Какая нить самая прочная стальная или паутина. Почему паук не прилипает к своей паутине

Представителей отряда паукообразных можно встретить повсюду. Это хищники, которые охотятся на насекомых. Свою добычу они ловят с помощью паутины. Это гибкое и прочное волокно, к которому приклеиваются мухи, пчелы, комары. Как паук плетет паутину, этим вопросом часто задаются при виде удивительной ловчей сети.

Что такое паутина?

Пауки одни из древнейших обитателей планеты, из-за маленького размера и специфического внешнего вида их ошибочно считают насекомыми. На самом деле это представители отряда членистоногих. Тело паука имеет восемь ног и два отдела:

  • головогрудь;
  • брюшко.

В отличие от насекомых у них нет усиков и шеи, отделяющей голову от груди. Брюшко арахнида своеобразная фабрика по производству паутины. В нем расположены железы, вырабатывающие секрет, состоящий из белка, обогащенного аланином, придающим прочность, и глицином, отвечающим за эластичность. По химической формуле паутина близка к шелку насекомых. Внутри желез секрет находится в жидком состоянии, а на воздухе твердеет.

Информация. Шелк гусениц тутового шелкопряда и паутина имеют схожий состав – на 50% это белок фиброин. Ученые выяснили, что нить паука значительно прочнее секрета гусениц. Это объясняется особенностью формирования волокна

Откуда берется паутина у паука?

На брюшке членистоногого расположены выросты – паутинные бородавки. В их верхней части раскрываются каналы паутинных желез, формирующих нити. Насчитывается 6 типов желез, производящих шелк для разных целей (перемещение, опускание, опутывание добычи, хранение яиц). У одного вида все эти органы одновременно не встречаются, обычно у особи 1-4 пары желез.

На поверхности бородавок насчитывается до 500 прядильных трубочек, подающих белковый секрет. Паук прядет паутину следующим образом:

  • паутинные бородавки прижимаются к основанию (дерево, трава, стена и т.д.);
  • небольшое количество белка прилипает к выбранному месту;
  • паук отходит, вытягивая нить задними лапками;
  • для основной работы используются длинные и гибкие передние лапки, с их помощью создается каркас из сухих нитей;
  • завершающий этап изготовления сети – формирование липких спиралей.

Благодаря наблюдениям ученых стало известно, откуда у паука выходит паутина. Ее выпускают подвижные парные бородавки на брюшке.

Интересный факт. Паутина очень легкая, вес нити, обмотавшей Землю по экватору, составил бы всего 450 г.

Паук вытягивает нить из брюшка

Как строится ловчая сеть

Ветер – лучший помощник паука в строительстве. Достав тонкую нить из бородавок, арахнид подставляет ее под воздушный поток, который относит застывший шелк на значительное расстояние. Это секретный способ, как паук плетет паутину между деревьями. Паутинка легко цепляется к веткам деревьев, используя ее в качестве каната, арахнид передвигается с места на место.

В структуре паутины прослеживается определенная схема. Ее основу составляет каркас из прочных и толстых нитей, расположенных в виде лучей, расходящихся из одной точки. Начиная с внешней части, паук создает круги, постепенно двигаясь к центру. Удивительно, что без всяких приспособлений он выдерживает одинаковое расстояние между каждым кругом. Эта часть волокон липкая, именно в ней будут застревать насекомые.

Интересный факт. Паук поедает собственную паутину. Ученые предлагают два объяснения этому факту – таким образом восполняется потеря белка при ремонте ловчей сети или паук просто пьет воду, повисшую на шелковых нитях.

Сложность рисунка паутины зависит от вида паукообразного. Низшие членистоногие строят простые сети, а высшие – сложные геометрические схемы. Подсчитано, что строит ловушку из 39 радиусов и 39 спиралей. Кроме гладких радиальных нитей, вспомогательной и ловчей спирали существуют сигнальные нити. Эти элементы улавливают и передают хищнику вибрацию попавшейся добычи. Если попадается посторонний предмет (ветка, листок), маленький хозяин отделяет его и выбрасывает, затем восстанавливает сеть.

Крупные древесные паукообразные натягивают ловушки диаметром до 1 м. В них попадают не только насекомые, но и мелкие птицы.

Сколько времени паук плетет паутину?

На создание ажурной ловушки для насекомых хищник тратит от получаса до 2-3 часов. Время его работы зависит от погодных условий и запланированных размеров сети. Некоторые виды плетут шелковые нити ежедневно, делая это утром или вечером, в зависимости от образа жизни. Один из факторов, за сколько паук плетет паутину, ее вид – плоская или объемная. Плоская – это привычный всем вариант радиальных нитей и спиралей, а объемная – ловушка из комка волокон.

Назначение паутины

Тонкие сети являются не только ловушками для насекомых. Роль паутины в жизни паукообразных гораздо шире.

Ловля добычи

Все пауки хищники, убивающие свою жертву ядом. При этом некоторые особи имеют хрупкое телосложение и сами могут стать жертвой насекомых, например, ос. Для охоты им нужно убежище и ловушка. Липкие волокна выполняют эту функцию. Попавшую в сеть добычу они опутывают коконом из нитей и оставляют, пока впрыснутый фермент не приведет ее в жидкое состояние.

Шелковые волокна паукообразных тоньше человеческого волоса, но их удельная прочность на разрыв сравнима со стальной проволокой.

Размножение

В период спаривания самцы прикрепляют к паутине самки собственные нити. Нанося ритмичные удары по шелковым волокнам, они сообщают потенциальной партнерше о своих намерениях. Принимающая ухаживания самка спускается на территорию самца для спаривания. В некоторых видах инициатором поиска партнера является самка. Она выделяет нить с феромонами, благодаря которым ее находит паук.

Дом для потомства

Из шелкового паутинного секрета плетутся коконы для яиц. Их количество в зависимости от вида членистоногих составляет 2-1000 штук. Паутинные мешочки с яйцами самки подвешивают в безопасном месте. Оболочка кокона достаточно прочна, она состоит из нескольких слоев и пропитывается жидким секретом.

В своей норке паукообразные оплетают стенки паутиной. Это помогает создать благоприятный микроклимат, служит защитой от непогоды и природных врагов.

Перемещение

Один из ответов, зачем паук плетет паутину – он использует нити как транспортное средство. Чтобы перемещаться между деревьями и кустами, быстро пониматься и опускаться ему необходимо прочные волокна. Для полетов на дальние расстояния пауки забираются на возвышения, выпускают быстро застывающую паутину, а затем с порывом ветра уносятся на несколько километров. Чаще всего путешествия совершаются в теплые ясные дни бабьего лета.

Почему паук не прилипает к своей паутине?

Чтобы не попасть в собственную ловушку, паук делает несколько сухих нитей для передвижения. Прекрасно ориентируюсь в хитросплетениях сетей, он безопасно подбирается к прилипшей добыче. Обычно в центре ловчей сети остается безопасный участок, где хищник поджидает добычу.

Интерес ученых к взаимодействию паукообразных с их охотничьими ловушками появился более 100 лет назад. Первоначально было выдвинуто предположение о наличии на их лапках специальной смазки, предотвращающей прилипание. Подтверждений теории так и не нашли. Съемка специальной камерой движения ног паука по волокнам из застывшего секрета дал объяснение механизму соприкосновения.

Паук не прилипает к своей паутине по трем факторам:

  • множество упругих волосков на его лапках уменьшает площадь соприкосновения с липкой спиралью;
  • кончики паучьих ног покрыты маслянистой жидкостью;
  • перемещение происходит особым образом.

Каков секрет строения лапок помогает арахнидам избежать прилипания? На каждой ноге паука есть два опорных когтя, которыми он цепляется за поверхность, и один гибкий коготь. При движении он прижимает нити к гибким волоскам на лапке. Когда паук поднимает лапку, коготь распрямляется, а волоски отталкивают паутину.

Другое объяснение – отсутствие непосредственного контакта ноги паукообразного и липких капель. Они попадают на волоски лапки, а затем легко стекают обратно на нить. Какие бы теории не рассматривали зоологи, неизменным остается тот факт, что пауки не становятся узниками собственных липких ловушек.

Плести паутину могут и другие паукообразные – клещи и ложноскорпионы. Но их сети не сравнятся по прочности и искусному переплетению с произведениями настоящих мастеров – пауков. Современная наука пока не в состоянии воспроизвести паутину синтетическим методом. Технология изготовления паутинного шелка остается одной из загадок природы.

В XVIII веке некто Бон из Монпелье связал себе пару чулок и перчаток из паутины. Этот опыт использования паутинной нити для текстильных целей оказался единственным. В настоящее время паутина применяется лишь в качестве перекрестий точных оптических приборов.

Паутина синтезируется из аминокислот в крови паука. Происходит это в клетках, находящихся в стенках паутинных желез. Паутина производится капельками; они сливаются в пустотелой центральной части железы. Эта вязкая жидкость фактически представляет собой концентрированный раствор паутины. Раствор накапливается в железах до тех пор, пока у паука не появится потребность в паутине и она не потянется из протоков паутинных бородавок. Паутина быстро вытягивается в тонкую нить и сразу же переходит из вязкого состояния в твердое.

Вещества, которые могут быть вытянуты в нити,- обычно высокомолекулярные полимеры. Состоят они из длинных тонких молекул. Молекулы скручены, когда находятся в растворе. Однако, если они вытянуты из тонкого отверстия, они разворачиваются и располагаются по всей длине волокна. Молекулы удерживаются в этом положении поперечными связями, которые образуются между соседними цепями.

Передвигаясь, паук обычно плетет двойную нить - так называемую висячую. Она удерживает его от падения и прикрепляется с помощью присоединительных дисков всякий раз, когда паук должен опуститься.

Висячая нить иногда усиливается двумя более тонкими нитями. Они используются и для изготовления наружного каркаса и радиальных нитей ловчей сети. Другая основная часть ловчей сети - спиральная нить; она фактически и захватывает попадающих на нее мух.

Вся сеть очень липка и чрезвычайно эластична. Липкость ей придает множество капелек очень вязкого вещества, которое покрывает обе паутинки и удерживает их вместе. При малейшем соприкосновении с вязкой нитью муха прилипает. Нить может растягиваться, не разрываясь, как бы сильна ни была жертва. Обычно это приводит к тому, что муха запутывается и в соседних липких нитях. Удерживая муху, паук челюстями, ногощу-пальцами и передними лапками вращает ее, в то время, как задние его лапки вытягивают паутину из паутинных бородавок. Муха оказывается, таким образом, в паутинном «бинте», и паук часто уносит жертву в свое убежище, где ее ждет участь либо быть съеденной сразу, либо быть подвешенной «про запас».

Имеется и еще одна паутина; она используется для изготовления кокона. Этой нитью паук обволакивает яйца, откладываемые осенью. Кокон защищает яйца от непогоды и посягательств различных хищников.

Паутина состоит из белков. Белки, как известно, играют важнейшую роль в строении и работе всех живых организмов. Из них состоит миозин в мускулах, коллаген в соединительных тканях, гемоглобин в крови, а также ферменты, которые управляют всеми химическими реакциями в живом организме.

Белки - крупные молекулы, построенные из двадцати различных аминокислот. Молекула белка паутины может состоять из одной или нескольких цепей, связанных в одном или нескольких местах. Прочные поперечные связи образованы аминокислотой цистином, может «цепляться» к двум различным цепям. Цистин может также образовать связь между различными частями одной и той же цепи, образуя петли.

Двадцать аминокислот могут образовать огромное количество различных белков. Одна из основных целей, к которой стремятся химики, занимающиеся белками, - установить количество аминокислот в белке и их взаиморасположение.

Для определения аминокислотного состава разлагают на составляющие его аминокислоты кипячением в соляной кислоте. Затем из смеси аминокислот выделяют все компоненты. Двадцать пять лет тому назад это было довольно сложной процедурой, требовавшей большого количества материала и времени и к тому же не всегда дававшей точные результаты. В настоящее время полный анализ аминокислот может быть осуществлен на нескольких миллиграммах материала за один день. Ученые создали аппарат, в котором смесь аминокислот сначала разлагается на компоненты, а затем количество их автоматически регистрируется и записывается в виде графиков.

Эти аналитические методы применены при анализе ряда паутин. Существует большая разница в составах нити кокона и висячей нити. Основные аминокислоты первой - аланин и серин, второй - глицин и аланин. Более чем наполовину белок в каждом случае образован лишь двумя аминокислотами, хотя в них присутствуют и многие другие аминокислоты. Больше всего в паутине аминокислот с очень короткими боковыми цепями.

Знать, как располагаются аминокислоты в белке, очень важно. Но это еще не дает возможности объяснить все свойства волокон. Эти свойства зависят в значительной степени от того, как цепи расположены относительно друг друга.

В 1913 году отец и сын Брэгги показали, что кристалл любого вещества, вращаемый в рентгеновских лучах, отражает их под некоторыми определенными углами, так как он состоит из упорядочено расположенных атомов, которые образуют плоскости отражения. В том же году два японца - Никишава и Оно - установили, что многие волокна, которые, как предполагалось, не имели кристаллической структуры, тоже дают определенные отражения.

Существующие рентгенограммы паутинных нитей выглядят невыразительно, если сравнивать их с рентген граммами истинных кристаллов, однако они могут дать значительную информацию о структуре паутины. Тот факт, что такая рентгенограмма содержит пятна, свидетельствует о наличии в волокнах паутины кристаллических участков, имеющих упорядоченное расположение атомов. Заслуга определения структуры этих кристаллических участков принадлежит прежде всего профессору Лайнусу Полингу из Калифорнийского технологического института и профессору Уорвиккеру.

Благодаря этим исследованиям мы знаем, что почти у всех видов паутины похожая структура. Примерное представление о ней можно получить, начертив несколько равноотстоящих параллельных линий на листке бумаги, а затем собрав в складки этот лист под прямыми углами к линиям. Линии представляют собой длинные пептидные цепи, а места, где они пересекаются со складками, обозначают положения атомов углерода, от которых отходят боковые цепи. Они идут под прямыми углами к плоскости листа.

А теперь рассмотрим какое-то количество аналогичных листов, сложенных вместе; плотность их «упаковки» будет зависеть от размеров И-групп. Почти все паутины имеют цепи, расположенные аналогичным образом в пределах листов, и отличаются лишь расстоянием между листами: оно колеблется от 3,3 до 15,6 ангстрем.

Нить паутины под - это длинные правильные цилиндры с почти правильным круговым поперечным сечением. Один способ сравнения тонкости волокон - указать вес определенной длины волокна. Для паутины он обычно выражается в денье - весе в граммах 9 километров нити. В этой системе измерения нить шелковичного червя весит 1 денье, в то время как человеческий волос - 40-50 денье. Вес нити кокона паука - 0,7 денье, а висячей нити - еще меньше, 0,07 денье. Висячая нить, обвившая земной шар по экватору, весила бы лишь около 340 граммов.

Прочность и растяжимость нитей имеют важное значение для текстильной промышленности. Чтобы сравнить нити различной толщины, их крепость обычно выражают через прочность на разрыв, то есть через разрывную нагрузку, деленную на денье. Разрывная прочность, таким образом, выражается в граммах на денье. Средняя разрывная прочность нитей кокона составляет 2,2 г/денье, а висячей нити-7,8 г/денье. Удлинение к моменту разрыва достигает соответственно 46% и 31%.

В отличие от висячей нити, нить кокона сравнительно непрочна, и это объясняется ее назначением. Она и не должна выдерживать большие напряжения, ее задача - создавать защитную оболочку для яиц кокона. Для этого паук плетет шестислойную пряжу из вьющейся нити. Каждая нить кокона состоит из шести паутинок. Эта паутинная оболочка напоминает объемную пряжу, которая была разработана в последние годы для изготовления эластичного трикотажа из искусственных волокон.

Спиральная нить ловчей сети, которая образует липкую паутинную ловушку, очень эластична. Ее растяжение и сжатие полностью обратимы, и в этом отношении она напоминает резину.

Одна из задач промышленности искусственных материалов заключается в том, чтобы поставлять покупателям материалы с определенными свойствами. Ткань для нижнего белья, например, должна сохранять тепло и поглощать влагу, а для корда покрышек необходима очень прочная ткань.

Разработка искусственных белковых волокон находится еще в зачаточном состоянии, поскольку мы пока еще не можем создать длинные цепи со сложной аминокислотной структурой. Можно, однако, взять одну аминокислоту и полимеризовать ее в длинные цепи, например, в полиаланин или пол и метил глютамаг, получив из них хорошие ткани. Можно также получить высокомолекулярные полимеры с повторяющейся дипептидной последовательностью, например, …глицин - аланин - глицин - аланин - глицин-аланин…

Дальнейшее изучение различных видов паутины - вот тот путь, который наверняка поможет нам в создании искусственных белковых волокон.

P. S. О чем еще говорят британские ученые: о том, что в будущем на основе более детального, молекулярного изучения, как паутинной нити, так и других природных материалов ученные смогут получить различные ультраполезные вещи для нашего быта, к примеру, сверхпрочные
жби изделия , сделанные из специальных полимеров или еще что-то в таком роде.

Что прочнее - паутина или сталь? У кого самая крепкая паутина?

  1. Пожалуй, паутина прочнее, но у кого самая крепкая, не знаю, может быть у шелкопряда.
  2. У любимого мужчины...
  3. В Африке живут крупные, ярко раскрашенные пауки нефилы. Нефилы родичи наших крестовиков. Они плетут ловчие сети, похожие на паутинные круги, которые всем нам хорошо знакомы. Только круги побольше, да и нет обычно в них верхней половины круга, а на ее месте беспорядочная путаница нитей: защита от врагов, которых у толстой и аппетитной нефилы много.
  4. Паутина, или паучий шелк это один из изумляющих примеров материалов, создаваемых природой и проявляющих исключительные физические свойства. Ее прочность в пересчете на один квадратный миллиметр сечения позволяет выдержать 260 кг, она прочнее и намного легче стали

    У паука есть несколько желез, расположенных в животе, которые производят паутинный шелк. Каждая железа производит шелк для особой цели. Известны семь различных желез. Но разные виды пауков обладают только несколькими из этих желез, а не всеми сразу.

    Самая тонкая измеренная нить была лишь 0,02 мм. Поэтому мы способны видеть паутину только из-за отражения нитью солнечного света. Но эта тонкая нить способна остановить пчелу, летящую на полной скорости. Эта нить не только очень крепкая, но также и очень упругая. Благодаря этим свойствам шелк паука жестче, чем любые другие материалы или металлы, известные нам. Прочность материала измеряется в единицах, называемых dernier (1 dernier = 1 г на 9000 м) . Нить паука имеет прочность от 5 до 8. Это означает, что нить из шелка паука разрушится под собственным весом при ее длине 45 - 72 км. Сопоставимыми материалами являются нейлон и стекло. Сталь имеет прочность приблизительно равную 3.

    Шелк паука используется для нескольких целей. Поленизийские рыбаки используют нить золотого паука-кругопряда (Nephila) как леску. В New-Hebrides сети паука использовали для изготовления сетей для транспортирования наконечников стрел, табака и высушенного яда для наконечников стрел. Некоторые племена в Новой Гвинеи использовали сети как шляпы, чтобы защитить головы от дождя.

    В Первой мировой войне нити Araneus diadematus, Zilla atrica, Argiope aurantia и других пауков-кругопрядов использовались как перекрестие в инструментах.

    Аборигены Полинезии издавна использовали паутину крупных тенетных пауков как нитки для пошива прочных рыболовных снастей, а в Европе, еще в средние века, люди научились изготавливать из паутины ткани. Изготовленные для короля Франции Людовика XIV перчатки и чулки из паутины паука-крестовика были предметом восхищения всех, кому удавалось увидеть эти уникальные изделия.

  5. паутина
  6. мне кажется сталь

Каждый может легко смахнуть паутину, висящую между ветками дерева или под потолком в дальнем углу комнаты. Но мало кто знает, что если бы паутина имела диаметр 1 мм, то она могла бы выдержать груз массой приблизительно 200 кг. Стальная проволока того же диаметра выдерживает существенно меньше: 30–100 кг, в зависимости от типа стали. Почему же паутина обладает такими исключительными свойствами?

Некоторые пауки прядут до семи типов нитей, каждая из которых имеет собственное назначение. Нити могут использоваться не только для ловли добычи, но и для строительства коконов и парашютирования (взлетая на ветру, пауки могут уходить от внезапной угрозы, а молодые пауки таким способом расселяются на новые территории). Каждый из типов паутины производится специальными железами.

Паутина, используемая для ловли добычи, состоит из нескольких типов нитей (рис. 1): каркасной, радиальной, ловчей и вспомогательной. Наибольший интерес ученых вызывает каркасная нить: она имеет одновременно высокую прочность и высокую эластичность - именно это сочетание свойств является уникальным. Предельное напряжение на разрыв каркасной нити паука Araneus diadematus составляет 1,1–2,7. Для сравнения: предел прочности стали 0,4–1,5 ГПа, человеческого волоса - 0,25 ГПа. В то же время каркасная нить способна растягиваться на 30–35%, а большинство металлов выдерживают деформацию не более 10–20%.

Представим себе летящее насекомое, которое ударяется в натянутую паутину. При этом нить паутины должна растянуться так, чтобы кинетическая энергия летящего насекомого превратилась в тепло. Если бы паутина запасала полученную энергию в виде энергии упругой деформации, то насекомое отскочило бы от паутины, как от батута. Важное свойство паутины состоит в том, что она выделяет очень большое количество теплоты при быстром растяжении и последующем сокращении: энергия, выделяемая в единице объема, составляет более 150 МДж/м 3 (сталь выделяет - 6 МДж/м 3). Это позволяет паутине эффективно рассеивать энергию удара и не слишком сильно растягиваться, когда в нее попадает жертва. Паутина или полимеры, обладающие аналогичными свойствами, могли бы стать идеальными материалами для легких бронежилетов.

В народной медицине есть такой рецепт: на рану или ссадину, чтобы остановить кровь, можно приложить паутину, аккуратно очистив ее от застрявших в ней насекомых и мелких веточек. Оказывается, паутина обладает кровеостанавливающим действием и ускоряет заживление поврежденной кожи. Хирурги и трансплантологи могли бы использовать ее в качестве материала для наложения швов, укрепления имплантантов и даже как заготовки для искусственных органов. С помощью паутины можно существенно улучшить механические свойства множества материалов, которые в настоящее время применяются в медицине.

Итак, паутина - необычный и очень перспективный материал. Какие же молекулярные механизмы отвечают за ее исключительные свойства?

Мы привыкли к тому, что молекулы - чрезвычайно маленькие объекты. Однако это не всегда так: вокруг нас широко распространены полимеры, которые имеют длинные молекулы, состоящие из одинаковых или похожих друг на друга звеньев. Все знают, что генетическая информация живого организма записана в длинных молекулах ДНК. Все держали в руках полиэтиленовые пакеты, состоящие из длинных переплетенных молекул полиэтилена. Молекулы полимеров могут достигать огромных размеров.

Например, масса одной молекулы ДНК человека порядка 1,9·10 12 а.е.м. (однако это приблизительно в сто миллиардов раз больше, чем масса молекулы воды), длина каждой молекулы составляет несколько сантиметров, а общая длина всех молекул ДНК человека достигает 10 11 км.

Важнейшим классом природных полимеров являются белки, они состоят из звеньев, которые называются аминокислотами. Разные белки выполняют в живых организмах чрезвычайно разные функции: управляют химическими реакциями, используются в качестве строительного материала, для защиты и т. д.

Каркасная нить паутины состоит из двух белков, которые получили названия спидроинов 1 и 2 (от английского spider - паук). Спидроины - это длинные молекулы с массой от 120000 до 720000 а.е.м. У разных пауков аминокислотные последовательности спидроинов могут отличаться друг от друга, но все спидроины имеют общие черты. Если мысленно вытянуть длинную молекулу спидроина в прямую линию и посмотреть на последовательность аминокислот, то окажется, что она состоит из повторяющихся участков, похожих друг на друга (рис. 2). В молекуле чередуются два типа участков: относительно гидрофильные (те, которым энергетически выгодно контактировать с молекулами воды) и относительно гидрофобные (те, которые избегают контакта с водой). На концах каждой молекулы присутствуют два неповторяющихся гидрофильных участка, а гидрофобные участки состоят из множества повторов аминокислоты, называемой аланином.

Длинная молекула (например, белок, ДНК, синтетический полимер) может быть представлена как скомканная запутанная веревка. Растянуть ее не составляет труда, потому что петли внутри молекулы могут расправляться, требуя сравнительно небольшого усилия. Некоторые полимеры (например, резина) могут растягиваться на 500% своей начальной длины. Так что способность паутины (материала, состоящего из длинных молекул) деформироваться больше, чем металлы, не вызывает удивления.

Откуда же берется прочность паутины?

Чтобы понять это, важно проследить за процессом формирования нити. Внутри железы паука спидроины накапливаются в виде концентрированного раствора. Когда происходит формирование нити, этот раствор выходит из железы по узкому каналу, это способствует вытягиванию молекул и ориентации их вдоль направления вытяжки, а соответствующие химические изменения вызывают слипание молекул. Фрагменты молекул, состоящие из аланинов, соединяются вместе и образуют упорядоченную структуру, похожую на кристалл (рис. 3). Внутри такой структуры фрагменты уложены параллельно друг другу и сцеплены между собой водородными связями. Именно эти участки, сцепленные между собой, и обеспечивают прочность волокна. Типичный размер таких плотно упакованных участков молекул составляет несколько нанометров. Расположенные вокруг них гидрофильные участки оказываются неупорядоченно свернутыми, похожими на скомканные веревки, они могут расправляться и этим обеспечивать растяжение паутины.

Многие композиционные материалы, например армированные пластмассы, устроены по тому же принципу, что и каркасная нить: в относительно мягком и подвижном матриксе, который дает возможность деформации, находятся малые по размерам твердые области, которые делают материал прочным. Хотя материаловеды давно работают с подобными системами, созданные человеком композиты только начинают приближаться к паутине по своим свойствам.

Любопытно, что, когда паутина намокает, она сильно сокращается (это явление получило название суперконтракции). Это происходит потому, что молекулы воды проникают в волокно и делают неупорядоченные гидрофильные участки более подвижными. Если паутина растянулась и провисла от попадания насекомых, то во влажный или дождливый день она сокращается и при этом восстанавливает свою форму.

Отметим также интересную особенность формирования нити. Паук вытягивает паутину под действием собственного веса, но полученная паутина (диаметр нити приблизительно 1–10 мкм) обычно позволяет выдержать массу, в шесть раз большую массы самого паука. Если же увеличить вес паука, вращая его в центрифуге, он начинает выделять более толстую и более прочную, но менее жесткую паутину.

Когда заходит речь о применении паутины, возникает вопрос о том, как ее получать в промышленных количествах. В мире существуют установки для «доения» пауков, которые вытягивают нити и наматывают их на специальные катушки. Однако такой способ неэффективен: чтобы накопить 500 г паутины, необходимо 27 тысяч средних пауков. И тут на помощь исследователям приходит биоинженерия. Современные технологии позволяют внедрить гены, кодирующие белки паутины, в различные живые организмы, например в бактерии или дрожжи. Эти генетически модифицированные организмы становятся источниками искусственной паутины. Белки, полученные методами генной инженерии, называются рекомбинантными. Отметим, что обычно рекомбинантные спидроины гораздо меньше природных, но структура молекулы (чередование гидрофильных и гидрофобных участков) остается неизменной.

Есть уверенность, что искусственная паутина по своим свойствам не будет уступать природной и найдет свое практическое применение как прочный и экологически чистый материал. В России исследованиями свойств паутины совместно занимаются несколько научных групп из различных институтов. Получение рекомбинантной паутины осуществляют в Государственном научно-исследовательском институте генетики и селекции промышленных микроорганизмов, физические и химические свойства белков исследуют на кафедре биоинженерии биологического факультета МГУ им. М. В. Ломоносова, изделия из белков паутины формируют в Институте биоорганической химии РАН, их медицинскими применениями занимаются в Институте трансплантологии и искусственных органов.

Паукообразные выделяются из всех насекомых способностью плести удивительные паутинные узоры.
Как паук плетет паутину — невозможно себе представить. Маленькое существо создает большие и прочные сети. Удивительная способность сформировалась 130 млн лет назад.

Все возможности у животных появляются и закрепляются при естественном отборе неслучайно. Каждое действие имеет строго определенное назначение.

Паук плетет паутину для достижения жизненно важных целей:

  • ловли добычи;
  • размножения;
  • укрепления своих норок;
  • страхования при падении;
  • обмана хищников;
  • облегчения передвижения по поверхностям.

Отряд пауков состоит из 42 тысяч видов, у каждого из которых есть свои предпочтения в использовании паутинной конструкции. Для удержания жертвы сетку используют все представители. Самцы — аранеморфы на сетке оставляют выделения семенной жидкости. Затем паук на паутине прогуливается, собирая выделения на органы совокупления.

После оплодотворения малыши формируются в защитном паутинном коконе. Некоторые самки на сетке оставляют ферромоны – вещества, привлекающие партнеров. Кругопряды обволакивают нитями листья, веточки. В результате получаются муляжи для отвлечения хищников. Серебрянки, живущие в воде, делают домики с воздушными полостями.

Размеры сети зависят от вида пауков. Некоторые тропические паукообразные создают «шедевры» с диаметром 2 м, способные удержать даже птицу. Обычные паутинные сети имеют меньшие размеры.
Интересно узнать – сколько паук плетет паутину. Зоологам удалось выяснить, что крестовик справляется с работой за несколько часов. На создание узоров большой площади у представителей жарких стран уходит несколько дней. Главную роль в процессе выполняют специальные органы.

Строение паутинных желез

На брюшке насекомого имеются выросты – паутинные бородавки с отверстиями в виде трубочек.
По этим протокам из паутинной железы наружу поступает вязкая жидкость. При попадании на воздух гель превращается в тонкие волокна.

Химический состав паутины

Уникальная способность выделяющегося раствора застывать объясняется структурными компонентами.

В состав жидкости содержится большая концентрация белка, содержащая следующие аминокислоты:

  • глицин;
  • аланин;
  • серин.

Четвертичная структура белка при выталкивании из протока изменяется таким образом, что в результате формируются нити. Из нитевидных образований впоследствии получаются волокна, прочность которых
в 4 – 10 раз больше прочности человеческого волоса.,
в 1,5 – 6 раз прочнее стальных сплавов.

Теперь становится понятно — как паук плетет паутину между деревьями. Тонкие прочные волокна не разрываются, легко сжимаются, растягиваются, вращаются без скручивания, соединяют ветки в единую сеть.

Цель жизни паука – добыча белковой пищи. Ответ на вопрос «Почему пауки плетут паутину» очевиден. Прежде всего, для охоты на насекомых. Они изготавливают ловчую сеть сложной конструкции. Внешний вид узорчатых структур отличается.

  • Чаще всего мы видим многоугольные сети. Иногда они бывают почти круглыми. Плетение от пауков требует невероятной сноровки и терпения. Сидя на верхней ветке, они формируют нить, которая зависает в воздухе. Если повезет, то нитка быстро зацепится за ветку в подходящем месте и паук, переместится на новую точку для дальнейшей работы. Если нитка никак не зацепляется, паук подтягивает ее к себе, съедает ее, чтобы продукт не пропадал, и начинает процесс заново. Постепенно формируя каркас, насекомое приступает к созданию радиальных основ. Когда и они будут готовы, дело остается за малым — сделать соединительные нити между радиусами;
  • У воронковых представителей подход другой. Они изготавливают воронку и затаиваются на дне. Когда приближается жертва, паук выскакивает и затягивает ее в воронку;
  • Некоторые особи формируют сеть из зигзагообраных нитей. Вероятность того, что жертва не выпутается из такого узора значительно больше;
  • Паук с названием «бола» не утруждает себя, выплетает всего одну нить, на которой в конце находится капелька клея. Охотник выстреливает нитью в жертву, приклеивая ее намертво;
  • Пауки – огры оказались еще хитрее. Они делает маленькую сетку между лапами, затем набрасывают на требуемый объект.

Конструкции зависят от условий проживания насекомых, их видовой принадлежности.

Заключение

Выяснив — как паук плетет паутину, каковы ее особенности, остается восхититься этим творением природы, пытаться создать что-то подобное. В нежных узорах вязанных шалей мастерицы копируют узоры. По аналогичным схемам делают антенны, сети для ловли рыб и животных. Полностью смоделировать процесс человеку пока не удалось.

Видео: Паук плетет паутину