Какие бывают торпеды. Торпеды наших дней

Осенью 1984 года в Баренцевом море произошли события, которые могли привести к началу мировой войны.

В район боевой подготовки советского северного флота неожиданно на полном ходу ворвался американский ракетный крейсер. Это произошло во время торпедометания звеном вертолетов Ми-14. Американцы спустили на воду скоростную моторную лодку, а в воздух подняли вертолет для прикрытия. Авиаторы североморцы поняли, что их целью является захват новейший советской торпеды .

Почти 40 минут длилась дуэль над морем. Маневрами и потоками воздуха от винтов советские летчики не давали назойливым янки приблизиться к секретному изделию, пока советский благополучно не поднял его на борт. Подоспевшие к этому времени корабли охранения вытеснили американский за пределы полигона.

Торпеды всегда считались наиболее эффективным оружием отечественного флота. Не случайно за их секретами регулярно охотятся спецслужбы НАТО. Россия продолжает оставаться мировым лидером по количеству ноу-хау в применении при создании торпед.

Современная торпеда грозное оружие современных кораблей и подводных лодок. Она позволяет быстро и точно наносить удары по противнику в море. По определению торпеда это автономный самодвижущийся и управляемый подводный снаряд, в котором запечатано около 500 кг взрывчатого вещества или ядерная боевая часть. Секреты разработки торпедного оружия являются наиболее охраняемыми, и число государств, владеющих этими технологиями даже меньше количества членов «ядерного клуба».

В период Корейской войны в 1952 году американцы планировали сбросить две атомные бомбы каждая весом 40 тонн. В это время на стороне корейских войск действовал советский истребительный авиаполк. Советский Союз также имел ядерное оружие, и локальный конфликт в любую минуту могут перерасти в настоящую ядерную катастрофу. Сведения о намерениях американцев применить атомные бомбы стали достоянием советской разведки. В ответ Иосиф Сталин приказал ускорить создание более мощного термоядерного оружия. Уже в сентябре того же года министр судостроительной промышленности Вячеслав Малышев представил на утверждение Сталину уникальный проект.

Вячеслав Малышев предложил создать для огромную ядерную торпеду Т-15. Этот 24-метровый снаряд калибра 1550 миллиметров должен был иметь вес 40 тонн, из которых только 4 тонн приходилось на боеголовку. Сталин одобрил создание торпеды , энергию для которой производили электрические аккумуляторы.

Это оружие могло бы уничтожать крупные военно-морские базы США. Из-за повышенной секретности строители и атомщики консультации с представителями флота не вели, поэтому никто не подумал как обслуживать такого монстра и стрелять, кроме того ВМС США имели всего лишь две базы доступные для советских торпед, поэтому от супергиганта Т-15 отказались.

В замена моряки предложили создать атомную торпеду обычного калибра, которая могла бы применяться на всех . Интересно, что калибр 533 миллиметра общепринятый и научно обоснован, так как калибр и длина это фактически потенциальная энергия торпеды. Скрытно наносить удары по вероятному противнику можно было только на большие дистанции, поэтому конструкторы и военные моряки отдали приоритет тепловым торпедам.

Десятого октября 1957 года в районе Новой Земли были проведены первые подводные ядерные испытания торпеды калибром 533 миллиметра. Новой торпедой стреляла подводная лодка С-144. С дистанции 10 километров подлодка выполнила одно торпедный залп. Вскоре на глубине 35 метров последовал мощный атомный взрыв, его поражающие свойства фиксировали сотни датчиков, размещенных на , находившихся в районе испытаний. Интересно, что экипажи во время этого опаснейшего элемента заменили животными.

По итогам этих испытаний, военный флот получил на вооружение первую атомную торпеду 5358 . Они относились к классу тепловых, так как их двигатели работали на парах газовой смеси.

Атомная эпопея это только одна страница из истории российского торпедостроения. Более 150 лет назад идея создать первую самодвижущую морскую мину или торпеду выдвинул наш соотечественник Иван Александровский. Вскоре под командованием впервые в мире была применена торпеда в бою с турками в январе 1878 года. А в начале Великой Отечественной войны советские конструкторы создали самую высокоскоростную торпеду в мире 5339, что значит 53 сантиметра и 1939 года. Однако подлинный рассвет отечественные школы торпедостроения произошел в 60-е годы прошлого века. Его центром стал ЦНИ 400, в последствие переименованный в «Гидроприбор». За прошедший период институт передал советскому флоту 35 различных образцов торпед .

Помимо подлодок торпедами вооружались морская авиация и все классы надводных кораблей, бурно развивающегося флота СССР: крейсеры, эсминцы и сторожевые корабли. Также продолжали строиться уникальные носители этого оружия торпедные катера.

В тоже время состав блока НАТО постоянно пополнялся кораблями с более высокими характеристиками. Так в сентябре 1960 года на воду был спущен первый в мире атомный «Энтерпрайз» водоизмещением 89000 тонн, с 104 единицами ядерных боеприпасов на борту. Для борьбы с авианосными ударными группами имеющих сильную противолодочную оборону, дальности существовавшего оружие было уже недостаточно.

Не замеченными к авианосцам могли подойти только подводные лодки, но вести прицельную стрельбу по прикрытого кораблями охранения было крайне сложно. Кроме того за годы Второй мировой войны американский флот научился противодействовать системе самонаведения торпеды. Чтобы решить эту проблему советские ученые впервые в мире создали новое торпедное устройство, которое обнаруживала кильватерную струю корабля и обеспечивала его дальнейшее поражение. Однако тепловые торпеды имели существенный недостаток их характеристики резко падали на большой глубине, при этом их поршневые двигатели и турбины издавали сильные шумы, что демаскировало атаковавшие корабли.

В виду этого конструкторам пришлось решать новые задачи. Так появились авиационная торпеда, которая размещались под корпусом крылатой ракеты. В результате время поражения субмарин сократилась в несколько раз. Первый такой комплекс получил название «Метель». Он был предназначен для стрельбы с подводными лодками со сторожевых кораблей. Позже комплекс научился поражать и надводные цели. Ракето-торпедами были вооружены и субмарины.

В 70-х годах ВМС США переквалифицировали свои авианосцы из ударных, в многоцелевые. Для этого был заменен состав базирующихся на них самолетов в пользу противолодочных. Теперь они могли не только наносить воздушные удары по территории СССР, но и активно противодействовать развёртыванию в океане советских подводных лодок. Для прорыва обороны и уничтожения многоцелевых авианосных ударных групп, советские подлодки стали вооружаться крылатыми ракетами, стартовавшими из торпедных аппаратов и летевших на сотни километров. Но даже это дальнобойное оружие не могло потопить плавучий аэродром. Требовались более мощные заряды, поэтому специально для атомоходов типа « » конструкторы «Гидроприбор» создали торпеду увеличенного калибра 650 миллиметров, которая несет более 700 килограммов взрывчатки.

Этот образец используется в так называемой мертвой зоне своих противокорабельных ракет. Он наводится на цель либо самостоятельно, либо получает информацию от внешних источников целеуказания. При этом торпеда может подойти к противнику одновременно с другими средствами поражения. Защититься от такого массированного удара практически невозможно. За это она получила прозвище «убийца авианосцев».

В повседневных делах и заботах советские люди не задумывались об опасностях связанных с противостоянием сверхдержав. А ведь на каждого из них было нацелено в эквиваленте около 100 тонн боевых средств США. Основная масса этого оружия была вынесена в мировой океан и размещена на подводных носителях. Главным оружием советского флота против были противолодочные торпеды . Традиционно для них использовались электрические двигатели, мощность которых не зависела от глубины хода. Такими торпедами вооружались не только подводные лодки, но и надводные корабли. Самыми мощными из них были . Долгое время наиболее распространенные противолодочные торпеды для субмарин были СЭТ-65, но в 1971 году конструкторы впервые применили телеуправление, которое осуществлялось под водой по проводам. Это резко увеличило точность стрельбы подлодок. А вскоре была создана универсальная электроторпеда УСЭТ-80, которая эффективно могла уничтожать не только , но и надводные . Она развивала высокую скорость более 40 узлов и имела большую дальность. Кроме того поражала на глубина хода недоступной для любых противолодочных сил НАТО - свыше 1000 метров.

В начале 90-х годов после распада Советского Союза заводы и полигоны института «Гидроприбор» оказались на территории семи новых суверенных государств. Большинство предприятий были разграблены. Но научные работы по созданию современного подводного ружья в России не прерывались.

сверхмалая боевая торпеда

Подобно беспилотным летательным аппаратом торпедным оружием в ближайшие годы будут пользоваться с возрастающим спросом. Сегодня Россия строит боевые корабли четвертого поколения, и одной из их особенности является интегрированная система управления оружием. Для них специально созданы малогабаритные тепловые и универсальные глубоководные торпеды . Их двигатель работает на унитарном топливе, которое по сути является жидким порохом. При его горении выделяется колоссальная энергия. Данная торпеда универсальна. Она может применяться с надводных кораблей, подводных лодок, а также входить в состав боевых частей авиационных противолодочных комплексов.

Технические характеристики универсальной глубоководной самонаводящейся торпеды с телеуправлением (УГСТ):

Вес - 2200 кг;

Вес заряда - 300 кг;

Скорость - 50 узлов;

Глубина хода - до 500 м;

Дальность - 50 км;

Радиус самонаведения - 2500 м;

В последнее время состав американского флота пополняют новейшие атомные субмарины класса «Вирджиния». Их боезапас включает 26 модернизированных торпед Mk 48. При стрельбе они устремляются к цели расположенной на дальности 50 километров со скоростью 60 узлов. Рабочие глубины хода торпеды в целях неуязвимости для противника составляют до 1 километра. Противником данных лодок под водой призвана стать российская многоцелевая подводная лодка проекта 885 «Ясень». Ее боезапас составляет 30 торпед, а секретные пока характеристики ни в чем не уступают.

И в заключении хотелось бы отметить, что торпедное оружие хранит в себе массу секретов, за каждый из которых вероятному противнику в бою придется заплатить дорогую цену.

Торпедные двигатели: вчера и сегодня

ОАО «НИИ мортеплотехники» осталось единственным предприятием в Российской Федерации, осуществляющим полномасштабную разработку тепловых энергоустановок

В период от основания предприятия и до середины 1960-х гг. главное внимание уделялось разработке турбинных двигателей для противокорабельных торпед с рабочим диапазоном работы турбин на глубинах 5-20 м. Противолодочные торпеды проектировались тогда только на электроэнергетике. В связи с условиями применения противокорабельных торпед важными требованиями к энергосиловым установкам были максимально возможная мощность и визуальная незаметность. Требование по визуальной незаметности легко выполнялось за счет применения двухкомпонентного топлива: керосина и маловодного раствора перекиси водорода (МПВ) концентрации 84%. В продуктах сгорания содержался водяной пар и двуокись углерода. Выхлоп продуктов сгорания за борт осуществлялся на расстоянии 1000-1500 мм от органов управления торпедой, при этом пар конденсировался, а двуокись углерода быстро растворялась в воде так, что газообразные продукты сгорания не только не достигали поверхности воды, но и не оказывали влияния на рули и гребные винты торпеды.

Максимальная мощность турбины, достигнутая на торпеде 53-65, составила 1070 кВт и обеспечивала движение со скоростью около 70 узлов. Это была самая скоростная торпеда в мире. Для снижения температуры продуктов сгорания топлива с 2700-2900 К до приемлемого уровня в продукты сгорания впрыскивалась морская вода. На начальной стадии работ соли из морской воды осаждались в проточной части турбины и приводили к ее разрушению. Это происходило до тех пор, пока не были найдены условия безаварийной работы, минимизирующие влияние солей морской воды на работоспособность газотурбинного двигателя.

При всех энергетических преимуществах перексида водорода как окислителя, его повышенная пожаровзрывоопасность при эксплуатации диктовала поиск применения альтернативных окислителей. Одним из вариантов подобных технических решений была замена МПВ на газообразный кислород. Турбинный двигатель, разработанный на нашем предприятии, сохранился, а торпеда, получившая обозначение 53-65К, успешно эксплуатировалась и не снята с вооружения ВМФ до сих пор. Отказ от применения МПВ в торпедных тепловых энергосиловых установках привел к необходимости проведения многочисленных научно-исследовательских работ по поиску новых топлив. В связи с появлением в середине 1960-х гг. атомных подводных лодок, имеющих высокие скорости подводного движения, противолодочные торпеды с электроэнергетикой оказались малоэффективными. Поэтому наряду с поиском новых топлив исследовались новые типы двигателей и термодинамические циклы. Наибольшее внимание было уделено созданию паротурбинной установки, работающей в замкнутом цикле Ренкина. На этапах предварительной как стендовой, так и морской отработки таких агрегатов, как турбина, парогенератор, конденсатор, насосы, клапана и всей системы в целом использовалось топливо: керосин и МПВ, а в основном варианте – твердое гидрореагирующее топливо, обладающее высокими энергетическими и эксплуатационными показателями.

Паротурбинная установка была успешно отработана, но работы по торпеде были остановлены.

В 1970-1980-х гг. большое внимание уделялось разработке газотурбинных установок открытого цикла, а также комбинированного цикла с применением в системе газовыхлопа эжектора на больших глубинах работы. В качестве топлива использовались многочисленные рецептуры жидкого монотоплива типа Otto-Fuel II, в том числе с добавками металлического горючего, а также с применением жидкого окислителя на основе гидроксил аммония перхлорат (НАР).

Практический выход получило направление создания газотурбинной установки открытого цикла на топливе типа Otto-Fuel II. Был создан турбинный двигатель мощностью более 1000 кВт для ударной торпеды калибра 650 мм.

В середине 1980-х гг. по результатам проведенных исследовательских работ руководством нашего предприятия было принято решение о развитии нового направления – разработки для универсальных торпед калибра 533 мм аксиально-поршневых двигателей на топливе типа Otto-Fuel II. Поршневые двигатели по сравнению с турбинными обладают более слабой зависимостью экономичности от глубины хода торпеды.

С 1986-го по 1991 гг. был создан аксиально-поршневой двигатель (модель 1) мощностью около 600 кВт для универсальной торпеды калибра 533 мм. Он успешно прошел все виды стендовых и морских испытаний. В конце 1990-х годов в связи с уменьшением длины торпеды была создана вторая модель этого двигателя путем модернизации в части упрощения конструкции, повышении надежности, исключения дефицитных материалов и внедрения многорежимности. Эта модель двигателя принята в серийной конструкции универсальной глубоководной самонаводящейся торпеды.

В 2002 г. ОАО «НИИ мортеплотехники» было поручено создание энергосиловой установки для новой легкой противолодочной торпеды калибра 324 мм. После анализа всевозможных типов двигателей, термодинамических циклов и топлив выбор был сделан также, как и для тяжелой торпеды, в пользу аксиально-поршневого двигателя открытого цикла на топливе типа Otto-Fuel II.

Однако при проектировании двигателя был учтен опыт слабых сторон конструкции двигателя тяжелой торпеды. Новый двигатель имеет принципиально другую кинематическую схему. В нем отсутствуют элементы трения в топливоподающем тракте камеры сгорания, что исключило возможность взрыва топлива в процессе работы. Вращающиеся части хорошо сбалансированы, а приводы вспомогательных агрегатов значительно упрощены, что привело к снижению виброактивности. Внедрена электронная система плавного регулирования расхода топлива и соответственно мощности двигателя. Практически отсутствуют регуляторы и трубопроводы. При мощности двигателя 110 кВт во всем диапазоне требуемых глубин, на малых глубинах он допускает удвоение мощности при сохранении работоспособности. Широкий диапазон параметров работы двигателя позволяет использовать его в торпедах, антиторпедах, самодвижущихся минах, средствах гидроакустического противодействия, а также в автономных подводных аппаратах военного и гражданского назначения.

Все эти достижения в области создания торпедных энергосиловых установок были возможны в связи с наличием в ОАО «НИИ мортеплотехники» уникальных экспериментальных комплексов, созданных как собственными силами, так и за счет государственных средств. Комплексы располагаются на территории около 100 тыс.м2. Они обеспечены всеми необходимыми системами энергоснабжения, в том числе системами воздуха, воды, азота и топлив высокого давления. В испытательные комплексы входят системы утилизации твердых, жидких и газообразных продуктов сгорания. В комплексах имеются стенды для испытаний макетных и полномасштабных турбинных и поршневых двигателей, а также двигателей других типов. Имеются, кроме того, стенды для испытаний топлив, камер сгорания, различных насосов и приборов. Стенды оснащены электронными системами управления, измерения и регистрации параметров, визуального наблюдения испытуемых объектов, а также аварийной сигнализацией и защитой оборудования.

Современная торпеда — грозное оружие надводных кораблей, морской авиации и подводных лодок. Она позволяет быстро и точно наносить мощный удар по противнику в море. Это автономный, самодвижущийся и управляемый подводный снаряд, содержащий 0,5 тонны взрывчатого вещества или ядерную боевую часть.
Секреты разработки торпедного оружия является наиболее охраняемым, ведь число государств, владеющих этими технологиями даже меньше членов ядерного ракетного клуба.

В настоящее время отмечается серьёзный рост отставания России в проектировании и разработке торпедного вооружения . Долгое время ситуацию хоть как-то сглаживало наличие в России принятых на вооружении в 1977 году ракето-торпед «Швкал», однако с 2005 года подобное торпедное вооружение появилось и в Германии.

Имеется информация, что немецкие ракето-торпеды «Барракуда» способны развивать большую, чем «Шквал» скорость, но пока российские торпеды подобного типа распространены более широко. В целом же отставание обычных российских торпед от зарубежных аналогов достигает 20-30 лет .

Основным производителем торпед в России является ОАО Концерн «Морское подводное оружие – Гидроприбор». Данное предприятие в ходе проведения международного военно-морского салона в 2009 году («МВМС-2009») представило на суд публике свои разработки, в частности 533-мм универсальную телеуправляемую электрическую торпеду ТЭ-2 . Данная торпеда предназначена для поражения современных кораблей подводных лодок противника в любом районе Мирового океана.

Торпеда ТЭ-2 обладает следующими характеристиками :
— длина с катушкой (без катушки) телеуправления – 8300 (7900) мм;
— общая масса – 2450 кг;
— масса боевого заряда – 250 кг;
— торпеда способна развивать скорость от 32 до 45 узлов на дальности в 15 и 25 км соответственно;
— обладает сроком службы в 10 лет.

Торпеда ТЭ-2 оснащается акустической системой самонаведения (активная по надводной цели и активно-пассивная по подводной) и неконтактными электромагнитными взрывателями, а также достаточно мощным электродвигателем, обладающим устройством понижения уровня шума.

Торпеда ТЭ-2 может быть установлена на подводные лодки и корабли различных типов и по желанию заказчика выполнена в трёх различных вариантах :
— первый ТЭ-2-01 предполагает механический ввод данных по обнаруженной цели;
— второй ТЭ-2-02 электрический ввод данных по обнаруженной цели;
— третий вариант торпеды ТЭ-2 имеет меньшие массогабаритные показатели при длине в 6,5 метра и предназначен для использования на подводных лодках натовского образца, к примеру, на немецких подлодках проекта 209.

Торпеда ТЭ-2-02 специально разрабатывалась для вооружения атомных многоцелевых подводных лодок 971 проекта класса «Барс», которые несут ракетно-торпедное вооружение. Есть информация, что подобная АПЛ по контракту была закуплена военно-морским флотом Индии.

Самое печальное в том, что подобная торпеда ТЭ-2 уже сейчас не отвечает ряду требований предъявляемых к подобному оружию, а также уступает по своим техническим характеристикам иностранным аналогам . Все современные торпеды западного производства и даже новое торпедное оружие китайского производства имеет шланговое телеуправлении.

На отечественных же торпедах применяется буксируемая катушка – рудимент почти 50-летней давности. Что фактически ставит наши подводные лодки под расстрел противника с гораздо большими эффективными дистанциями по стрельбе.

Прошло уже около восьмидесяти лет с тех пор, как торпеда была изобретена, и шестьдесят семь лет с того дня, когда впервые ее применили в боевой обстановке. За это время основы устройства этого оружия не изменились. Но вместе с успехами науки и техники, металлургии и машиностроения качество торпед непрерывно улучшалось.

Ученые и техники напрягали все усилия для непрерывного улучшения четырех главных качеств торпеды: разрушительного действия заряда, чтобы рана, нанесенная неприятельскому кораблю, оказалась глубже, больше, смертельнее; меткости и скорости, чтобы вернее и скорее настигла свою жертву торпеда; бесследности, чтобы труднее было врагу заметить торпеду и уклониться от нее, и дальности хода, чтобы можно было, если нужно, издалека поражать врага.

Их старания привели к тому, что во второй мировой войне торпеда стала еще более грозным оружием. В крупных боевых столкновениях на морях и океанах, в повседневной борьбе на коммуникациях торпедные удары часто решали исход сражений.

Перед нами гигантское стальное «веретено». Оно как бы составлено из правильных геометрических фигур. Длинный цилиндр заканчивается спереди полушарием, а сзади «конусом. Общая длина веретена в различных конструкциях изменяется от 6 до 7–8 метров, а диаметр цилиндра - от 450 до 600 миллиметров. Форма и размеры веретена очень напоминают крупную акулу, прожорливую хищницу морей. И удар торпеды напоминает нападение акулы. Электрический скат, название которого Фультон присвоил торпеде, приходится родичем акуле. Поэтому торпеду по всем признакам можно назвать «стальной акулой».

Знакомство со стальной акулой (см. рис. на стр. 88–89) начнем с ее головы - с передней части торпеды. Это та часть, внутри которой помещается взрывчатый заряд, зарядное отделение. Все остальные части торпеды служат одной цели - донести этот заряд до намеченной цели и взорвать ее. Впервой торпеде вес заряда не превышал нескольких килограммов. За восемьдесят лет эти несколько килограммов выросли до двухсот-четырехсот. Уже в первых торпедах вместо обыкновенного черного пороха применялось очень сильное взрывчатое вещество - пироксилин. Это вещество прессовали в форме кирпичей и укладывали в зарядное отделение. В наше время применяются новейшие, исключительно сильно взрывчатые вещества. Их уже не только укладывают, но и заливают в зарядное отделение в жидком виде, после чего этот заряд отвердевает. Когда такой заряд взрывается под водой у борта корабля, сила его удара на расстоянии в 7–8 метров уничтожает на своем пути все препятствия, коверкает, ломает, разбрасывает самые крепкие устройства, изготовленные из высококачественного металла.

Зарядное отделение торпеды, наполненной взрывчатым веществом, - это та же мина с большим зарядом. Как бы сильно ни ударялась такая мина о корпус корабля, она не взорвется, если мы ее снабдим ее взрывателем и детонатором. Детонатор торпеды состоит из двух веществ: 1,8 грамма тетрила и 0,2 грамма гремучей ртути, помещенных внутрь запального стакана, в котором находится обычно 600 граммов прессованного порошка тетрила.

В торпеде обычно имеются два взрывателя, или, как их еще называют, ударника. Один находится спереди зарядного отделения и называется лобовым. При ударе в цель боек ударника подается назад и накалывает капсюль с гремучей ртутью. Детонатор воспламеняется, а вслед за ним взрывается и основной заряд.

Но ведь торпеда может попасть в корабль косо, тогда боек не сработает. На этот случай передний ударник снабжен торчащими впереди четырьмя расходящимися в разные стороны «усами». Очень редко случается, что торпеда проскользнет по борту корабля и не заденет его ни одним усом. Чтобы застраховать торпеду и от такого случая, ее снабжают вторым ударником. Он называется «инерционным». Боек этого ударника так устроен, что при любом столкновения торпеды с каким-нибудь массивным твердым телом он мгновенно накалывает капсюль детонатора и производит взрыв.


Торпеда с неконтактным взрывателем (с фотоэлектрическим «глазом») проходит под корпус корабля, поворачивает кверху под самым его днищем, чтобы взорваться там, где жизненные части судна наименее защищены

У читателя, наверное, возникает опасение: а не могут ли оба эти ударника, и лобовой и особенно инерционный, подействовать еще до торпедного выстрела, еще во время подготовки, от случайных сотрясений и столкновений? Нет, не могут! Безопасность обращения обеспечена особым предохранителем, который стопорит бойки ударников. Этот предохранитель торчит из торпеды впереди в виде стерженька с крошечным винтом-вертушкой на конце. Когда торпеда выпущена в воду, вертушка начинает вращаться и освобождает бойки от предохранителя. Это происходит, когда торпеда уже прошла в воде 200–250 метров; теперь она стала опасной. Существует еще один вид взрывателя, который действует, если торпеда вовсе не коснется корабля, а только пройдет под ним. Такие взрыватели называются неконтактными. Их устройство составляет военную тайну. Можно только привести описания отдельных проектов, сведения о которых проникли в печать.

За несколько лет до начала второй мировой войны в зарубежной технической печати появились сообщения о торпеде, вооруженной электрическим «глазом» - фотоэлементом. Торпеду направляют заведомо немного ниже днища корабля-мишени. В тот момент, когда фотоэлемент попадает в тень, падающую от корабля, срабатывает чувствительное устройство электрического глаза, управляющее рулем глубины, и торпеда резко взмывает кверху. При этом приводится в действие и механизм, взрывающий заряд. Взрыв происходит или в непосредственной близости от днища, или при столкновении торпеды с корпусом корабля.

Основное назначение такой торпеды - нанести удар в самую уязвимую часть корпуса корабля - в его днище, где он хуже всего защищен от подводного взрыва.

По отдельным сообщениям зарубежных журналов существуют еще неконтактные взрыватели, в которых вместо электрического глаза работает магнитная стрелка, так же как в магнитной мине. Когда торпеда с таким взрывателем попадает в магнитное поле корабля, взрывается заряд. По времени действие магнитного взрывателя так рассчитано, чтобы торпеда взорвалась как раз под днищем корабля, где нет противоминной защиты.

Воздух + вода + керосин

Воздух, вода и керосин - вот чем питается наш стальной хищник. Он принимает эту пищу в особые приемники - резервуары и бачки. Если от зарядного отделения итти к хвосту торпеды, то прежде всего мы попадаем в приемник воздуха - воздушный резервуар. Это средняя и самая длинная (около 3 метров) часть торпеды. Она представляет собой стальной цилиндр во весь диаметр торпеды. С обоих концов этот цилиндр закрыт сферическими донышками.

Воздух - главная и наибольшая составная часть «пищи» торпеды, и его требуется очень много. Поэтому стараются поместить в резервуар как можно больше воздуха. А как это сделать? Приходится накачивать воздух внутрь резервуара под большим давлением, доходящим до 200 атмосфер, и хранить его в резервуаре в сжатом состоянии.

При обыкновенном атмосферном давлении на каждый квадратный сантиметр поверхности резервуара давила бы и внутри и снаружи сила в 1 килограмм.

Но вот мы накачали в резервуар воздух под давлением в 200 атмосфер. Теперь на каждый квадратный сантиметр поверхности изнутри резервуара давит огромная сила в 200 килограммов, а снаружи - все тот же 1 килограмм, что и раньше. Металл, из которого изготовлен резервуар, должен надежно выдерживать избыток давления изнутри и не разрываться. Соединения донышек с цилиндром не Должны пропускать скрытый воздух наружу. Поэтому воздушный резервуар торпеды - это очень ответственная ее часть. Резервуар изготовляют из очень прочной стали. Тщательно наглухо вставляются в цилиндр донышки. Изготовление резервуара и донышек, сборка их - все это очень ответственные операции при изготовлении всей торпеды.

В заднем Донышке воздушного резервуара оставлено отверстие. Трубка соединяет это отверстие с поверхностью торпеды. Через впускной кран, находящийся на этой трубке, накачивается воздух. Затем впускной кран закрывается - «резервуар принял свою порцию воздуха. Когда понадобится, в той же трубке откроется другой кран - машинный, и воздух потечет к механизмам торпеды.

Тут же, за воздушным резервуаром, начинается кормовое отделение торпеды. Здесь рядом с воздушным резервуаром находится маленький резервуар - баллон для нескольких литров керосина. И, наконец, здесь же мы найдем и воду, налитую сюда специально, чтобы «поить» стальную акулу.

В кормовом отделении размещаются все главнейшие механизмы торпеды. Воздух, керосин, вода попадают в особый аппарат, который торпедисты называют «подогревательным аппаратом». На пути к этому аппарату сжатый воздух проходит через регуляторы высокого и низкого давления. Первый из них понижает давление воздуха с 200 атмосфер до 60, а второй - с 60 до более низкого, рабочего давления. Лишь после этого сжатый воздух попадает, наконец, в подогревательный аппарат. Здесь воздух, вода и керосин перерабатываются в единый источник энергии движения торпеды. Как это делается?

Как только керосин поступает в подогревательный аппарат, он тут же воспламеняется от специального автоматического зажигательного патрона.

Воздух дает возможность керосину сгорать - температура в аппарате сильно повышается. Вода испаряется, превращается в пар. Вся рабочая смесь из газов от сгоревшего керосина и водяных паров поступает из подогревательного аппарата в главную машину - двигатель торпеды; он невелик и занимает в длине торпеды около метра, и все же этот двигатель развивает большую мощность - в 300–400 лошадиных сил.

Смесь, попадающая в цилиндры двигателя, сохраняет значительное рабочее давление. В цилиндрах могут перемещаться поршни со штоками. Рабочая смесь давит на поршень, толкает его. Затем особый распределительный механизм двигателя выпускает отработавшую смесь и впускает новую, с другой стороны поршня. Давление с одной стороны падает, а с другой - возрастает. Поршень возвращается обратно и тянет за собой шток.

Почти так же работает и обыкновенная паровая машина в паровозе. Только там машина вращает колесо паровоза, а в торпеде она приводит в движение гребные валы. Две стальные трубы, вставленные одна в другую, - это и есть гребные валы торпеды. Они проходят сквозь хвостовую часть торпеды, по ее оси от машины до заднего конца. Работа поршней через кривошипный механизм передается на оба вала, заставляя их вращаться в разные стороны. Валы называются гребными потому, что на каждом из них насажен гребной винт. Само собой понятно, что и винты вращаются в разные стороны.

Но почему их два и почему их заставляют вращаться в разные стороны? Представим себе, что у торпеды всего только один винт. Заставим этот винт вращаться в какую-нибудь одну сторону. Тогда торпеда будет двигаться вперед и вращаться в сторону; крениться. Но работа механизмов торпеды рассчитана на то, что она будет двигаться вперед, не качаясь и не переворачиваясь. Когда два винта вращаются в противоположные стороны, они уравновешивают друг друга - торпеда идет ровно, не кренится, не переворачивается.

Когда газы сделали свое дело - толкнули поршни, заставили вращаться валы, они выходят внутрь полого гребного вала. Через задний открытый конец вала отработанный газ уходит в воду и пузырьками подымается на поверхность. Там пузырьки лопаются и образуют довольно заметный пенистый след.


След торпеды на воде

Этот след - враг торпедистов: он выдает торпеду и нападающую подводную лодку.

Очень часто этот пенистый след портит торпедистам все дело. Противник увидел след, «отвернул», и торпеда прошла мимо. Важнейшее качество торпедной атаки с подводных лодок - ее скрытность - намного уменьшается по вине каких-то воздушных пузырьков, по вине выхлопных газов двигателя торпеды, уходящих в воду. Как избавиться от них?

Прежде всего в торпеде можно заменить двигатель, поставить электромотор, тогда не будет никаких воздушных пузырьков, след торпеды исчезнет. Раньше считали, что этого достигнуть невозможно, так как для питания электромотора нужны настолько тяжелые и громоздкие аккумуляторы, что их негде разместить в торпеде. И размеры и вес торпеды якобы этого не позволяли. Но уже во время второй мировой войны в печати появились сообщения о том, что применяются торпеды с электрическим двигателем. Это значит, что изобретены легкие и емкие аккумуляторы, маловесный, но мощный электромотор. Таким образом найден путь избавления от следа торпеды.

Ту же задачу можно решить и по другому - сделать отходящие газы невидимыми - тогда не будет пузырьков.

Еще десять лет назад в печати начали появляться сведения о торпедном двигателе, работающем не на паровоздушной смеси, а на кислороде и водороде. Выхлопные газы такого двигателя должны превращаться в воду и бесследно исчезнуть в море.

Возможно, что и такое решение задачи бесследности уже достигнуто.

Если снять воздушный резервуар и сфотографировать разрез торпеды, мы увидим на фотографии сложный лабиринт из трубок и клапанов, окутавших корпус подогревательного аппарата, керосиновой баллон и главную машину.

Поперечный разрез торпеды 1 - распределение воздуха между цилиндрами двигателя; 2 - машинный кран для сжатого воздуха; 3 - впускной клапан; 4 - прибор расстояния; 5 - подача керосина в подогреватель; 6 - зажигательный патрон, воспламеняющий керосин в подогревателе; 7 - подогреватель; 8 - регулятор давления воздуха

Но здесь нет ничего лишнего. Каждая трубка, каждый клапан служат для определенной работы.

Механические «рулевые»

На всяком корабле есть рулевой. Он держит в руках штурвал, поворачивает им руль, корабль меняет направление. У торпеды есть тоже рули, и ими также нужно управлять. Если этого не делать, торпеда может выскочить на поверхность или, наоборот, нырнуть очень глубоко и удариться о дно. Может даже случиться, что она повернет в другую сторону или пойдет назад и ударит свой корабль.

Там, где кончается хвостовая часть торпеды, укреплены две пары рулей. Одна пара вертикальная, другая - горизонтальная. Каждая пара рулей торпеды имеет своего «рулевого». Но это, конечно, не люди, а механические рулевые.

Горизонтальные рули держат ход торпеды по глубине. Это значит, что они заставляют торпеду держаться на заданном уровне под водой. В разных случаях и уровни эти разные.

Линейный корабль глубоко сидит в воде: для попадания в него торпедой пониже, подальше от броневой защиты, необходимо, чтобы торпеда шла глубже. Малые надводные корабли неглубоко сидят в воде; если пустить торпеду на большой глубине, она может пройти под днищем такого корабля, под его килем. Значит, надо пустить торпеду на небольшой глубине. И надо обеспечить, чтобы заданная глубина не менялась.

Вот тут-то и начинается работа первого рулевого торпеды - гидростатического аппарата.

Мы уже знакомы с устройством гидростата, работающего в мине. В торпеде его устройство повторяется. Цилиндр с подвижным диском и пружиной помещен в торпеде так, что диск сообщается с морской водой, испытывает давление воды. Чем глубже идет торпеда, тем больше это давление; чем мельче идет торпеда, тем меньше и давление. Это давление будет толкать диск гидростата снизу вверх.

Что нужно сделать, чтобы торпеда шла на заданной глубине, например на глубине в 4 метра? Регулируют пружину гидростата таким образом, чтобы при глубине в 4 метра диск занимал в цилиндре определенное положение. Если торпеда пойдет глубже, давление увеличится, диск пойдет кверху. Если торпеда пойдет мельче, диск опустится.

Особые тяги связывают диск с рулевой машинкой, работающей от сжатого воздуха. Рулевая машинка в свою очередь связана с горизонтальными рулями. Если торпеда пошла вниз и нырнула ниже заданной глубины, диск пошел кверху, потянул тягу, заработала рулевая машинка и повернула рули. Торпеда начинает итти кверху. Вот она достигла определенного уровня под водой, но не удержалась на нем и пошла выше. Диск опустился, снова потянул тягу, но уже в другую сторону. Снова заработала рулевая машинка и повернула рули. Приходится торпеде повернуть книзу. Так гидростат не дает торпеде уйти от заданной глубины.

А как же ведут себя гидростат и рули, если торпеда правильно идет на заданной глубине? В этом случае диск остается в покое; все устройство так отрегулировано, что при неподвижном диске горизонтальные рули располагаются в горизонтальнойплоскости, составляют прямое продолжение оперения хвоста торпеды. При этом должен получиться и прямой ход, без скачков вниз и вверх. На самом деле строго прямого хода не бывает: торпеда всегда уходит то вверх, то вида, идет по волнистой линии. Но если нет резких скачков, если отклонения от заданного уровня не велики, не больше 1 / 2 метра, ход по глубине считается удовлетворительным. Но не один гидростат решает эту задачу.




Устройство современной торпеды 1 - зарядное отделение; 2 - воздушный резервуар, в котором хранится сжатый воздух, питающий двигатель; 3 - запирающий кран для запирания воздуха в резервуаре; 4 - машинные регуляторы для понижения давления; 5 - машинный кран для пропуска воздуха к механизмам; 6 - прибор расстояния, механизм которого закрывает доступ воздуха к механизмам после прохождения торпедой заданного расстояния; 7 - курок для открывания машинного крана (откидывается, когда торпеда выбрасывается из трубы аппарата); 8 - прибор Обри, управляющий ходом торпеды по направлению; 9 - резервуар для керосина; 10 - главная машина торпеды (двигатель); 11 - подогревательный аппарат, в котором подготовляется рабочая смесь для двигателя торпеды; 12 - гидростатический аппарат, управляющий ходом торпеды по глубине

Гидростату ровно столько лет, сколько и самой торпеде. Уайтхед изобрел этот прибор, когда стремился заставить мину-лодку Лупписа ходить под водой. Испытания показали, что торпеда делает скачки и уклоняется от заданного уровня на 6–8 метров. Очень часто она зарывалась в песчаное дно или, как дельфин, выпрыгивала и кувыркалась на поверхности воды.

Уайтхед скоро открыл причину этой «резвости». Торпеда - тяжелое тело. Вот она с большой скоростью идет вниз, а рули потянули ее наверх. Торпеда не сразу «послушается руля», по инерции она еще пройдет некоторое расстояние вниз. Рули тоже всегда немного опаздывают с поворотом. Да и понятно почему. В тот миг, когда торпеда ушла ниже заданной глубины, диск немедленно начинает двигаться. Но между ним и рулями должны еще сработать тяги и рулевая машинка. На это уходит время. Вот почему первая торпеда Уайтхеда делала прыжки.

Уайтхед начал решать новую задачу - как уничтожить или немного уменьшить прыжки торпеды. Через два года (в 1868 г.) он эту задачу решил - торпеда начала ходить ровнее, без скачков. Уайтхед присоединил к гидростату еще один механизм. «Секрет мины» - так много лет назывался этот прибор.

Конечно, все видели маятник в стенных часах. «Секрет» мины - это маятник. Его тяжелый груз через специальную рулевую машинку соединен с рулевыми тягами. Точка подвески выбрана таким образом, что груз маятника как бы помогает гидростату выпрямить ход торпеды. Стоит торпеде нырнуть носом вниз или прыгнуть кверху, как тяжесть маятника начинает действовать через рулевую машинку на рулевые тяги. Маятник - помощник гидростата. Он ускоряет перекладку рулей, когда торпеда отклоняется от заданной глубины. Когда торпеда возвращается на заданную глубину, тот же маятник препятствует слишком резкому прыжку торпеды, выравнивает ее ход.

Гидростат вместе с маятником составляют гидростатический аппарат. Это и есть первый рулевой торпеды, который в подводных глубинах держит правильный курс на корабль противника.

Теперь мы знаем, как Уайтхеду удалось обеспечить торпеду первым рулевым. Но вскоре понадобился и второй рулевой.

В первое время существования торпеды еще не было таких прочных материалов, которые могли бы выдерживать большое давление воздуха в резервуаре. Чем меньше было давление, тем меньше воздуха вмещал резервуар, тем меньше запас энергии был у двигателя торпеды. Поэтому торпеда едва-едва проходила 400 метров. Чтобы вернее попасть, приходилось близко подходить к противнику. На таком малом расстоянии торпеда только немного отклонялась от заданного направления. И все же часто случались промахи.

В дальнейшем торпеда совершенствовалась, увеличили запас воздуха в резервуаре, дальность хода торпеды выросла, и отклонения торпеды от направления стали очень большими, поэтому часто случались промахи даже по неподвижному противнику. А ведь нужно было стрелять и по движущимся кораблям.

Уайтхеду так и не удалось додуматься до устройства такого механического рулевого, который так же, как и гидростат, замечал бы отклонения и заставлял торпеду возвращаться к заданному направлению.

Только через 30 лет после рождения торпеды (в 1896 г.) конструкторам удалось изобрести для нее второго механического рулевого - прибор для управления ходом по направлению. Заслуга эта принадлежит конструктору Обри. Поэтому и прибор назван его именем; так и говорят - прибор Обри. Этот прибор по своему устройству напоминает простой волчок, тот самый волчок, которым забавляются дети. Если такой волчок вращается с очень большой скоростью, его ось всегда находится в одном и том же положении, всегда сохраняет свое направление. Даже большое усилие не заставит ось быстро вращающегося волчка изменить свое направление. В технике такой волчок называется гироскопом.


Как работает в торпеде механический рулевой - волчок

Обри снабдил торпеду гироскопом и подвесил его таким образом, чтобы положение оси волчка прибора всегда оставалась одинаковым. Прибор соединялся с вертикальными рулями с помощью тяг и промежуточной рулевой машинки так, что при прямом, правильном ходе торпеды ее вертикальные рули неподвижны. Но вот торпеда свернула с прямого пути. Так как ось быстро вращающегося волчка сохранила свое положение в пространстве, а торпеда изменила свое направление, то тяги, соединяющие через рулевую машинку волчок с рулями, начинают перекладывать вертикальные рули. Соединение волчка с рулями устроено так, что если торпеда повернула влево, рули переложатся вправо - придется и торпеде поворачиваться вправо и возвращаться на правильный путь. Не удержалась торпеда на правильном направлении и повернула правее - рули тут же переложатся влево, и снова торпеде приходится возвращаться на правильный путь. И только когда торпеда пойдет по этому пути, рули будут оставаться в покое, в прямом положении. Но для того, чтобы гироскоп так работал, нужно, чтобы волчок очень быстро вращался, чтобы число его оборотов доходило до двадцати тысяч в минуту. Как это делается?

Среди лабиринта трубок, между резервуаром и машиной, вьется одна, которая проходит мимо подогревательного аппарата, мимо главной машины, уходит дальше и кончается как раз в корпусе гироскопа. Здесь помещается маленькая воздушная турбинка. Трубка подводит к ней воздух из резервуара. Этот воздух сохраняет все свое давление - оно по дороге нигде не снижалось. Когда в момент выстрела открывается машинный кран, воздух из резервуара через трубку попадает в турбинку, давит на ее лопатки и заставляет ее вращаться с огромной скоростью. В свою очередь турбинка передает эту скорость волчку. Все это длится меньше, чем полсекунды, затем турбинка автоматически разобщается от волчка. Таким образом, пока торпеда при выстреле соскальзывает в воду, ее волчок оказывается уже запущенным и точно ведет подводный снаряд по заданному направлению. И здесь, как и при ходе торпеды по глубине, ее движение не совсем прямое, а слегка волнистое. Но эти колебания очень малы.

Итак, гироскоп это тот второй механический рулевой, который заставляет торпеду итти прямо, на цель. Но тот же гироскоп, если его заранее соответствующим образом установят, может заставить торпеду повернуть на какой-то угол к первоначальному направлению. Бывает иногда, что торпедой выгоднее стрелять именно так. Такая стрельба называется «угловой».

Торпедный выстрел

Мы познакомились с главнейшими основными механизмами стальной акулы. Но в ее металлическом туловище разместилось еще много других вспомогательных механизмов. Можно сказать, что тело стальной акулы - корпус торпеды - доотказа «набито» этими механизмами.

С помощью одних механизмов можно заставить торпеду итти под водой со скоростью до 50 узлов. При такой скорости быстро расходуется воздух, его хватает на короткую дистанцию, всего на 3–4 километра. Но если уменьшить скорость до 30 узлов, то торпеда может пройти и очень большое расстояние - до 10–12 километров.

Другие механизмы заставляют торпеду пройти не больше заданного расстояния, заставляют ее тонуть, если она не настигла врага, или всплыть на поверхность воды, если ее необходимо вернуть на пославший ее корабль. Это бывает во время учебных практических стрельб.

И основные и вспомогательные механизмы торпеды регулируются, устанавливаются заранее, до выстрела. Для этой цели наружу выведены через особые отверстия - горловины - краны и регуляторы.


Трехтрубный поворотный торпедный аппарат

Если стреляют снарядом или пулей, необходимо иметь пушку или винтовку. А как выстрелить торпедой? Существует специальная торпедная «пушка». Она имеет одну или несколько труб. Подготовленные к выстрелу торпеды вводятся в эти трубы. При выстреле в задней части трубы либо взрывается заряд пороха, либо туда впускается из особого резервуара сжатый воздух. В обоих случаях получается давление, которое выталкивает торпеду из трубы.

На небольших надводных кораблях торпедные аппараты устанавливаются на палубе. Трубы соединяются по две, три или четыре (до пяти) на одной поворотной платформе. Чтобы прицелиться, надо повернуть платформу с трубами на определенный угол. На подводных лодках торпедные аппараты помещаются внутри корпуса, в носу и на корме (а в последнее время и снаружи вне корпуса). Их наглухо закрепляют в гнездах. Для того, чтобы прицелиться, приходится маневрировать и направлять лодку кормой или носом на ту точку, куда следует попасть торпедой.

Выстрел-толчок с помощью сжатого воздуха или пороха служит только для того, чтобы заставить торпеду вылететь из трубы в воду. На верхней поверхности торпеды имеется откидной курок, а к внутренней поверхности трубы аппарата сверху прилажен зацеп. Когда торпеда еще скользит внутри трубы, этот зацеп нажимает на курок, откидывает его. Немедленно открывается машинный кран, и сжатый воздух из резервуара перемещается в подогревательный аппарат, а оттуда в машину. Двигатель начинает работать, винты вращаются и быстро двигают торпеду вперед.

Но куда деваются пороховые газы или сжатый воздух после того, как торпеда вышла из аппарата? На надводных кораблях вопрос решается просто: вслед за торпедой в воздух вырываются и вытолкнувшие ее газы. На подводных лодках дело обстоит иначе. Газы вырываются в воду и затем на ее поверхность, образуя большой пузырь. Это обнаруживает подводную лодку. Вот почему в последнее время усиленно решалась и, повидимому, успешно решена задача «беспузырной» стрельбы.

Торпедный треугольник

Еще до тоги, как сжатый воздух выбросил торпеду в воду, минерам пришлось взять правильный прицел. Как же прицелиться торпедой, каким образом точно направить трубу торпедного аппарата? Ведь корабль-цель на месте не стоит, а движется с большой или малой скоростью в каком-то направлении. Бели в момент выстрела прицелиться как раз в ту точку, где находится корабль противника, то за время движения торпеды цель успеет уйти вперед, а торпеда промахнется и только пересечет курс корабля где-то сзади, за его кормой. Поэтому нужно целиться не в самый корабль, а в какую-то точку впереди него, на пути его движения. А как найти эту точку?

Вот тут-то и приходит на помощь «торпедный треугольник». Быстрое и правильное решение этого треугольника - важнейшее условие успешной торпедной атаки.

Представьте себе атакующий корабль. На некотором расстоянии от него движется по своему направлению корабль-цель. Линия, соединяющая оба корабля в момент выстрела, - это одна сторона треугольника. Через минуту-две произойдет взрыв- корабль противника и торпеда столкнутся в какой-то точке. Линия, соединяющая атакующий корабль с этой точкой, - это вторая сторона треугольника. Третья сторона - это тот отрезок пути, который корабль противника успел пройти по курсу с момента выстрела до момента взрыва.

Треугольник имеет три вершины - точки. Первая точка - это местонахождение атакующего корабля в момент выстрела, вторая - местонахождение атакуемого корабля, тоже в момент выстрела, а третья - та точка, в которой этот корабль и торпеда должны встретиться. Вот эту третью вершину треугольника и надо найти.

Схема торпедного треугольника

На атакующем корабле имеются специальные точные приборы, которые сообщают торпедистам необходимые сведения: скорость и курс корабля-цели и расстояние до нее. Кроме того, торпедисту-наводчику помогает особый торпедный прицел. Этот прибор тоже напоминает собой треугольник. Одна сторона этого треугольника жестко закреплена по направлению трубы торпедного аппарата. На ней нанесена шкала с делениями. Этими делениями в масштабе измеряют скорость хода торпеды. Другая сторона треугольника подвижна вокруг шарнира. На ней тоже нанесены деления, изображающие скорость корабля-цели. Эта сторона устанавливается параллельно курсу атакуемого судна. И, наконец, третья сторона совпадает с линией, соединяющей атакующий корабль с точкой попадания. Эта сторона тоже подвижна. Торпедист комбинирует установку обеих подвижных сторон своего прицела и находит искомую точку или, вернее, тот угол, на который следует отклонить направление торпеды, чтобы попасть в корабль-цель впереди его курса в какой-то определенной точке. Этот угол называется «углом упреждения».

Когда торпеда еще только появилась, скорость ее хода очень быстро росла и вскоре увеличилась чуть ли не вдвое по сравнению со скоростями кораблей того времени. Можно было стрелять даже вдогонку вражеским кораблям. В наши дни скорость торпеды только немного превосходит скорость быстроходных надводных кораблей. Атакующему кораблю приходится поэтому выбирать позицию впереди своей цели.

Когда стреляют торпедами с больших дистанций, трудно рассчитывать на правильный, точный прицел. Поэтому в таких случаях сразу выпускают несколько торпед, но не. в одну точку, а так, чтобы все они покрыли определенную площадь. Эта делается с таким расчетом, чтобы «поймать» корабль противника на обстрелянной площади даже при неправильном определении данных для стрельбы. Такой способ нанесения торпедного удара называется «стрельбой по площадям». Как осуществляется такая стрельба?

Трубы торпедных аппаратов растворяются так, что их оси образуют как бы лучи, выходящие из одной точки. Получается своеобразный торпедный «веер». Выпущенные залпом торпеды так и идут на цель веером и уж одна или две из них обязательно встретятся с ней. Можно стрелять и по-другому, очередью, «беглым огнем», - торпеды выпускаются одна за другой через известные промежутки времени с таким расчетом, чтобы одна из них настигла корабль противника в какой-то точке на линии его курса.

Испытание

Сложна техника, заключенная в торпеде. Очень точного и квалифицированного обращения требуют ее механизмы. Решительных быстрых действий, инициативы, твердого знания материальной части и умения правильно оценить боевую обстановку требует от торпедиста торпедный выстрел. Специальность торпедиста полна интереса.

Много раз испытываются отдельные механизмы и вся торпеда на испытательных стендах завода и в море перед сдачей во флот, а на кораблях снова и снова упражняют стальных хищников в смертоносном беге на врага, обучают кадры молодых торпедистов владеть мощью своего оружия.

Вот несколько человек на палубе учебного корабля или пловучей испытательной станции перегнулись у борта и напряженно следят за поверхностью воды. В руках у этих людей секундомеры. Прозвучал сигнал, и в тот же миг из трубы торпедного аппарата прыгнула в воду стальная акула. Она ныряет, исчезает в воде, и тут же, через мгновение, лопающиеся на поверхности воздушные пузырьки отмечают след торпеды. Несколько вех расположено на ее пути. Вот уже пройдена первая веха. Люди на палубе «засекли» на секундомерах момент прыжка торпеды и теперь вооружились биноклями, чтобы не упустить из виду ее след.

Одна за другой остаются позади контрольные вехи, вот уже последняя - это конец заданной дистанции. Уже и след виден очень неясно, его как будто уже нет. В этот момент за последней вехой над поверхностью воды весело взлетает светлая струя фонтана: это торпеда прошла заданное расстояние, автоматически освободилась от балластной воды, стала вертикально и беспомощно запрыгала на волнах, как безобидный буек. Дежурный катер быстро подходит к «буйку». Люди на катере ловко берут торпеду на буксир и доставляют ее обратно к учебному кораблю. Еще несколько минут - и торпеда повисла в воздухе на крюке подъемного крана и возвращается на свой корабль.


Выстрел торпедой с пловучей пристрелочной станции

Так испытывается торпеда. При испытании ее переднюю часть, боевое зарядное отделение, заменяют учебным зарядным отделением. Вместо заряда взрывчатого вещества его наполняют обыкновенной водой. Когда торпеда проходит заданную дистанцию, специальный механизм автоматически заставляет сжатый воздух вытеснить воду, и торпеда всплывает на поверхность.

Когда торпеда многократно проверена на заводе и в море, когда она готова к своей роли носителя гибельного подводного удара, ее сдают во флот, и тогда наступает очередь торпедистов на кораблях наилучшим образом овладеть своим оружием.

Торпеда-преследователь

Торпеда направлена в цель, рули точно ведут ее по заданной глубине и направлению. Но то ли неверно решен торпедный треугольник, то ли неправильно определили скорость и курс цели - торпеда прошла мимо цели. Может случиться, что прицел взят правильно, но противник заметил или заподозрил опасность и начал маневрировать, менять курс и скорость - опять торпеда прошла мимо. Наконец, ведь и механизмы торпеды могут подвести: отрегулировали и поставили их правильно, а во время хода что-то разладилось, механизмы неверно повели торпеду - опять мимо.

Как добиться того, чтобы торпеда никогда не шла мимо цели, чтобы всегда она настигала врага, чтобы сделать этот подводный снаряд неотвратимым? Ответ один: нужно суметь управлять рулями торпеды уже после выстрела так, чтобы заставить торпеду преследовать свою цель, если противник «отвернул»; нужно иметь возможность подправить во время хода положение рулей, если в прицел вкралась ошибка или сами рули подвели. Все это кажется невыполнимым. Ведь внутри торпеды нет человека, который мог бы все это сделать; значит, все эти дела надо поручить автоматам или механизмам, которым торпедист будет издалека диктовать свою волю. Возможно ли это? Оказывается, возможно. Оказывается, возможно изготовить такие автоматы и механизмы. По иностранным данным торпеды с такими приборами изготовлены и проходили или проходят испытания, возможно даже применялись во второй мировой войне.

Попытки управлять торпедой на расстоянии имеют свою интересную историю. Этим попыткам уже исполнилось 80 лет. Еще капитан Луппис пытался управлять своей самодвижущейся лодочкой-миной с помощью длинных веревок, привязанных к рулям.

Изобретатель надеялся, что он будет дергать веревки, и рули во время хода будут поворачивать мину в любую сторону. Значит Луппис хотел управлять своей миной на расстоянии. У Лупписа ничего не вышло, но идея его не пропала - прошло, всего 13 лет и она возродилась вновь.

Проволоки Бреннана и кабель Эдисона

На берегу закрытой бухточки у Портсмута (в Англии) группа людей возится около машин. От берега в море выступает довольно длинная и узкая деревянная пристань. На самом конце пристани лежит стальной предмет, очень похожий на первые торпеды Уайтхеда. Сзади, на концах валов, насажены два гребных: винта, видны рули. Сверху в корпусе торпеды, почти на середине, проделаны два небольших отверстия. Из этих отверстий торчат две тонкие и крепкие стальные проволоки. Они стелются по корпусу и тянутся далеко назад, на берег. Там стоит большая паровая машина, а с ней соединены два больших барабана. Обе проволоки прикреплены к этим барабанам.

Человек на пристани дает сигнал. Паровая машина начинает работать и с большой скоростью вращает барабаны. Стальные проволоки быстро наматываются на барабаны. И тогда на пристани начинают вращаться в разные стороны гребные винты стального предмета. Оказывается, это действительно торпеда. Люди осторожно опускают ее на воду. Торпеда погружается. Сквозь прозрачную глубину видно, как стальная сигара устремляется вперед. Проволоки не перестают наматываться на катушки. Это кажется непонятным. Откуда берется такое множество проволоки? Но люди на берегу знают это.

Там, внутри торпеды, нет двигателя, поэтому никаких пузырьков не видно на поверхности. Двигатель торпеды находится: на берегу - это уже знакомая нам паровая машина. Гребных валов у торпеды два - один вставлен в другой. Внутри торпеды на каждый вал насажено по катушке. Запас проволоки намотан на эти катушки. Когда проволока наматывается на береговые барабаны, она сматывается с катушек. Катушки начинают вращаться, а с ними вращаются гребные валы. Винты, насаженные сзади на валы, толкают торпеду вперед. Так получается, что проволоки двигаются назад, а торпеда вперед. Но самое интересное еще впереди.

Люди на берегу могут менять скорость вращения каждого» барабана - вращать барабаны с разной, скоростью. Тогда, и катушки в торпеде и гребные валы тоже вращаются с разными скоростями. Внутри торпеды работает особое устройство, которое управляет вертикальными рулями. Стоит пустить один барабан с большей скоростью, чем второй, и торпеда повернет в ту или другую сторону. Люди на берегу могут так менять и регулировать эти скорости, что рули будут поворачивать торпеду вправо или влево, куда повернет корабль-цель.

Недалеко от берега буксир тащит за собой «цель» - полузатопленный большой старый баркас. Торпеда идет прямо на него. Тогда буксир набирает скорость и резко увлекает баркас за собой. На берегу заметили это. Скорость вращения одного барабана замедляется. Торпеда поворачивает вслед за баркасом, нагоняет его и ударяет в борт. Конечно, торпеда не заряжена, взрыва нет, но цель достигнута: управляемая на расстоянии торпеда выдержала испытание.

Эту торпеду изобрел вовсе не торпедист и даже не моряк. Обыкновенный часовой мастер, еще совсем молодой человек по имени Бреннан сконструировал все простые и в то же время очень хорошо работавшие механизмы торпеды. Интерес к минно-торпедному оружию был так велик, что даже чуждые минному делу люди пытались создавать новые устройства.

Громоздкую машину и барабаны нельзя было установить на кораблях, поэтому торпедой Бреннана защищали берега. Обнаружив неприятеля, пускали на него с берега торпеду и точно направляли ее. Это оружие охраняло в конце прошлого века южные берега Англии.

Через пятнадцать лет знаменитый изобретатель американец Эдисон изобрел новую управляемую торпеду. На этот раз не стальная проволока, а тонкий электрический кабель соединял торпеду с пославшим ее кораблем. Электрический ток от электробатареи передавался по кабелю к механизмам торпеды, действовал на рули и заставлял торпеду менять направление и преследовать корабль противника.

Радиоруль

Бреннан и Эдисон достигли большего успеха, чем капитан Луппис. Но все же проволоки Бреннана и кабель Эдисона оказались непригодными, как и веревки Лупписа. Все эти передатчики выдавали торпеду, показывали ее направление; торпеда теряла свое важнейшее качество - скрытность. Выходило, что задача не решена. После опытов Эдисона прошло еще двадцать лет, началась первая мировая война. Все лучшие достижения передовой техники были поставлены на службу войне. И все же ни один флот не мог похвастать управляемыми торпедами; таких торпед не было во всем мире. И только в конце 1917 г. произошло событие, положившее начало новому решению задачи.


Радиомагнитная торпеда 1 - антенна; 2 - автомат, открепляющий антенну; 3 - замедляющий механизм; 4 - часовой механизм; 5 - автомат, «по приказу» детектора включающий остальные механизмы; 6 - радиоприемник механизма замедления хода; 7 - сжатый воздух и заряд; 8 - магнитный детектор; 9 - регулируемый клапан, определяющий угол поворота торпеды; 10 - двигатель торпеды, работающий от сжатого воздуха; 11 - пневматический механизм, управляющий рулями; 12 - рулевая тяга; 13 - рули направления

Большой военный корабль шел под охраной нескольких эсминцев и других вспомогательных военных судов. Неожиданно на расстоянии в 3000 метров заметили неприятельский торпедный катер, идущий в атаку. Высоко в воздухе появился неприятельский самолет, который как бы сопровождал торпедный катер. Все корабли открыли бешеный огонь по катеру и самолету и начали уходить. Но катер продолжал мчаться вперед. Суденышко прорвалось сквозь строй эсминцев, круто повернуло на большой корабль и на полном ходу… врезалось в его середину. Раздался оглушительный взрыв, и столб огня и дыма взлетел над кораблем. Впоследствии было установлено, что на катере не было людей; им управляли на расстоянии по способу Эдисона. На суденышке была помещена катушка (вьюшка), и на нее было намотано 35 километров электрического кабеля. Пловучая или береговая станция по этому кабелю посылала электрические сигналы, которые перекладывали рули.

Сопровождающий самолет следил за ходом катера и сообщал о своих наблюдениях на станцию, указывал, куда нужно направлять катер. Грузом катера был заряд взрывчатого вещества, который и взорвался при ударе о корабль. Получилось что-то в роде большой надводной управляемой торпеды. Новейшие достижения техники позволили намного улучшить способ Эдисона, но недостатки оставались те же. Обязательно нужна была близкая станция: атаку замечали издалека. Было ясно, что кабель не годился, что нужно передавать сигналы управления без всяких веревок, проволок, кабелей. Но как осуществить такую передачу?

На помощь пришло радио. Уже в 1917 г. удавалось управлять катерами по радио. Такие катера еще не имели большого значения в военных действиях мировой войны. Но после войны все чаще появлялись сообщения о постройке и испытании катеров, управляемых по радио с сопровождающего их самолета. Суденышко приближается к атакуемому кораблю и автоматически выпускает торпеду. Но тогда зачем катер? Гораздо проще управлять самой торпедой по радио. И действительно, уже в самое последнее время стало известно об испытаниях радиоуправляемых торпед. Такая торпеда, управляемая с корабля или самолета, может на замедленном ходу за 10 и больше миль найти противника и нанести ему удар.

За некоторое время перед началом второй мировой войны в США была запатентована конструкция торпеды, к которой прикрепляется длинный провод. Если торпеда, направленная в корабль, прошла, не задев его, у его носа, тянущийся за торпедой провод приходит в соприкосновение с форштевнем корабля, замыкает контакты в приборе торпеды, и торпеда возвращается обратно, чтобы поразить цель.

Подробности вероятного устройства таких торпед мало известны. Но можно представить себе, как они действуют.

Торпедой прицеливаются так, чтобы в случае промаха она прошла не сзади, а спереди корабля, перед его носом. Выстрелили. Видно, что торпеда действительно уходит в сторону и пройдет перед носом цели. Тут возможны два случая. Если торпеда радиоуправляемая, передается сигнал, замедляющий ее ход; торпеда как бы «ожидает» свою цель и попадает в нее, когда цель подходит ближе. Может случиться, что торпеда все же пройдет мимо (особенно во втором случае, если она не радиоуправляемая и нельзя замедлить ход). Тогда начинает работать другое устройство. За торпедой тянется длинный провод-антенна. Уж он-то обязательно соприкоснется с носом корабля. Тысячи тонн стали в корпусе корабля через этот провод воздействуют на специальный прибор внутри торпеды. Сработает реле, руль повернется, и торпеда начнет описывать большой полукруг вперед, нагоняя корабль. Она возвращается обратно и ударяет корабль с другого борта.

Атака с помощью радиомагнитной торпеды

В период второй мировой войны вместе с прогрессом техники шло дальнейшее усовершенствование торпедного оружия. Поэтому очень может быть, что по окончании войны мы узнаем о торпедах, которые преследовали противника по пятам.

«Оседланная» торпеда

Насколько завладела умами торпедистов идея точного управления торпедой, видно из того, что еще во времена первой мировой войны и в последующие годы появились сообщения о японских торпедах, якобы управляемых человеком, скрытым где-то внутри ее корпуса.

Такая возможность, конечно, исключается. Человек внутри торпеды не мог бы наблюдать поверхность моря, видеть противника. Значит, исчезал и самый смысл такого управления торпедой. Если же снабдить торпеду чем-то в роде перископа, это сделало бы торпеду хорошо видимой и уменьшило бы ее скорость.

Во время второй мировой войны на страницах американской печати появились сообщения о практически более целесообразном, устройстве подводной лодки-торпеды с экипажем в лице одного человека. Она имеет специальное место для рулевого, сидящего в кабине под прочным, прозрачным и обтекаемым колпаком.

Глубина движения торпеды рассчитана так, чтобы обтекаемая поверхность кабины едва-едва выдавалась над поверхностью моря. Это позволяет рулевому видеть свою цель, правда, на близком расстоянии.

Специальный корабль-матка доставляет такую торпеду поближе к объектам нападения и выпускает ее в море. Далее торпеда следует самостоятельно, направляемая своим рулевым. Когда цель уже близко, когда попадание направленной торпеды обеспечено, особый механизм переворачивает прозрачную кабину и выбрасывает рулевого на поверхность воды. Этим создаются для него шансы на спасение.


Изобретение конца прошлого столетия, предок «оседланной» торпеды - подводный велосипед, или «аквапед» Темпло, несущий впереди (по обеим сторонам) две мины, которые, по идее изобретателя должны были прикрепляться к днищу неприятельского корабля и взрываться от заведенного часового механизма 1 - одна из двух мин, предназначенных для прикрепления к днищу неприятельского корабля; 2 - осветительная лампочка

Все это устройство описано как один из проектов торпеды, управляемой человеком. Но известны случаи, когда торпеды управлялись людьми в боевой практике, но эти люди находились не внутри, а вне ее оболочки.

Когда и как это было осуществлено?

Вечером 31 октября 1918 г. обыкновенная торпеда, несшая впереди вместо зарядного отделения две бомбы, была доставлена итальянским миноносцем ко входу в австрийский порт Пола (в Адриатическом море) и спущена на воду. Отсюда торпеда была отбуксирована катером к боновому заградителю, запиравшему вход в гавань, на расстояние 1000 метров. Здесь был пущен двигатель торпеды и подводный снаряд на медленном ходу двинулся вперед, но управлялся он не сам…

За два буксирных конца, привязанных к торпеде, держались два пловца. За четыре часа (с 23 часов до 3 часов утра) оба рулевых провели торпеду через все боны, проникли в гавань Полы и «пристроили» одну бомбу под линейный корабль «Вирибус Унитис». В это время их заметили с корабля и взяли в плен. Течение отнесло незамеченную торпеду к пароходу «Вена», вторая бомба взорвалась и отправила пароход на дно.

Тем временем на борту «Вирибус Унитис» плененные итальянцы с трепетом ждали взрыва: их первая бомба была оборудована часовым механизмом; минута за минутой приближала подводный удар. Тогда итальянцы рассказали все командиру корабля. Уже поздно было разоружать бомбу. Экипаж бросился к шлюпкам и как только последняя партия отвалила от борта и удалилась на безопасное расстояние, раздался взрыв и корабль за 10 минут затонул.

Прошло 25 лет. В разгар операций против крупной и хорошо защищенной итальянской военно-морской базы Палермо (Сицилия) в ночные часы января 1943 г. английская подводная лодка выпустила внутрь гавани очень странные торпеды. Эти торпеды были «оседланы» каждая двумя смельчаками, одетыми в легкие водолазные костюмы. «Наездники» сидели верхом на своих стальных «конях» и направляли их по всем извилинам пути, ведущего в гавань. Торпеды не оставляли никакого следа - они приводились в движение от электромотора и аккумуляторных батарей.

К передней части торпеды был присоединен заряд взрывчатого вещества. Вот торпеды прошли все препятствия, приблизились к намеченным кораблям противника и ныряют под них. Наездники отделяют заряды от торпеды и прикрепляют к днищам неприятельских кораблей, затем пристраивают к ним взрыватели с часовыми механизмами. Снова оседлав своих стальных коней, смельчаки-англичане поплыли к выходу из порта.

Им не удалось этого сделать, они только достигли берега и были взяты в плен. Но сзади, оттуда, где они только что побывали, раздалось два мощных взрыва. Итальянский крейсер «Ульпио Трайяно» и транспорт «Виминале» водоизмещением в 8500 тонн отправились на дно морское, первый тут же, второй через некоторое время.




Английская «оседланная» торпеда Вверху - «оседланная» торпеда и ее два «всадника» подплывают к неприятельскому кораблю; внизу - отделив переднюю часть торпеды (ее зарядное отделение, которое служит обыкновенной миной), «всадники» прикрепили ее к днищу корабля, пустили часовой механизм и уходят на своем, теперь уже «обезглавленном» «подводном коне»

Немцы также пытались во вторую мировую войну применить торпеды, управляемые человеком.

Вскоре после высадки англо-американских войск в Нормандии к берегам Франции направлялся большой караван союзных кораблей. Транспорты охранялись кораблями-охотниками. Ночь была лунной, светлой, противника не видно, и, казалось, ничто не угрожало каравану.


Проект торпеды, управляемой водителем, который в последний момент перед ударом о цель выбрасывается на поверхность моря 1 - моторы; 2 - заряд взрывчатого вещества; 3 - обтекаемый прозрачный козырек; 4 - поворотное сиденье, выбрасывающее водителя торпеды на поверхность моря

Вдруг с одного из «охотников» наблюдатель заметил, что между небольшими волнами мелькнуло что-то, напоминавшее блестящий купол, затем - след торпеды на воде, вот их уже несколько. Через несколько минут все море точно вскипело пузырями куполов. На «охотниках» сразу же догадались, что это целая флотилия германских торпед, управляемых водителями.

Немедленно корабли охранения ринулись на эти «живые торпеды. Они таранили и расстреливали из всех видов огнестрельного оружия прозрачные купола, защищавшие водителей торпед, и разгромили всю флотилию. Впоследствии стало известно, что немцы сосредоточили в портах Ла-Манша большое количество торпед, управляемых людьми, и надеялись с их помощью помешать союзникам наладить снабжение своих десантных войск во Франции. Недостатки конструкции этих торпед оказались одной из причин неудачи их применения.

Возможно, что скоро мы узнаем о применении во время второй мировой войны бесследных торпед, не только оседланных человеком, но и управляемых им на большом расстоянии, о подлинных торпедах-преследователях. Такие торпеды могут оказаться новым, еще более могущественным оружием для нанесения подводного удара.

Что такое морские мины и торпеды? Как они устроены и каковы принципы их действия? Являются ли в настоящее время мины и торпеды таким же грозным оружием как и во времена прошедших войн?

Обо всем этом рассказывается в брошюре.

Она написана по материалам открытой отечественной и зарубежной печати, а вопросы использования и развития минно-торпедного оружия изложены по взглядам иностранных специалистов.

Адресуется книга широкому кругу читателей, особенно молодежи, готовящейся к службе в Военно-Морском Флоте СССР.

Торпеды наших дней

Торпеды наших дней

На вооружении иностранных ВМС находятся сейчас торпеды различных типов. Они классифицируются в зависимости от того, какой заряд заключен в боевой части - ядерный или обычное взрывчатое вещество. Торпеды различаются также по виду силовых установок, которые могут быть парогазовыми, электрическими или реактивными.

По габаритно-весовым характеристикам американские торпеды подразделяются на две основные категории: тяжелые - калибром 482-и 533 мм и малогабаритные - от 254 до 324 мм.

Неодинаковы торпеды и по длине. Для американских торпед характерна стандартная длина, соответствующая принятой в ВМС США длине торпедных аппаратов - 6,2 м (в других странах 6,7-7,2). Это ограничивает возможности помещения запасов топлива, а следовательно, и дальность хода торпед.

По характеру своего маневрирования после выстрела торпеды бывают прямоидущими, маневрирующими и самонаводящимися. В зависимости от способа взрыва существуют торпеды контактные и неконтактные.

Большинство современных торпед - дальноходные, способные поражать цели на дистанциях 20 км и более. По скорости нынешние торпеды во много раз превосходят образцы периода второй мировой войны.

Как же устроена парогазовая торпеда? Она (рис. 18, а) представляет собой самодвижущийся и самоуправляемый стальной подводный снаряд, сигарообразной формы, длиной около 7 м, в котором размещены сложные приборы и мощный заряд взрывчатого вещества. Почти все современные торпеды состоят из четырех сочлененных между собой частей: боевого зарядного отделения; отделения энергокомплектов с отсеком пускорегулирующей аппаратуры или аккумуляторного отделения; кормовой части с двигателем и приборами управления; хвостовой части с рулями и винтами.

В боевом зарядном отделении торпеды, кроме взрывчатого вещества, помещаются взрыватели и запальные приспособления.

Имеются взрыватели контактного и неконтактного действия. Контактные взрыватели (ударники) бывают инерционные и лобовые. Они действуют при ударе торпеды о борт корабля, в результате чего иглы ударника приводят в действие капсюли-воспламенители. Последние, взрываясь, воспламеняют взрывчатое вещество, находящееся в запальном станке. Это взрывчатое вещество является вторичным детонатором, от действия которого происходит взрыв всего заряда, находящегося в зарядном отделении торпеды.

Инерционные ударники с запальными стаканами вставляются в верхнюю часть боевого зарядного отделения в специальные гнезда (горловины). Принцип действия этого ударника основан на инерции маятника, который, отклоняясь от вертикального положения, при столкновении торпеды с бортом корабля освобождает боек, а тот, в свою очередь, под действием боевой пружины опускается вниз и накалывает своими иглами капсюли, вызывая их воспламенение.

Чтобы на стреляющем корабле не произошло взрыва снаряженной торпеды от случайного сотрясения, толчка, взрыва вблизи корабля или от удара торпеды о воду в момент выстрела, у инерционного ударника есть специальное предохранительное приспособление, стопорящее маятник.


а -парогазовая: 1 - запальный стакан; 2 - инерционный ударник; 3 - запирающий кран; 4 - машинный кран; 5 - прибор расстояния; 5-машина; 7 - курок; 8- гироскопический прибор; 9 -гидростатический прибор; 10 - Керосиновый резервуар; 11 - машинный регулятор;

б - электрическая: 1 -взрывчатое вещество; 2 - взрыватель; 3 - аккумуляторы; 4 - электродвигатели; 5 - пусковой контактор; 6 - гидростатический прибор; 7 - гироскопический прибор; 8 - вертикальный руль; 9 - передний винт; 10 - задний винт; 11 - горизонтальный руль; 12 -баллоны со сжатым воздухом; 13 - прибор для сжигания водорода

Предохранительное устройство связано с валом вертушки, вращающейся под действием встречного потока воды. При движении торпеды вертушка отстопоривает маятник, опуская иглы и сжимая боевую пружину бойка. Ударник приводится в боевое положение только тогда, когда торпеда после выстрела пройдет в воде 100т- 200 м.

Существует много различных типов контактных торпедных взрывателей. В некоторых американских торпедах, оснащенных взрывателями других типов, взрыв торпеды происходит не от удара бойка по капсюлю-воспламенителю, а в результате замыкания электрической цепи.

Предохранительное устройство от случайного взрыва состоит здесь также из вертушки. Вал вертушки вращает генератор постоянного тока, который вырабатывает энергию и заряжает конденсатор, выполняющий роль аккумулятора электрической энергии.

В начале движения торпеда безопасна - цепь от генератора к конденсатору разомкнута при помощи колеса-замедлителя, и детонатор находится внутри предохранительной камеры. Когда торпеда пройдет определенную часть пути, вращающийся вал вертушки поднимет детонатор из камеры, колесо-замедлитель замкнет цепь и генератор начнет заряжать конденсатор.

Лобовой ударник вставляется горизонтально в переднюю часть боевого зарядного отделения торпеды. При ударе торпеды о борт корабля боек лобового ударника под действием пружины накалывает капсюль-воспламенитель первичного детонатора, который воспламеняет вторичный детонатор, а последний вызывает взрыв всего заряда.

Чтобы произошел взрыв при попадании торпеды в корабль даже под углом, лобовой ударник снабжается несколькими металлическими рычагами - "усами", расходящимися в разные стороны. При задевании одним из рычагов за борт корабля рычаг смещается и освобождает ударник, который накалывает капсюль, производя взрыв.

Для предохранения торпеды от преждевременного взрыва вблизи стреляющего корабля расположенный в лобовом ударнике стержень бойка стопорится предохранительной вертушкой. После выстрела торпедой вертушка начинает вращаться и полностью отстопорит боек, когда торпеда удалится на некоторое расстояние от корабля.

Стремление повысить эффективность действия торпед привело к созданию неконтактных взрывателей, способных увеличить вероятность попадания в цель и поражать корабли в наименее защищенную часть - днище.

Неконтактный взрыватель замыкает цепь запала и взрывателя торпеды не в результате динамического удара (контакта с целью, непосредственного удара о корабль), а в результате воздействия на него различных полей, создаваемых кораблем. К ним относятся магнитные, акустические, гидродинамические и оптические поля.

Установку глубины хода торпеды с неконтактным взрывателем производят так, чтобы взрыватель срабатывал точно под днищем цели.

Для придания торпеде хода применяются различные двигатели. Парогазовые торпеды, например, приводятся в движение поршневой машиной, работающей на смеси водяного пара с продуктами сгорания керосина или другой горючей жидкости.

В парогазовой торпеде, обычно в задней части воздушного резервуара, помещается водяной отсек, в котором находится пресная вода, подаваемая для испарения в подогревательный аппарат.

В кормовой части торпеды, разделенной на отсеки (у американской торпеды Мк.15, например, кормовая часть имеет три отсека), помещаются подогревательный аппарат (камера сгорания), главная машина и механизмы, управляющие движением торпеды по направлению и глубине.

Силовая установка вращает гребные винты, которые сообщают торпеде поступательное движение. Во избежание постепенного снижения давления воздуха из-за неплотности укупорки воздушный резервуар разобщается с машиной посредством специального приспособления, имеющего запирающий кран.

Перед выстрелом запирающий кран открывается, и воздух подходит к машинному крану, который специальными тягами соединен с курком.

Во время движения торпеды в торпедном аппарате курок откидывается. Машинный кран начинает автоматически впускать воздух из воздушного резервуара в подогревательный аппарат через машинные регуляторы, которые поддерживают установленное постоянное давление воздуха в подогревательном аппарате.

Вместе с воздухом в подогревательный аппарат поступает через форсунку керосин. Он воспламеняется посредством специального зажигательного приспособления, расположенного на крышке подогревательного аппарата. В этот аппарат поступает также вода для испарения и снижения температуры горения. В результате сгорания керосина и парообразования создается парогазовая смесь, которая поступает в главную машину и приводит ее в действие.

В кормовом отделении рядом с главной машиной расположены гироскоп, гидростатический аппарат и две рулевые машинки. Одна из них служит для управления ходом торпеды в горизонтальной плоскости (удержание заданного направления) и действует от гироскопического прибора. Вторая машинка служит для управления ходом торпеды в вертикальной плоскости (удержание заданной глубины) и действует от гидростатического аппарата.

Действие гироскопического прибора" основано на свойстве быстровращающегося (20-30 тыс. об/мин) волчка сохранять в пространстве направление оси вращения, полученное в момент запуска.

Прибор запускается сжатым воздухом во время движения торпеды в трубе торпедного аппарата. Как только выпущенная торпеда по какой-либо причине начнет уклоняться от направления, заданного ей при выстреле, ось волчка, оставаясь в неизменном положении в пространстве и действуя на золотничок рулевой машинки, перекладывает вертикальные рули и тем самым направляет торпеду по заданному направлению.

Гидростатический аппарат, расположенный в нижней части корпуса торпеды, действует по принципу равновесия двух сил - давления столба воды и пружины. Изнутри торпеды на диск давит пружина, упругость которой устанавливается перед выстрелом в зависимости от того, на какой глубине торпеда должна идти, а снаружи - столб воды.



Если выстреленная торпеда идет на глубине больше заданной, то избыток давления воды на диск через систему рычагов передается к золотничку рулевой машинки, управляющей горизонтальными рулями, которая изменяет положение рулей. В результате перекладки рулей торпеда начнет подниматься вверх. При ходе торпеды выше заданной глубины давление уменьшится и рули переложатся в обратную сторону. Торпеда опустится вниз.

В хвостовой части торпеды расположены гребные винты, насаженные на валы, соединенные с главной машиной. Имеются здесь и четыре пера, на которых закреплены вертикальные и горизонтальные рули для управления ходом торпеды по направлению и глубине.

В военно-морских силах иностранных государств особенно значительное распространение получили электрические торпеды.

Электрические торпеды состоят из четырех основных частей: боевого зарядного отделения, аккумуляторного отделения, кормовой и хвостовой частей (рис. 18, б).

Двигателем электрической торпеды служит электромотор, работающий от электрической энергии аккумуляторных батарей, расположенных в аккумуляторном отделении.

Электроторпеда по сравнению с парогазовой торпедой имеет важные преимущества. Во-первых, она не оставляет за собой видимого следа, чем обеспечивается скрытность атаки. Во-вторых, во время движения электроторпеда более устойчиво держится на заданном курсе, так как в отличие от парогазовой торпеды она при движении не изменяет ни веса, ни положения центра тяжести. Кроме того, у электрической торпеды сравнительно малая шумность, производимая двигателем и приборами, что особенно ценно при атаке.

Существует три основных способа использования торпед. Стрельба торпедами производится с надводных (с надводных кораблей) и подводных (с подводных лодок) торпедных аппаратов. Торпеды могут также сбрасываться в воду с воздуха самолетами и вертолетами.

Принципиально новым является использование торпед в качестве боевых частей противолодочных ракет, пуск которых осуществляется противолодочными ракетными средствами, устанавливаемыми на надводных кораблях.

Торпедный аппарат состоит из одной или нескольких труб с установленными на них приборами (рис. 19). Надводные торпедные аппараты могут быть поворотными и неподвижными. Поворотные аппараты (рис. 20) монтируются обычно в диаметральной плоскости корабля на верхней палубе. Неподвижные торпедные аппараты, которые также могут состоять из одной, двух и более торпедных труб, размещаются, как правило, внутри надстройки корабля. В последнее время на некоторых иностранных кораблях, в частности на современных торпедных атомных подводных лодках, торпедные аппараты монтируются под некоторым углом (10°) к диаметральной плоскости.

Такое расположение торпедных аппаратов связано с тем, что в носовой части торпедных подводных лодок размещается приемо-излучающая гидроакустическая аппаратура.

Подводный торпедный аппарат похож на неподвижный надводный торпедный аппарат. Как и неподвижный надводный аппарат, подводный имеет в каждом конце трубы по крышке. Задняя крышка открывается в торпедный отсек подводной лодки. Передняя крышка открывается прямо в воду. Ясно, что если одновременно открыть обе крышки, то в торпедный отсек проникнет морская вода. Поэтому подводный, как и неподвижный надводный, торпедный аппарат снабжен механизмом взаимозамкнутости, предотвращающим одновременное открытие двух крышек.



1 - прибор для управления вращением торпедного аппарата; 2 - место для наводчика; 3 - аппаратный прицел; 4 - труба торпедного аппарата; 5 - торпеда; 6 - неподвижное основание; 7 - поворотная платформа; 8 - крышка торпедного аппарата



Для выстреливания торпеды из торпедного аппарата используются сжатый воздух либо пороховой заряд. Выстреленная торпеда движется к цели при помощи своих механизмов.

Так как торпеда обладает скоростью движения, сравнимой со скоростью хода кораблей, необходимо при выстреле торпедой по кораблю или транспорту давать ей угол упреждения в направлении движения цели. Элементарно это можно пояснить следующей схемой (рис. 21). Предположим, в момент выстрела корабль, стреляющий торпедой, находится в точке А, а корабль противника в точке В. Для того чтобы торпеда попала в цель, ее необходимо выпустить по направлению АС. Это направление выбирается с таким расчетом, чтобы торпеда, прошла путь АС за такое же время, за которое корабль противника проходит расстояние ВС.

При указанных условиях торпеда должна встретиться с кораблем в точке С.

Для увеличения вероятности попадания в цель применяется стрельба несколькими торпедами по площади, которая ведется методом веера или методом последовательного выпуска торпед.

При стрельбе методом веера торпедные трубы разводят относительно друг друга на несколько градусов и выпускают торпеды залпом. Раствор трубам дают такой, чтобы расстояние между двумя рядом идущими торпедами в момент пересечения предполагаемого курса корабля-цели не превышало длины этого корабля.

Тогда из нескольких выпущенных торпед хотя бы одна должна попасть в цель. При стрельбе последовательным выпуском торпед они выстреливаются одна за другой через определенные промежутки времени, рассчитываемые в зависимости от скорости движения торпед и длины цели.

Установка торпедных аппаратов в определенном положении для стрельбы торпедами достигается при помощи приборов управления торпедной стрельбой (рис. 22).



1 - маховик горизонтального наведения; 2 - шкала; 3 - визир



Как сообщает американская печать, торпедное вооружение подводных лодок ВМС США имеет некоторые особенности. Это прежде всего сравнительно небольшая стандартная длина торпедных аппаратов -- всего 6,4 м. Хотя тактические характеристики таких "коротких" торпед ухудшаются, зато их запас на стеллажах лодки можно увеличить до 24-40 штук.

Так как все американские атомные лодки оборудованы устройством быстрого заряжания торпед, то число аппаратов на них снижено с 8 до 4. На американских и английских атомных лодках торпедные аппараты действуют на гидравлическом принципе выстреливания, что обеспечивает безопасность, безпузырность и бездифферентность торпедной стрельбы.

В современных условиях вероятность применения торпед надводными кораблями против надводных кораблей значительно снизилась вследствие появления грозного ракетного оружия. Вместе с тем способность некоторых классов надводных кораблей - тЬрпедных катеров и эскадренных миноносцев - наносить торпедный удар еще представляет для кораблей и транспортов угрозу и ограничивает их зону возможного маневрирования. В то же время торпеды становятся все более и более важным средством борьбы с подводными лодками. Вот почему за последние годы в военно-морских силах многих иностранных государств большое значение придается противолодочным торпедам (рис. 23), которыми вооружаются авиация, подводные лодки и надводные корабли.

На вооружении подводных лодок находятся торпеды различных типов, предназначенные для поражения подводных и надводных целей. Для борьбы с надводными целями подводные лодки применяют в основном прямо идущие тяжелые торпеды с зарядом взрывчатого вещества 200-300 кг, а для поражения подводных лодок - самонаводящиеся электрические противолодочные торпеды.