Как решать рациональные. Рациональные уравнения

Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, .
Например, требуется решить простое уравнение x/b + c = d.

Уравнения такого типа называется линейным, т.к. в знаменателе находятся только числа.

Решение выполняется путем умножения обоих частей уравнения на b, тогда уравнение принимает вид x = b*(d – c), т.е. знаменатель дроби в левой части сокращается.

Например, как решить дробное уравнение:
x/5+4=9
Умножаем обе части на 5. Получаем:
х+20=45
x=45-20=25

Другой пример, когда неизвестное находится в знаменателе:

Уравнения такого типа называются дробно-рациональными или просто дробными.

Решать дробное уравнение бы будем путем избавления от дробей, после чего это уравнение, чаще всего, превращается в линейное или квадратное, которое решается обычным способом. Следует только учесть следующие моменты:

  • значение переменной, обращающее в 0 знаменатель, корнем быть не может;
  • нельзя делить или умножать уравнение на выражение =0.

Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.

Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются.

Например, требуется решить дробное уравнение:

Исходя из вышеуказанного правила х не может быть = 0, т.е. ОДЗ в данном случае: х – любое значение, отличное от нуля.

Избавляемся от знаменателя путем умножения всех членов уравнения на х

И решаем обычное уравнение

5x – 2х = 1
3x = 1
х = 1/3

Ответ: х = 1/3

Решим уравнение посложнее:

Здесь также присутствует ОДЗ: х -2.

Решая это уравнение, мы не станем переносить все в одну сторону и приводить дроби к общему знаменателю. Мы сразу умножим обе части уравнения на выражение, которое сократит сразу все знаменатели.

Для сокращения знаменателей требуется левую часть умножить на х+2, а правую - на 2. Значит, обе части уравнения надо умножать на 2(х+2):

Это самое обычное умножение дробей, которое мы уже рассмотрели выше

Запишем это же уравнение, но несколько по-другому

Левая часть сокращается на (х+2), а правая на 2. После сокращения получаем обычное линейное уравнение:

х = 4 – 2 = 2, что соответствует нашей ОДЗ

Ответ: х = 2.

Решение уравнений с дробями не так сложно, как может показаться. В этой статье мы на примерах это показали. Если у вас возникли какие то трудности с тем, как решать уравнения с дробями , то отписывайтесь в комментариях.

До сих пор мы решали только уравнения целые относительно неизвестного, то есть уравнения, в которых знаменатели (если таковые имелись) не содержали неизвестное.

Часто приходится решать уравнения, содержащие неизвестное в знаменателях: такие уравнения называются дробными.

Чтобы решить это уравнение, умножим обе его части на то есть на многочлен, содержащий неизвестное. Будет ли новое уравнение равносильно данному? Чтобы ответить на вопрос, решим это уравнение.

Умножив обе части его на , получим:

Решив это уравнение первой степени, найдём:

Итак, уравнение (2) имеет единственный корень

Подставив его в уравнение (1), получим:

Значит, является корнем и уравнения (1).

Других корней уравнение (1) не имеет. В нашем примере это видно, например, из того, что в уравнении (1)

Как неизвестный делитель должен быть равен делимому 1, разделённому на частное 2, то есть

Итак, уравнения (1) и (2) имеют единственный корень Значит, они равносильны.

2. Решим теперь такое уравнение:

Простейший общий знаменатель: ; умножим на него все члены уравнения:

После сокращения получим:

Раскроем скобки:

Приведя подобные члены, будем иметь:

Решив это уравнение, найдём:

Подставив в уравнение (1), получим:

В левой части получили выражения, не имеющие смысла.

Значит, корнем уравнения (1) не является. Отсюда следует, что уравнения (1) и неравносильны.

Говорят в этом случае, что уравнение (1) приобрело посторонний корень.

Сравним решение уравнения (1) с решением уравнений, рассмотренных нами раньше (см. § 51). При решении этого уравнения нам пришлось выполнить две такие операции, которые раньше не встречались: во-первых, мы умножили обе части уравнения на выражение, содержащее неизвестное (общий знаменатель), и, во-вторых, мы сокращали алгебраические дроби на множители, содержащие неизвестное.

Сравнивая уравнение (1) с уравнением (2), мы видим, что не все значения х, допустимые для уравнения (2), являются допустимыми для уравнения (1).

Именно числа 1 и 3 не являются допустимыми значениями неизвестного для уравнения (1), а в результате преобразования они стали допустимыми для уравнения (2). Одно из этих чисел оказалось решением уравнения (2), но, разумеется, решением уравнения (1) .оно быть не может. Уравнение (1) решений не имеет.

Этот пример показывает, что при умножении обеих частей уравнения на множитель, содержащий неизвестное, и при сокращении алгебраических дробей может получиться уравнение, неравносильное данному, а именно: могут появиться посторонние корни.

Отсюда делаем такой вывод. При решении уравнения, содержащего неизвестное в знаменателе, полученные корни надо проверять подстановкой в первоначальное уравнение. Посторонние корни надо отбросить.

«Рациональные уравнения с многочленами» - одна из самых часто встречающихся тем в тестовых заданиях ЕГЭ по математике. По этой причине их повторению стоит уделить особое внимание. Многие ученики сталкиваются с проблемой нахождения дискриминанта, перенесения показателей из правой части в левую и приведения уравнения к общему знаменателю, из-за чего выполнение подобных заданий вызывает трудности. Решение рациональных уравнений при подготовке к ЕГЭ на нашем сайте поможет вам быстро справляться с задачами любой сложности и сдать тестирование на отлично.

Выбирайте образовательный портал «Школково» для успешной подготовки к единому экзамену по математике!

Чтобы знать правила вычисления неизвестных и легко получать правильные результаты, воспользуйтесь нашим онлайн-сервисом. Портал «Школково» - это единственная в своем роде площадка, где собраны необходимые для подготовки к ЕГЭ материалы. Наши преподаватели систематизировали и изложили в понятной форме все математические правила. Кроме того, мы предлагаем школьникам попробовать силы в решении типовых рациональных уравнений, база которых постоянно обновляется и дополняется.

Для более результативной подготовки к тестированию рекомендуем следовать нашему особому методу и начать с повторения правил и решения простых задач, постепенно переходя к более сложным. Таким образом, выпускник сможет выделить для себя самые трудные темы и сделать акцент на их изучении.

Начните подготовку к итоговому тестированию со «Школково» уже сегодня, и результат не заставит себя ждать! Выберите самый легкий пример из предложенных. Если вы быстро справились с выражением, переходите к более сложной задаче. Так вы сможете подтянуть свои знания вплоть до решения заданий ЕГЭ по математике профильного уровня.

Обучение доступно не только выпускникам из Москвы, но и школьникам из других городов. Уделяйте пару часов в день занятиям на нашем портале, например, и совсем скоро вы сможете справиться с уравнениями любой сложности!

Презентация и урок на тему: "Рациональные уравнения. Алгоритм и примеры решения рациональных уравнений"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Пособие к учебнику Макарычева Ю.Н. Пособие к учебнику Мордковича А.Г.

Знакомство с иррациональными уравнениями

Ребята, мы научились решать квадратные уравнения. Но математика только ими не ограничивается. Сегодня мы научимся решать рациональные уравнения. Понятие рациональных уравнений во многом схоже с понятием рациональных чисел. Только помимо чисел теперь у нас введена некоторая переменная $х$. И таким образом мы получаем выражение, в котором присутствуют операции сложения, вычитания, умножения, деления и возведения в целую степень.

Пусть $r(x)$ – это рациональное выражение . Такое выражение может представлять из себя простой многочлен от переменной $х$ или отношение многочленов (вводится операция деления, как для рациональных чисел).
Уравнение $r(x)=0$ называется рациональным уравнением .
Любое уравнение вида $p(x)=q(x)$, где $p(x)$ и $q(x)$ – рациональные выражения, также будет являться рациональным уравнением .

Рассмотрим примеры решения рациональных уравнений.

Пример 1.
Решить уравнение: $\frac{5x-3}{x-3}=\frac{2x-3}{x}$.

Решение.
Перенесем все выражения в левую часть: $\frac{5x-3}{x-3}-\frac{2x-3}{x}=0$.
Если бы в левой части уравнения были представлены обычные числа, то мы бы привели две дроби к общему знаменателю.
Давайте так и поступим: $\frac{(5x-3)*x}{(x-3)*x}-\frac{(2x-3)*(x-3)}{(x-3)*x}=\frac{5x^2-3x-(2x^2-6x-3x+9)}{(x-3)*x}=\frac{3x^2+6x-9}{(x-3)*x}=\frac{3(x^2+2x-3)}{(x-3)*x}$.
Получили уравнение: $\frac{3(x^2+2x-3)}{(x-3)*x}=0$.

Дробь равна нулю, тогда и только тогда, когда числитель дроби равен нулю, а знаменатель отличен от нуля. Тогда отдельно приравняем числитель к нулю и найдем корни числителя.
$3(x^2+2x-3)=0$ или $x^2+2x-3=0$.
$x_{1,2}=\frac{-2±\sqrt{4-4*(-3)}}{2}=\frac{-2±4}{2}=1;-3$.
Теперь проверим знаменатель дроби: $(x-3)*x≠0$.
Произведение двух чисел равно нулю, когда хотя бы одно из этих чисел равно нулю. Тогда: $x≠0$ или $x-3≠0$.
$x≠0$ или $x≠3$.
Корни, полученные в числителе и знаменателе, не совпадают. Значит в ответ записываем оба корня числителя.
Ответ: $х=1$ или $х=-3$.

Если вдруг, один из корней числителя совпал с корнем знаменателя, то его следует исключить. Такие корни называются посторонними!

Алгоритм решения рациональных уравнений:

1. Все выражения, содержащиеся в уравнении, перенести в левую сторону от знака равно.
2. Преобразовать эту часть уравнения к алгебраической дроби: $\frac{p(x)}{q(x)}=0$.
3. Приравнять полученный числитель к нулю, то есть решить уравнение $p(x)=0$.
4. Приравнять знаменатель к нулю и решить полученное уравнение. Если корни знаменателя совпали с корнями числителя, то их следует исключить из ответа.

Пример 2.
Решите уравнение: $\frac{3x}{x-1}+\frac{4}{x+1}=\frac{6}{x^2-1}$.

Решение.
Решим согласно пунктам алгоритма.
1. $\frac{3x}{x-1}+\frac{4}{x+1}-\frac{6}{x^2-1}=0$.
2. $\frac{3x}{x-1}+\frac{4}{x+1}-\frac{6}{x^2-1}=\frac{3x}{x-1}+\frac{4}{x+1}-\frac{6}{(x-1)(x+1)}= \frac{3x(x+1)+4(x-1)-6}{(x-1)(x+1)}=$ $=\frac{3x^2+3x+4x-4-6}{(x-1)(x+1)}=\frac{3x^2+7x-10}{(x-1)(x+1)}$.
$\frac{3x^2+7x-10}{(x-1)(x+1)}=0$.
3. Приравняем числитель к нулю: $3x^2+7x-10=0$.
$x_{1,2}=\frac{-7±\sqrt{49-4*3*(-10)}}{6}=\frac{-7±13}{6}=-3\frac{1}{3};1$.
4. Приравняем знаменатель к нулю:
$(x-1)(x+1)=0$.
$x=1$ и $x=-1$.
Один из корней $х=1$ совпал с корнем из числителя, тогда мы его в ответ не записываем.
Ответ: $х=-1$.

Решать рациональные уравнения удобно с помощью метода замены переменных. Давайте это продемонстрируем.

Пример 3.
Решить уравнение: $x^4+12x^2-64=0$.

Решение.
Введем замену: $t=x^2$.
Тогда наше уравнение примет вид:
$t^2+12t-64=0$ - обычное квадратное уравнение.
$t_{1,2}=\frac{-12±\sqrt{12^2-4*(-64)}}{2}=\frac{-12±20}{2}=-16; 4$.
Введем обратную замену: $x^2=4$ или $x^2=-16$.
Корнями первого уравнения является пара чисел $х=±2$. Второе - не имеет корней.
Ответ: $х=±2$.

Пример 4.
Решить уравнение: $x^2+x+1=\frac{15}{x^2+x+3}$.
Решение.
Введем новую переменную: $t=x^2+x+1$.
Тогда уравнение примет вид: $t=\frac{15}{t+2}$.
Дальше будем действовать по алгоритму.
1. $t-\frac{15}{t+2}=0$.
2. $\frac{t^2+2t-15}{t+2}=0$.
3. $t^2+2t-15=0$.
$t_{1,2}=\frac{-2±\sqrt{4-4*(-15)}}{2}=\frac{-2±\sqrt{64}}{2}=\frac{-2±8}{2}=-5; 3$.
4. $t≠-2$ - корни не совпадают.
Введем обратную замену.
$x^2+x+1=-5$.
$x^2+x+1=3$.
Решим каждое уравнение по отдельности:
$x^2+x+6=0$.
$x_{1,2}=\frac{-1±\sqrt{1-4*(-6)}}{2}=\frac{-1±\sqrt{-23}}{2}$ - нет корней.
И второе уравнение: $x^2+x-2=0$.
Корнями данного уравнения будут числа $х=-2$ и $х=1$.
Ответ: $х=-2$ и $х=1$.

Пример 5.
Решить уравнение: $x^2+\frac{1}{x^2} +x+\frac{1}{x}=4$.

Решение.
Введем замену: $t=x+\frac{1}{x}$.
Тогда:
$t^2=x^2+2+\frac{1}{x^2}$ или $x^2+\frac{1}{x^2}=t^2-2$.
Получили уравнение: $t^2-2+t=4$.
$t^2+t-6=0$.
Корнями данного уравнения является пара:
$t=-3$ и $t=2$.
Введем обратную замену:
$x+\frac{1}{x}=-3$.
$x+\frac{1}{x}=2$.
Решим по отдельности.
$x+\frac{1}{x}+3=0$.
$\frac{x^2+3x+1}{x}=0$.
$x_{1,2}=\frac{-3±\sqrt{9-4}}{2}=\frac{-3±\sqrt{5}}{2}$.
Решим второе уравнение:
$x+\frac{1}{x}-2=0$.
$\frac{x^2-2x+1}{x}=0$.
$\frac{(x-1)^2}{x}=0$.
Корнем этого уравнения является число $х=1$.
Ответ: $x=\frac{-3±\sqrt{5}}{2}$, $x=1$.

Задачи для самостоятельного решения

Решить уравнения:

1. $\frac{3x+2}{x}=\frac{2x+3}{x+2}$.

2. $\frac{5x}{x+2}-\frac{20}{x^2+2x}=\frac{4}{x}$.
3. $x^4-7x^2-18=0$.
4. $2x^2+x+2=\frac{8}{2x^2+x+4}$.
5. $(x+2)(x+3)(x+4)(x+5)=3$.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.