнейших биологических свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней.

Связь с другими науками

За время существования микробиологии сформировались общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная ветви.

Примечания

Литература

  • Вербина Н. М., Каптерёва Ю. В. Микробиология пищевых производств. - М.: изд. ВО «АГРОПРОМИЗДАТ», 1988. - ISBN 5-10-000191-7
  • Воробьёв А. В., Быков А. С., Пашков Е. П., Рыбакова А. М. Микробиология: Учебник. - 2-е изд. перераб. и доп. - М.: Медицина, 2003. - 336 с. - (Учеб. лит. для студ. фарм. вузов). - ISBN 5-225-04411-5
  • Галынкин В. А., Заикина Н.А., Кочеровец В.И. и др. Основы фармацевтической микробиологии: учебное пособие для системы послевузовского образования. - С.-П.: Проспект науки, 2008. - 288 с. - ISBN 978-5-903090-14-3
  • Гусев М. В. , Минеева Л. А. Микробиология. - 9-е изд., стер. - М.: Издательский центр «Академия», 2010. - 464 с. - (Серия: Классическая учебная книга). - ISBN 978-5-7695-7372-9
  • Гусев М. В., Минеева Л. А. Микробиология: Учебник для студ. биол. специальностей вузов. - 4-е изд., стер. - М.: Издательский центр «Академия», 2003. - 464 с. - ISBN 5-7695-1403-5
  • Заварзин Г. А. , Колотилова Н. Н. Введение в природоведческую микробиологию. - М.: Книжный дом «Университет», 2001. - 256 с. - ISBN 5-8013-0124-0
  • Кондратьева Е. Н. Автотрофные прокариоты: Учеб. пособие для студентов вузов, обучающихся по направлению «Биология», специальностям «Микробиология», «Биотехнология». - М.: Изд-во МГУ, 1996. - 302 с. - ISBN 5-211-03644-1
  • Лысак В. В. Микробиология: учеб. пособие. - Минск: БГУ, 2007. - 426 с. - ISBN 985-485-709-3
  • Шлегель Г. Г. История микробиологии: Перевод с немецкого. - М: изд-во УРСС, 2002. - 304 с. - ISBN 5-354-00010-6

См. также

  • Портал:Микробиология и иммунология

Ссылки

Микробиологией называют науку о микроскопических живых существах, размер которых не превышает 1 мм. Такие организмы можно рассмотреть только с помощью увеличительных приборов. Объектами микробиологии являются представители разных групп живого мира: бактерии, археи, простейшие, микроскопические водоросли, низшие грибы. Все они характеризуются малыми размерами и объединяются общим термином «микроорганизмы».

Микроорганизмы представляют собой самую большую группу живых существ на Земле, и ее члены распространены повсеместно.

Место микробиологии в системе биологических наук определяется спецификой ее объектов, которые, с одной стороны, в большинстве своем представляют собой одну клетку, а с другой - являются полноценным организмом. Как наука об определенном классе объектов и их разнообразии микробиология аналогична таким дисциплинам, как ботаника и зоология. В то же время она относится к физиолого-биохимической ветви биологических дисциплин, так как изучает функциональные возможности микроорганизмов, их взаимодействие с окружающей средой и другими организмами. И наконец, микробиология - это наука, исследующая общие фундаментальные законы существования всего живого, явления на стыке одно- и многоклеточности, развивающая представления об эволюции живых организмов.

Значение микроорганизмов в природных процессах и человеческой деятельности

Роль микробиологии определяется значением микроорганизмов в природных процессах и в человеческой деятельности. Именно они обеспечивают протекание глобального круговорота элементов на нашей планете. Такие его стадии, как фиксация молекулярного азота, денитрификация или минерализация сложных органических веществ, были бы невозможны без участия микроорганизмов. На деятельности микроорганизмов основан целый ряд необходимых человеку производств продуктов питания, различных химических веществ, лекарственных препаратов и т.д. Микроорганизмы используются для очистки окружающей среды от различных природных и антропогенных загрязнений. В то же время многие микроорганизмы являются возбудителями заболеваний человека, животных, растений, а также вызывают порчу продуктов питания и различных промышленных материалов. Представители других научных дисциплин часто используют микроорганизмы в качестве инструментов и модельных систем при проведении экспериментов.

История микробиологии

История микробиологии исчисляется примерно с 1661 г, когда голландский торговец сукном Антони ван Левенгук (1632-1723) впервые описал микроскопические существа, наблюдаемые им в микроскоп собственного изготовления. В своих микроскопах Левенгук использовал одну короткофокусную линзу, закрепленную в металлическую оправу. Перед линзой находилась толстая игла, к кончику которой прикреплялся исследуемый объект. Иглу можно было передвигать относительно линзы с помощью двух фокусирующих винтов. Линзу следовало приложить к глазу и через нее рассматривать объект на кончике иглы. Будучи по складу характера любознательным и наблюдательным человеком, Левенгук изучил различные субстраты естественного и искусственного происхождения, рассмотрел под микроскопом огромное количество объектов и сделал очень точные рисунки. Он исследовал микроструктуру растительных и животных клеток, сперматозоиды и эритроциты, строение сосудов растений и животных, особенности развития мелких насекомых. Достигнутое увеличение (50-300 раз) позволило Левенгуку увидеть микроскопические существа, названные им «зверушками», описать их основные группы, а также сделать вывод о том, что они вездесущи. Свои заметки о представителях мира микробов (простейших, плесневых грибах и дрожжах, различных формах бактерий - палочковидных, сферических, извитых), о характере их движения и устойчивых сочетаниях клеток Левенгук сопровождал тщательными зарисовками и в виде писем направлял в Английское Королевское общество, которое имело целью поддерживать обмен информацией среди научной общественности. После смерти Левенгука изучение микроорганизмов долго сдерживалось несовершенством увеличительных приборов. Только к середине XIX века были созданы модели световых микроскопов, позволившие другим исследователям детально описать основные группы микроорганизмов. Этот период истории микробиологии можно условно назвать описательным.

Физиологический этап развития микробиологии начался приблизительно с середины 19-го века и связан он с работами французского химика-кристаллографа Луи Пастера (1822-1895) и немецкого сельского врача Роберта Коха (1843-1910). Эти ученые положили начало экспериментальной микробиологии и существенно обогатили методологический арсенал этой науки.

При исследовании причин прокисания вина Л.Пастер установил, что сбраживание виноградного сока и образование спирта осуществляют дрожжи, а порчу вина (появление посторонних запахов, вкусов и ослизнение напитка) вызывают другие микробы. Для предохранения вина от порчи Пастер предложил способ тепловой обработки (нагревание до 70 о С) сразу после брожения, чтобы уничтожить посторонние бактерии. Такой прием, применяемый и сегодня для предохранения молока, вина и пива, получил название «пастеризация».

Исследуя другие виды брожения, Пастер показал, что каждое брожение имеет главный конечный продукт и вызывается микроорганизмами определенного типа. Эти исследования привели к открытию неизвестного ранее образа жизни - анаэробного (бескислородного) метаболизма , при котором кислород не только не нужен, но и часто вреден для микроорганизмов. В то же время для значительного числа аэробных микроорганизмов кислород является необходимым условием их существования. Изучая на примере дрожжей возможность переключения с одного типа обмена веществ на другой, Л.Пастер показал, что анаэробный метаболизм энергетически менее выгоден. Микроорганизмы, способные к такому переключению, он назвал факультативными анаэробами .

Пастер окончательно опроверг возможность самозарождения живых существ из неживой материи в обычных условиях. К тому времени вопрос о самозарождении животных и растений из неживого материала был уже решен отрицательно, а относительно микроорганизмов спор продолжался. Опыты итальянского ученого Ладзаро Спалланцани и французского исследователя Франсуа Аппера по длительному прогреванию питательных субстратов в герметичных сосудах для предотвращения развития микробов подвергались критике сторонников теории самозарождения: они считали, что именно укупорка сосудов препятствует проникновению внутрь некой «жизненной силы». Пастером был проведен изящный эксперимент, поставивший точку в этой дискуссии. Прогретый питательный бульон был помещен в открытый стеклянный сосуд, горлышко которого было вытянуто трубкой и S-образно изогнуто. Воздух мог беспрепятственно проникать внутрь колбы, а клетки микроорганизмов оседали в нижнем изгибе горлышка и не попадали в бульон. В этом случае бульон оставался стерильным неопределенно долго. Если же колбу наклоняли так, что жидкость заполняла нижний изгиб, а затем бульон возвращали обратно в сосуд, то внутри быстро начинали развиваться микроорганизмы.

Работы по изучению «болезней» вина позволили ученому предположить, что возбудителями инфекционных заболеваний животных и человека также могут быть микроорганизмы. Пастер выделил возбудителей ряда болезней и изучил их свойства. Опыты с патогенными микроорганизмами показали, что при определенных условиях они становились менее агрессивными и не убивали зараженный организм. Пастер сделал вывод о возможности прививать ослабленных возбудителей здоровым и зараженным людям и животным, чтобы стимулировать защитные силы организма в борьбе с инфекцией. Ученый назвал материал для прививок вакциной, а сам процесс - вакцинацией. Пастер разработал способы прививок против ряда опасных заболеваний животных и человека, в том от бешенства.

Роберт Кох, начав с доказательства бактериальной этиологии сибирской язвы, затем выделил возбудителей многих болезней в чистой культуре. В своих экспериментах он использовал мелких подопытных животных, а также наблюдал под микроскопом развитие бактериальных клеток в кусочках тканей зараженных мышей. Кохом были разработаны способы выращивания бактерий вне организма, различные методы окраски препаратов для микроскопии и предложена схема получения чистых культур микроорганизмов на твердых средах в виде отдельных колоний. Эти простые приемы до сих пор используются микробиологами всего мира. Кох окончательно сформулировал и экспериментально подтвердил постулаты, доказывающие микробное происхождение заболевания:

  1. микроорганизм должен присутствовать в материале больного;
  2. выделенный в чистой культуре, он должен вызывать ту же болезнь у экспериментально зараженного животного;
  3. из этого животного возбудитель должен быть опять выделен в чистую культуру, и две эти чистые культуры должны быть одинаковыми.

Эти правила получили в дальнейшем название «триада Коха». При исследовании возбудителя сибирской язвы ученый наблюдал образование клетками особых плотных телец (спор). Кох пришел к выводу, что устойчивость этих бактерий в окружающей среде связана со способностью к спорообразованию. Именно споры в течение длительного времени способны заражать скот и в тех местах, где ранее находились больные животные или устраивались скотомогильники.

В 1909 г. за труды по иммунитету русский физиолог Илья Ильич Мечников (1845-1916) и немецкий врач-биохимик Пауль Эрлих (1854—1915) получили Нобелевскую премию по физиологии и медицине.

И.И.Мечников разработал фагоцитарную теорию иммунитета, рассматривавшую процесс поглощения лейкоцитами животных чужеродных агентов как защитную реакцию макроорганизма. Инфекционное заболевание представлялось в этом случае как противостояние патогенных микроорганизмов и фагоцитов организма-хозяина, а выздоровление означало «победу» фагоцитов. В дальнейшем, работая в бактериологических лабораториях сначала в Одессе, а потом в Париже, И.И.Мечников продолжал изучение фагоцитоза, а также принимал участие в исследовании возбудителей сифилиса, холеры и других инфекционных заболеваний и разработке ряда вакцин. На склоне лет И.И.Мечников заинтересовался проблемами старения человека и обосновал полезность использования в пище больших количеств кисломолочных продуктов, содержащих «живые» закваски. Он пропагандировал использование суспензии молочнокислых микроорганизмов, утверждая, что такие бактерии и образуемые ими молочнокислые продукты способны подавлять гнилостные микроорганизмы, производящие вредные шлаки в кишечнике человека.

П.Эрлих, занимаясь экспериментальной медициной и биохимией лекарственных соединений, сформулировал гуморальную теорию иммунитета, согласно которой макроорганизм для борьбы с инфекционными агентами производит специальные химические вещества - антитела и антитоксины, нейтрализующие микробные клетки и выделяемые ими агрессивные субстанции. П.Эрлих разработал методы лечения ряда инфекционных заболеваний и участвовал в создании препарата для борьбы с сифилисом (сальварсана). Ученый первым описал феномен приобретения патогенными микроорганизмами устойчивости к лекарственным препаратам.

Русский эпидемиолог Николай Федорович Гамалея (1859-1948) изучал пути передачи и распространения таких серьезных инфекций как бешенство, холера, оспа, туберкулез, сибирская язва и некоторые заболевания животных. Им усовершенствован разработанный Л.Пастером способ профилактических прививок и предложена вакцина против холеры человека. Ученый разработал и внедрил комплекс санитарно-гигиенических и противоэпидемических мероприятий по борьбе с чумой, холерой, оспой, сыпным и возвратным тифами и другими инфекциями. Н.Ф.Гамалея открыл вещества, растворяющие бактериальные клетки (бактериолизины), описал явление бактериофагии (взаимодействия вирусов и бактериальной клетки) и внес существенный вклад в изучение микробных токсинов.

Признание огромной роли микроорганизмов в биологически важных круговоротах элементов на Земле связано с именами русского ученого Сергея Николаевича Виноградского (1856-1953) и голландского исследователя Мартинуса Бейеринка (1851-1931). Эти ученые изучали группы микроорганизмов, способных осуществлять химические превращения основных элементов и участвовать в биологически важных круговоротах на Земле. С.Н.Виноградский работал с микроорганизмами, использующими неорганические соединения серы, азота, железа и открыл уникальный образ жизни, свойственный только прокариотам, при котором для получения энергии используется восстановленное неорганическое соединение, а для биосинтезов - углерод углекислого газа. Ни животные, ни растения не могут существовать таким способом.

С.Н.Виноградский и М.Бейеринк независимо друг от друга показали способность некоторых прокариот использовать атмосферный азот в своем обмене веществ (фиксировать молекулярный азот). Ими были выделены в виде чистых культур свободноживущие и симбиотические микробы-азотфиксаторы и отмечена глобальная роль таких микроорганизмов в цикле азота. Только прокариотические микроорганизмы могут переводить газообразный азот в связанные формы, используя его для синтеза компонентов клетки. После отмирания азотфиксаторов соединения азота становятся доступными для других организмов. Таким образом, азотфиксирующие микроорганизмы замыкают биологический круговорот азота на Земле.

На рубеже XIX-XX веков русский физиолог растений и микробиолог Дмитрий Иосифович Ивановский (1864-1920) открыл вирус табачной мозаики, тем самым обнаружив особую группу биологических объектов, не имеющих клеточного строения. При исследовании инфекционной природы мозаичной болезни табака ученый попытался очистить сок растения от возбудителя, пропуская его через бактериальный фильтр. Однако после этой процедуры сок был способен заражать здоровые растения, т.е. возбудитель оказался гораздо меньше всех известных микроорганизмов. В дальнейшем оказалось, что целый ряд известных заболеваний вызывается подобными возбудителями. Их назвали вирусами. Увидеть вирусы удалось только в электронный микроскоп. Вирусы являются особой группой биологических объектов, не имеющих клеточного строения, изучением которых в настоящее время занимается наука вирусология.

В 1929 г. английским бактериологом и иммунологом Александром Флемингом (1881-1955) был открыт первый антибиотик пенициллин. Ученый интересовался вопросами развития инфекционных болезней и действия на них различных химических препаратов (сальварсана, антисептиков). Во время Первой мировой войны в госпиталях раненые сотнями умирали от заражения крови. Повязки с антисептиками лишь немного облегчали состояние больных. Флеминг поставил опыт, создав модель рваной раны из стекла и заполнив ее питательной средой. В качестве «микробного загрязнения» он использовал навоз. Промывая стеклянную «рану» раствором сильного антисептика и затем заполняя ее чистой средой Флеминг показал, что антисептики не убивают микроорганизмы в неровностях «раны» и не останавливают инфекционный процесс. Осуществляя множество посевов на твердые среды в чашках Петри, ученый проверял антимикробный эффект различных выделений человека (слюны, слизи, слезной жидкости) и открыл лизоцим, убивающий некоторые болезнетворные бактерии. Чашки с посевами сохранялись Флемингом длительное время и многократно просматривались. В тех чашках, куда случайно попали споры грибов и выросли колонии плесени, ученый заметил отсутствие роста бактерий вокруг этих колоний. Специально поставленные эксперименты показали, что вещество, выделяемое плесневым грибом из рода Penicillium губительно для бактерий, но не опасно для подопытных животных. Флеминг назвал это вещество пенициллином. Использование пенициллина в качестве лекарства стало возможным только после выделения его из питательного бульона и получения в химически чистом виде (в 1940 г.), что в дальнейшем привело к разработке целого класса лекарственных препаратов, названных антибиотиками. Начались активные поиски новых продуцентов антимикробных веществ и выделение новых антибиотиков. Так, в 1944 г. американский микробиолог Зельман Ваксман (1888-1973) получил с помощью ветвящихся бактерий рода Streptomyces широко применяемый антибиотик стрептомицин.

Ко второй половине XIX века микробиологами был накоплен огромный материал, свидетельствующий о чрезвычайном разнообразии типов микробного обмена веществ. Изучению многообразия жизненных форм и выявлению их общих черт посвящены работы голландского микробиолога и биохимика Алберта Яна Клюйвера (1888-1956) и его учеников. Под его руководством было проведено сравнительное изучение биохимии далеко отстоящих друг от друга систематических и физиологических групп микроорганизмов, а также анализ данных физиологии и генетики. Эти работы позволили делать вывод об однотипности макромолекул, составляющих все живое, и об универсальности биологической «энергетической валюты» - молекул АТФ. Разработка общей схемы метаболических путей в значительной степени базируется на исследованиях фотосинтеза высших растений и бактерий, проведенных учеником А.Я.Клюйвера Корнелиусом ван Нилем (1897-1985). К. ван Ниль изучил обмен веществ различных фотосинтезирующих прокариот и предложил обобщающее суммарное уравнение фотосинтеза: CO 2 +H 2 A+ һν → (CH 2 O) n +A, где H 2 A - либо вода, либо другое окисляемое вещество. Такое уравнение предполагало, что именно вода, а не углекислый газ, разлагается при фотосинтезе с выделением кислорода. К середине XX века выводы А.Я.Клюйвера и его учеников (в частности, К. ван Ниля) легли в основу принципа биохимического единства жизни.

Развитие отечественной микробиологии представлено различными направлениями и деятельностью многих известных ученых. Целый ряд научных учреждений нашей страны носит имена многих из них. Так, Лев Семенович Ценковский (1822-1877) изучил большое число простейших, микроводорослей, низших грибов и сделал вывод об отсутствии четкой границы между одноклеточными животными и растениями. Он также разработал способ прививки против сибирской язвы с применением «живой вакцины Ценковского» и организовал пастеровскую станцию вакцинации в Харькове. Георгий Норбертович Габричевский (1860-1907) предложил способ лечения дифтерии с помощью сыворотки и участвовал в создании производства бактериальных препаратов в России. Ученик С.Н.Виноградского Василий Леонидович Омелянский (1867-1928) исследовал микроорганизмы, участвующие в превращениях соединений углерода, азота, серы и в процессе анаэробного разложения целлюлозы. Его работы расширили представления о деятельности микроорганизмов почвы. В.Л.Омелянский предложил схемы круговоротов биогенных элементов в природе. Георгий Адамович Надсон (1867-1939) сначала занимался микробной геохимической деятельностью и воздействием различных повреждающих факторов на микробные клетки. В дальнейшем его работы были посвящены изучению наследственности и изменчивости микроорганизмов и получению устойчивых искусственных мутантов низших грибов под действием излучений. Одним из основоположников морской микробиологии является Борис Лаврентьевич Исаченко (1871-1948). Им была высказана гипотеза о биогенном происхождении месторождений серы и кальция. Владимир Николаевич Шапошников (1884-1968) является основателем отечественной технической микробиологии. Его работы по физиологии микроорганизмов посвящены изучению различных видов брожения. Им открыто явление двухфазности ряда микробиологических процессов и разработка способов управления ими. Исследования В.Н.Шапошникова стали основой для организации в СССР микробиологических производств органических кислот и растворителей. Работы Зинаиды Виссарионовны Ермольевой (1898-1974) внесли существенный вклад в физиологию и биохимию микроорганизмов, медицинскую микробиологию, а также способствовали становлению микробиологического производства ряда отечественных антибиотиков. Так, она исследовала возбудители холеры и другие холероподобные вибрионы, их взаимодействие с организмом человека и предложила санитарные нормы хлорирования водопроводной воды в качестве средства профилактики этого опасного заболевания. Ею был создан и применен для профилактики препарат холерного бактериофага, а в дальнейшем - и комплексный препарат против холеры, дифтерии и брюшного тифа. Применение лизоцима в медицинской практике основано на работах З.В.Ермольевой по обнаружению новых растительных источников лизоцима, установлению его химической природы, разработке метода выделения и концентрирования. Получение отечественного штамма продуцента пенициллина и организация промышленного производства препарата пенициллина-крустозина в годы Великой Отечественной войны - это неоценимая заслуга З.В.Ермольевой. Эти исследования явились импульсом для поиска и селекции отечественных продуцентов других антибиотиков (стрептомицина, тетрациклина, левомицетина, экмолина). Работы Николая Александровича Красильникова (1896-1973) посвящены изучению мицелиальных прокариотических микроорганизмов - актиномицетов. Подробное исследование свойств этих микроорганизмов позволило Н.А.Красильникову создать определитель актиномицетов. Ученый был одним из первых исследователей явления антагонизма в мире микробов, что позволило ему выделить актиномицетный антибиотик мицетин. Н.А.Красильников изучал также взаимодействие актиномицетов с другими бактериями и высшими растениями. Его работы по почвенной микробиологии посвящены роли микроорганизмов в почвообразовании, распределению их в почвах и влиянию на плодородие. Ученица В.Н.Шапошникова, Елена Николаевна Кондратьева (1925-1995) возглавляла изучение физиологии и биохимии фотосинтезирующих и хемолитотрофных микроорганизмов. Ею подробно проанализированы особенности метаболизма таких прокариот и выявлены общие закономерности фотосинтеза и углеродного обмена. Под руководством Е.Н.Кондратьевой был открыт новый путь автотрофной фиксации СО 2 у зеленых несерных бактерий, проведено выделение и подробное изучение штаммов фототрофных бактерий нового семейства. В ее лаборатории была создана уникальная коллекция бактерий-фототрофов. Е.Н.Кондратьева была инициатором исследований метаболизма микроорганизмов-метилотрофов, использующих в своем метаболизме одноуглеродные соединения.

В XX веке микробиология полностью сложилась как самостоятельная наука. Дальнейшее ее развитие происходило с учетом открытий, сделанных в других областях биологии (биохимии, генетике, молекулярной биологии и т.д.). В настоящее время многие микробиологические исследования проводятся совместно специалистами разных биологических дисциплин. Многочисленные достижения микробиологии конца XX - начала XXI веков будут кратко изложены в соответствующих разделах учебника.

Основные направления в современной микробиологии.

Уже к концу XIX века микробиология в зависимости от выполняемых задач начинает подразделяться на ряд направлений. Так, исследования основных законов существования микроорганизмов и их разнообразия относят к общей микробиологии, а частная микробиология изучает особенности их разных групп. Задача природоведческой микробиологии - выявление способов жизнедеятельности микроорганизмов в естественных местах обитания и их роли в природных процессах. Особенности болезнетворных микроорганизмов, вызывающих заболевания человека и животных, и их взаимодействие с организмом хозяина изучают медицинская и ветеринарная микробиология, а микробные процессы в земледелии и животноводстве исследует сельскохозяйственная микробиология. Почвенная, морская, космическая и т.д. микробиология - это разделы, посвященные свойствам специфических для этих природных сред микроорганизмам и процессам, с ними связанным. И наконец, промышленная (техническая) микробиология как часть биотехнологии изучает свойства микроорганизмов, используемых для различных производств. В то же время от микробиологии отделяются новые научные дисциплины, занимающиеся изучением определенных более узких групп объектов (вирусология, микология, альгология и др.). В конце XX века усиливается интеграция биологии наук и многие исследования происходят на стыке дисциплин, образуя такие направления, как молекулярная микробиология, генная инженерия и др.

В современной микробиологии можно выделить несколько основных направлений. С развитием и совершенствованием методологического арсенала биологии активизировались фундаментальные микробиологические исследования, посвященные выяснению путей метаболизма и способов их регуляции. Бурно развивается систематика микроорганизмов, ставящая цель создать такую классификацию объектов, которая отражала бы место микроорганизмов в системе всего живого, родственные связи и эволюцию живых существ, т.е. осуществить построение филогенетического древа. Изучение роли микроорганизмов в природных процессах и антропогенных системах (экологическая микробиология) крайне актуально в связи с повышенным интересом к современным экологическим проблемам. Значительное внимание привлекают исследования популяционной микробиологии, занимающейся выяснением природы межклеточных контактов и способов взаимодействия клеток в популяции. Не теряют актуальности те направления микробиологии, которые связаны с применением микроорганизмов в человеческой деятельности.

Дальнейшее развитие микробиологии в XXI веке наряду с накоплением фундаментальных знаний призвано помочь решению ряда глобальных проблем человечества. В результате варварского отношения к природе и повсеместного загрязнения окружающей среды антропогенными отходами возник значительный дисбаланс в круговоротах веществ на нашей планете. Только микроорганизмы, обладая широчайшими метаболическими возможностями, высокой пластичностью обмена веществ и значительной устойчивостью к повреждающим факторам, могут преобразовать стойкие и токсичные загрязнения в безвредные для природы соединения, а в ряде случаев и в пригодные для дальнейшего использования человеком продукты. Тем самым понизится выброс так называемых «парниковых газов» и стабилизируется газовый состав атмосферы Земли. Осуществляя защиту окружающей среды от загрязнений, микроорганизмы одновременно будут способствовать постоянству глобального круговорота элементов. Микроорганизмы, развиваясь на отходах промышленности и сельского хозяйства, могут служить альтернативными источниками топлива (биогаза, биоэтанола и других спиртов, биоводорода и т.д.). Это позволит решить энергетические проблемы человечества, связанные с истощением полезных ископаемых (нефти, угля, природного газа, торфа). Восполнение продовольственных ресурсов (особенно белковых) возможно путем введения в рацион питания дешевой микробной биомассы быстрорастущих штаммов, полученной на отходах пищевой промышленности или на очень простых средах. Сохранению здоровья человеческой популяции будут способствовать не только тщательное изучение свойств патогенных микроорганизмов и выработка методов защиты от них, но и переход на «природные лекарства» (пробиотики), повышающие иммунный статус человеческого организма.

Наука о формах, сочетаниях и размерах клеток микроорганизмов, их дифференциации, а также размножении и развитии. - наука о многообразии микроорганизмов и их классификации по степени родства. В настоящее время в основу систематики микроорганизмов положены молекулярно-биологические методы.- наука об обмене веществ (метаболизме) микроорганизмов, включающая способы потребления питательных веществ, их разложение, синтез веществ, а также способы получения микроорганизмами энергии в результате процессов брожения , анаэробного дыхания , аэробного дыхания и фотосинтеза .

  • Экология микроорганизмов - наука, изучающая влияние факторов внешней среды на микроорганизмы, взаимоотношения микроорганизмов с другими микроорганизмами и роль микроорганизмов в экосистемах.
  • Прикладная микробиология и биотехнология микроорганизмов - наука о практическом применении микроорганизмов, производстве биологически активных веществ (антибиотиков, ферментов, аминокислот, низкомолекулярных регуляторных соединений, органических кислот) и биотоплива (биогазы, спирты) с помощью микроорганизмов, условиях образования и способы регуляции образования данных продуктов.
  • Рекомендуемая литература

    Поль де Крюи. Охотники за микробами. Научно-популярное издание.

    Гучев М.В., Минеева Л.А. Микробиология. Учебник для ВУЗов.

    Нетрусов А.И., Котова И.Б. Общая микробиология. Учебник для ВУЗов.

    Нетрусов А.И., Котова И.Б. Микробиология. Учебник для ВУЗов.

    Практикум по микробиологии. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

    Экология микроорганизмов. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

    Заварзин Г.А. Лекции по природоведческой микробиологии. Научное издание.

    Колотилова Н.Н., Заварзин Г.А. Введение в природоведческую микробиологию. Учебное пособие для ВУЗов.

    Кондратьева Е.Н. Автотрофные прокариоты. Учебное пособие для ВУЗов.

    Егоров Н.С. Основы учения об антибиотиках. Учебник для ВУЗов.

    Промышленная микробиология. Под ред. Н.С. Егорова. Учебное пособие для ВУЗов.

    Микробиологические процессы широко применяют в различных отраслях народного хозяйства. В их основе лежит использование в промышленности биологических систем и процессов, ими вызываемых. В основе многих производств лежат реакции обмена веществ, происходящие при росте и размножении некоторых микроорганизмов.

    В настоящее время с помощью микроорганизмов производят кормовые белки, ферменты, витамины, аминокислоты и антибиотики, органические кислоты, липиды, гормоны, препараты для сельского хозяйства и т.д.

    В пищевой промышленностимикроорганизмы используются при получении ряда продуктов. Так, алкогольные напитки- вино, пиво, коньяк, спирт-и другие продукты получают при помощи дрожжей. В хлебопекарной промышленности используют дрожжи и бактерии, в молочной промышленности -молочнокислые бактерии и т.д.

    Среди многообразия вызываемых микроорганизмами процессов одним из существенных является брожение.

    Под брожением понимают превращение углеводов и некоторых других органических соединений в новые вещества под воздействием ферментов, продуцируемых микроорганизмами. Известны различные виды брожения. Обычно их называют по конечным продуктам, образующимся в процессе брожения, например спиртовое, молочнокислое, уксуснокислое и др.

    Многие виды брожения- спиртовое, молочнокислое, ацетонобутиловое, уксуснокислое, лимоннокислое и другие, вызываемые различными микроорганизмами, - используют в промышленности. Например, в производстве этилового спирта, хлеба, пива применяют дрожжи; в производстве лимонной кислоты - плесневые грибы; в производстве уксусной и молочной кислот, ацетона¾ бактерии. Основная цель указанных производств превращение - субстрата (питательной среды) под действием ферментов микроорганизмов в необходимые продукты. В других производствах, например в производстве хлебопекарных дрожжей, главной задачей является накопление максимального количества культивируемых дрожжей.

    Основные группы микроорганизмов, используемых в отраслях пищевой промышленности, - бактерии, дрожжевые и плесневые грибы.

    Бактерии. Используют в качестве возбудителей молочнокислого, уксуснокислого, маслянокислого. ацетонобутилового брожения. Культурные молочнокислые бактерии используют при получении молочной кислоты, в хлебопечении, иногда в спиртовом производстве. Они превращают сахар в молочную кислоту.

    В производстве ржаного хлеба важная роль принадлежит молочнокислым бактериям. В процессе получения ржаного хлеба участвуют истинные (гомоферментативные) и неистинные (гетероферментативные) молочнокислые бактерии. Гетероферментативные молочнокислые бактерии наряду с молочной кислотой образуют летучие кислоты (в основном уксусную), спирт и диоксид углерода. Истинные бактерии в ржаном тесте участвуют только в кислотообразовании, а неистинные наряду с кислотообразованием оказывают существенное влияние на разрыхление теста, являясь энергичными газообразователями. Молочнокислые бактерии ржаного теста существенное влияние оказывают также на вкус хлеба, так как он зависит от общего количества кислот, содержащихся в хлебе, и от их соотношения. Кроме того, молочная кислота оказывает влияние на процесс образования и структурно-механические свойства ржаного теста.


    Маслянокислое брожение, вызываемое маслянокислыми бактериями, используют для производства масляной кислоты, эфиры которой применяют в качестве ароматических веществ, а для спиртового производства эти бактерии опасны,так как масляная кислота подавляет развитие, дрожжей и инактивирует a-амилазу.

    К особым видам маслянокислых бактерий относятся ацетонобутиловые бактерии, превращающие крахмал и другие углеводы в ацетон, бутиловый и этиловый спирты. Эти бактерии используют в качестве возбудителей брожения в ацетонобутиловом производстве.

    Уксуснокислые бактерии используют для получения уксуса (раствора уксусной кислоты), так как они способны окислять этиловый спирт в уксусную кислоту.

    Следует отметить, что уксуснокислое брожение является вредным для спиртового производства. так как приводит к снижению выхода спирта, а в пивоварении ухудшает качество пива, вызывает его порчу.

    № 60 Классы иммуноглобулинов, их характеристика.

    Иммуноглобулины по структуре, антигенным и иммунобио­логическим свойствам разделяются на пять классов: IgM, IgG, IgA, IgE, IgD.

    Иммуноглобулин класса G . Изотип G состав­ляет основную массу Ig сыворотки крови. На его долю приходится 70-80 % всех сывороточ­ных Ig, при этом 50 % содержится в тканевой жидкости. Среднее содержание IgG в сыворот­ке крови здорового взрослого человека 12 г/л. Период полураспада IgG - 21 день.

    IgG - мономер, имеет 2 антигенсвязывающих центра (может одновременно свя­зать 2 молекулы антигена, следовательно, его валентность равна 2), молекулярную массу около 160 кДа и константу седиментации 7S. Различают подтипы Gl, G2, G3 и G4. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

    Обладает высокой аффинностью. IgGl и IgG3 связывают комплемент, причем G3 ак­тивнее, чем Gl. IgG4, подобно IgE, обладает цитофильностью (тропностью, или сродс­твом, к тучным клеткам и базофилам) и участ­вует в развитии аллергической реакции I типа. В иммунодиагностических реакциях IgG может проявлять себя как не­полное антитело.

    Легко проходит через плацентарный барь­ер и обеспечивает гуморальный иммунитет новорожденного в первые 3-4 месяца жизни. Способен также выделяться в секрет слизис­тых, в том числе в молоко путем диффузии.

    IgG обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

    Иммуноглобулин класса М. Наиболее круп­ная молекула из всех Ig. Это пентамер, кото­рый имеет 10 антигенсвязывающих центров, т. е. его валентность равна 10. Молекулярная масса его около 900 кДа, константа седи­ментации 19S. Различают подтипы Ml и М2. Тяжелые цепи молекулы IgM в отличие от других изотипов построены из 5 доменов. Период полураспада IgM - 5 дней.

    На его долю приходится около 5-10 % всех сывороточных Ig. Среднее содержание IgM в сыворотке крови здорового взрослого человека составляет около 1 г/л. Этот уровень у человека достигается уже к 2-4-летнему возрасту.

    IgM филогенетически - наиболее древний иммуноглобулин. Синтезируется предшест­венниками и зрелыми В-лимфоцитами. Образуется в начале первичного иммунного ответа, также первым начинает синтезиро­ваться в организме новорожденного - опре­деляется уже на 20-й неделе внутриутробного развития.

    Обладает высокой авидностью, наиболее эффективный активатор комплемента по клас­сическому пути. Участвует в формировании сывороточного и секреторного гуморального иммунитета. Являясь полимерной молекулой, содержащей J-цепь, может образовывать сек­реторную форму и выделяться в секрет сли­зистых, в том числе в молоко. Большая часть нормальных антител и изоагглютининов относится к IgM.

    Не проходит через плаценту. Обнаружение специфических антител изотипа М в сыво­ротке крови новорожденного указывает на бывшую внутриутробную инфекцию или де­фект плаценты.

    IgM обеспечивает нейтрализацию, опсонизацию и маркирование антигена, осуществля­ет запуск комплемент-опосредованного цито­лиза и антителозависимой клеточно-опосредованной цитотоксичности.

    Иммуноглобулин класса А. Существует в сы­вороточной и секреторной формах. Около 60 % всех IgA содержится в секретах слизистых.

    Сывороточный IgA : На его долю прихо­дится около 10-15% всех сывороточных Ig. В сыворотке крови здорового взрослого чело­века содержится около 2,5 г/л IgA, максимум достигается к 10-летнему возрасту. Период полураспада IgA - 6 дней.

    IgA - мономер, имеет 2 антигенсвязывающих центра (т. е. 2-валентный), молекуляр­ную массу около 170 кДа и константу седи­ментации 7S. Различают подтипы А1 и А2. Синтезируется зрелыми В-лимфоцитами и плазматическими клетками. Хорошо опре­деляется в сыворотке крови на пике первич­ного и при вторичном иммунном ответе.

    Обладает высокой аффинностью. Может быть неполным антителом. Не связывает комплемент. Не проходит через плацентар­ный барьер.

    IgA обеспечивает нейтрализацию, опсони-зацию и маркирование антигена, осуществля­ет запуск антителозависимой клеточно-опос-редованной цитотоксичности.

    Секреторный IgA : В отличие от сывороточ­ного, секреторный sIgA существует в полимерной форме в виде ди- или тримера (4- или 6-валентный) и содержит J- и S-пeптиды. Молекулярная масса 350 кДа и выше, константа седиментации 13S и выше.

    Синтезируется зрелыми В-лимфоцитами и их по­томками - плазматическими клетками со­ответствующей специализации только в пре­делах слизистых и выделяется в их секреты. Объем продукции может достигать 5 г в сутки. Пул slgA считается самым многочисленным в организме - его количество превышает суммарное содержание IgM и IgG. В сыворотке крови не обнаруживается.

    Секреторная форма IgA - основной фак­тор специфического гуморального местного иммунитета слизистых оболочек желудочно-кишечного тракта, мочеполовой системы и респираторного тракта. Благодаря S-цепи он устойчив к действию протеаз. slgA не активи­рует комплемент, но эффективно связывается с антигенами и нейтрализует их. Он препятс­твует адгезии микробов на эпителиальных клетках и генерализации инфекции в преде­лах слизистых.

    Иммуноглобулин класса Е. Называют так­же реагином. Содержание в сыворотке крови крайне невысоко - примерно 0,00025 г/л. Обнаружение требует применения специаль­ных высокочувствительных методов диагнос­тики. Молекулярная масса - около 190 кДа, константа седиментации - примерно 8S, мо­номер. На его долю приходится около 0,002 % всех циркулирующих Ig. Этот уровень дости­гается к 10-15 годам жизни.

    Синтезируется зрелыми В-лимфоцитами и плазматическими клетками преиму­щественно в лимфоидной ткани бронхолегочного дерева и ЖКТ.

    Не связывает комплемент. Не проходит че­рез плацентарный барьер. Обладает выражен­ной цитофильностью - тропностью к тучным клеткам и базофилам. Участвует в развитии гиперчувствительности немедленного типа - реакция I типа.

    Иммуноглобулин класса D . Сведений об Ig данного изотипа не так много. Практически полностью содержится в сыворотке крови в концентрации около 0,03 г/л (около 0,2 % от общего числа циркулирующих Ig). IgD имеет молекулярную массу 160 кДа и константу се­диментации 7S, мономер.

    Не связывает комплемент. Не проходит че­рез плацентарный барьер. Является рецепто­ром предшественников В-лимфоцитов.