Как делить дробные числа. Действия с дробями

Тип урока: ОНЗ (открытие новых знаний – по технологии деятельностного метода обучения).

Основные цели:

  1. Вывести приемы деления дроби на натуральное число;
  2. Сформировать способность к выполнению деления дроби на натуральное число;
  3. Повторить и закрепить деление дробей;
  4. Тренировать способность к сокращению дробей, анализу и решению задач.

Оборудование демонстрационный материал:

1. Задания для актуализации знаний:

Сравните выражения:

Эталон:

2. Пробное (индивидуальное) задание.

1. Выполните деление:

2. Выполните деление, не выполняя всю цепочку вычислений: .

Эталоны:

  • При делении дроби на натуральное число можно умножить на это число знаменатель, а числитель оставить прежним.

  • Если числитель делится на натуральное число, то при делении дроби на это число можно числитель разделить на число, а знаменатель оставить прежним.

Ход урока

I. Мотивация (самоопределение) к учебной деятельности.

Цель этапа:

  1. Организовать актуализацию требований к ученику со стороны учебной деятельности («надо»);
  2. Организовать деятельность учащихся по установке тематических рамок («могу»);
  3. Создать условия для возникновения у ученика внутренней потребности включения в учебную деятельность («хочу»).

Организация учебного процесса на этапе I.

Здравствуйте! Я рада видеть вас всех на уроке математики. Надеюсь, это взаимно.

Ребята, какие новые знания вы приобрели на прошлом уроке? (Делить дроби).

Верно. Что вам помогает выполнять деление дробей? (Правило, свойства).

Где эти знания нам необходимы? (В примерах, уравнениях, задачах).

Молодцы! Вы хорошо справились с заданиями на прошлом уроке. Хотите и сегодня открыть сами новые знания? (Да).

Тогда – в путь! А девизом урока возьмём высказывание «Математику нельзя изучать, наблюдая, как это делает сосед!».

II. Актуализация знаний и фиксация индивидуального затруднения в пробном действии.

Цель этапа:

  1. Организовать актуализацию изученных способов действий, достаточных для построения нового знания. Зафиксировать эти способы вербально (в речи) и знаково (эталон) и обобщить их;
  2. Организовать актуализацию мыслительных операций и познавательных процессов, достаточных для построения нового знания;
  3. Мотивировать к пробному действию и его самостоятельному выполнению и обоснованию;
  4. Предъявить индивидуальное задание для пробного действия и проанализировать его с целью выявления нового учебного содержания;
  5. Организовать фиксацию образовательной цели и темы урока;
  6. Организовать выполнение пробного действия и фиксацию затруднения;
  7. Организовать анализ полученных ответов и зафиксировать индивидуальные затруднения в выполнении пробного действия или его обоснования.

Организация учебного процесса на этапе II.

Фронтально, с использованием планшетов (индивидуальных досок).

1. Сравните выражения:

(Эти выражения равны)

Что интересного вы заметили? (Числитель и знаменатель делимого, числитель и знаменатель делителя в каждом выражении увеличились в одно и то же число раз. Т.о., делимые и делители в выражениях представлены дробями, равными между собой).

Найдите значение выражения и запишите на планшете. (2)

Как записать это число в виде дроби?

Как вы выполнили действие деления? (Дети проговаривают правило, учитель вывешивает на доску буквенные обозначения)

2. Вычислите и запишите только результаты:

3. Сложите полученные результаты и запишите ответ. (2)

Как называется число, полученное в задании 3? (Натуральное)

Как вы думаете, сможете ли дробь разделить на натуральное число? (Да, постараемся)

Попробуйте это выполнить.

4. Индивидуальное (пробное) задание.

Выполните деление: (только пример а)

По какому правилу вы выполнили деление? (По правилу деления дроби на дробь)

А теперь разделите дробь на натуральное число более простым способом, не выполняя всю цепочку вычислений: (пример б). Даю вам на это 3 секунды.

У кого не получилось выполнить задание за 3 секунды?

У кого получилось? (Нет таких)

Почему? (Не знаем способа)

Что получили? (Затруднение)

А как вы думаете, чем мы будем заниматься на уроке? (Делить дроби на натуральные числа)

Верно, откройте тетради и запишите тему урока «Деление дроби на натуральное число».

Почему эта тема звучит как новая, ведь вы уже умеете делить дроби? (Нужен новый способ)

Верно. Сегодня установим приём, упрощающий деление дроби на натуральное число.

III. Выявление места и причины затруднения.

Цель этапа:

  1. Организовать восстановление выполненных операций и зафиксировать (вербальную и знаковую) место – шага, операции, где возникло затруднение;
  2. Организовать соотнесение действий учащихся с используемым способом (алгоритмом) и фиксирование во внешней речи причины затруднения – тех конкретных знаний, умений или способностей, которых недостает для решения исходной задачи такого типа.

Организация учебного процесса на этапе III.

Какое задание вы должны были выполнить? (Разделить дробь на натуральное число, не проделывая всю цепочку вычислений)

Что вызвало у вас затруднение? (Не смогли решить за короткое время быстрым способом)

Какую цель мы ставим перед собой на уроке? (Найти быстрый способ деления дроби на натуральное число)

Что вам поможет? (Уже известное правило деления дробей)

IV. Построение проекта выхода из затруднения.

Цель этапа:

  1. Уточнение цели проекта;
  2. Выбор способа (уточнение);
  3. Определение средств (алгоритм);
  4. Построение плана достижения цели.

Организация учебного процесса на этапе IV.

Вернёмся к пробному заданию. Вы сказали, что делили по правилу деления дробей? (Да)

Для этого заменили натуральное число дробью? (Да)

Какой шаг (или шаги), на ваш взгляд, можно пропустить?

(На доске открыта цепочка решения:

Проанализируйте и сделайте вывод. (Шаг 1)

Если нет ответа, то подводим через вопросы:

Куда попал натуральный делитель? (В знаменатель)

Числитель изменился при этом? (Нет)

Так какой шаг можно «опустить»? (Шаг 1)

План действий:

  • Умножить знаменатель дроби на натуральное число.
  • Числитель не изменяем.
  • Получаем новую дробь.

V. Реализация построенного проекта.

Цель этапа:

  1. Организовать коммуникативное взаимодействие с целью реализации построенного проекта, направленного на приобретение недостающих знаний;
  2. Организовать фиксацию построенного способа действия в речи и знаков (с помощью эталона);
  3. Организовать решение исходной задачи и зафиксировать преодоление затруднения;
  4. Организовать уточнение общего характера нового знания.

Организация учебного процесса на этапе V.

А теперь выполните пробный пример новым способом быстро.

Теперь вы смогли выполнить задание быстро? (Да)

Объясните, как вы это сделали? (Дети проговаривают)

Значит, мы получили новое знание: правило деления дроби на натуральное число.

Молодцы! Проговорите его в парах.

Затем один ученик проговаривает классу. Фиксируем правило-алгоритм словесно и в виде эталона на доске.

Введите теперь буквенные обозначения и запишите формулу для нашего правила.

Ученик записывает на доске, проговаривая правило: при делении дроби на натуральное число можно умножить на это число знаменатель, а числитель оставить прежним.

(Все пишут формулу в тетрадях).

А теперь ещё раз проанализируйте цепочку решения пробного задания, обратив особое внимание на ответ. Что сделали? (Числитель дроби 15 разделили (сократили) на число 3)

Что это за число? (Натуральное, делитель)

Так как еще можно разделить дробь на натуральное число? (Проверить: если числитель дроби делится на это натуральное число, то можно числитель разделить на это число, результат записать в числитель новой дроби, а знаменатель оставить прежним)

Запишите этот способ в виде формулы. (Ученик записывает на доске проговаривая правило. Все записывают формулу в тетрадях.)

Вернёмся к первому способу. Можно им пользоваться в случае, если a:n? (Да, это общий способ)

А когда второй способ удобно применять? (Когда числитель дроби делится на натуральное число без остатка)

VI. Первичное закрепление с проговариванием во внешней речи.

Цель этапа:

  1. Организовать усвоение детьми нового способа действий при решении типовых задач с их проговариванием во внешней речи (фронтально, в парах или группах).

Организация учебного процесса на этапе VI.

Вычисли новым способом:

  • №363 (а; г) – выполняют у доски, проговаривая правило.
  • №363 (д; е) – в парах с проверкой по образцу.

VII. Самостоятельная работа с самопроверкой по эталону.

Цель этапа:

  1. Организовать самостоятельное выполнение учащимися задания на новый способ действия;
  2. Организовать самопроверку на основе сопоставления с эталоном;
  3. По результатам выполнения самостоятельной работы организовать рефлексию усвоения нового способа действия.

Организация учебного процесса на этапе VII.

Вычисли новым способом:

  • №363 (б; в)

Учащиеся проверяют по эталону, отмечают правильность выполнения. Анализируются причины ошибок и ошибки исправляются.

Учитель спрашивает тех учащихся, кто допустил ошибки, в чём причина?

На этом этапе важно, чтобы каждый учащийся самостоятельно проверил свою работу.

VIII. Включение в систему знаний и повторение.

Цель этапа:

  1. Организовать выявление границ применения нового знания;
  2. Организовать повторение учебного содержания, необходимого для обеспечения содержательной непрерывности.

Организация учебного процесса на этапе VIII.

  • Организовать фиксацию неразрешённых затруднений на уроке как направления будущей учебной деятельности;
  • Организовать обсуждение и запись домашнего задания.
  • Организация учебного процесса на этапе IX.

    1. Диалог:

    Ребята, какое новое знание вы сегодня открыли? (Научились делить дробь на натуральное число простым способом)

    Сформулируйте общий способ. (Говорят)

    Каким способом, и в каких случаях можно пользоваться ещё? (Говорят)

    В чём преимущество нового способа?

    Достигли ли мы поставленной нами цели урока? (Да)

    Какие знания вы использовали для достижения цели? (Говорят)

    Всё ли у вас получилось?

    В чём были затруднения?

    2. Домашнее задание: п.3.2.4.; №365(л, н, о, п); №370.

    3. Учитель: я рада, что сегодня все были активны, сумели найти выход из затруднения. А самое главное, не были соседями при открытии нового и его закреплении. Спасибо вам за урок, дети!

    § 87. Сложение дробей.

    Сложение дробей имеет много сходства со сложением целых чисел. Сложение дробей есть действие, состоящее в том, что несколько данных чисел (слагаемых) соединяются в одно число (сумму), содержащее в себе все единицы и доли единиц слагаемых.

    Мы последовательно рассмотрим три случая:

    1. Сложение дробей с одинаковыми знаменателями.
    2. Сложение дробей с разными знаменателями.
    3. Сложение смешанных чисел.

    1. Сложение дробей с одинаковыми знаменателями.

    Рассмотрим пример: 1 / 5 + 2 / 5 .

    Возьмём отрезок АВ (рис. 17), примем его за единицу и разделим на 5 равных частей, тогда часть АС этого отрезка будет равна 1 / 5 отрезка АВ, а часть того же отрезка CD будет равна 2 / 5 АВ.

    Из чертежа видно, что если взять отрезок AD, то он будет равен 3 / 5 АВ; но отрезок AD как раз и есть сумма отрезков АС и CD. Значит, можно записать:

    1 / 5 + 2 / 5 = 3 / 5

    Рассматривая данные слагаемые и полученную сумму, мы видим, что числитель суммы получился от сложения числителей слагаемых, а знаменатель остался без изменения.

    Отсюда получаем следующее правило: чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители и оставить тот же знаменатель.

    Рассмотрим пример:

    2. Сложение дробей с разными знаменателями.

    Сложим дроби: 3 / 4 + 3 / 8 Предварительно их нужно привести к наименьшему общему знаменателю:

    Промежуточное звено 6 / 8 + 3 / 8 можно было бы и не писать; мы написали его здесь для большей ясности.

    Таким образом, чтобы сложить дроби с разными знаменателями, нужно предварительно привести их к наименьшему общему знаменателю, сложить их числители и подписать общий знаменатель.

    Рассмотрим пример (дополнительные множители будем писать над соответствующими дробями):

    3. Сложение смешанных чисел.

    Сложим числа: 2 3 / 8 + 3 5 / 6 .

    Приведём сначала дробные части наших чисел к общему знаменателю и снова их перепишем:

    Теперь сложим последовательно целые и дробные части:

    § 88. Вычитание дробей.

    Вычитание дробей определяется так же, как и вычитание целых чисел. Это есть действие, с помощью которого по данной сумме двух слагаемых и одному из них отыскивается другое слагаемое. Рассмотрим последовательно три случая:

    1. Вычитание дробей с одинаковыми знаменателями.
    2. Вычитание дробей с разными знаменателями.
    3. Вычитание смешанных чисел.

    1. Вычитание дробей с одинаковыми знаменателями.

    Рассмотрим пример:

    13 / 15 - 4 / 15

    Возьмём отрезок АВ (рис. 18), примем его за единицу и разделим на 15 равных частей; тогда часть АС этого отрезка будет представлять собой 1 / 15 от АВ, а часть AD того же отрезка будет соответствовать 13 / 15 AB. Отложим ещё отрезок ED, равный 4 / 15 АВ.

    Нам требуется вычесть из 13 / 15 дробь 4 / 15 . На чертеже это значит, что от отрезка AD нужно отнять отрезок ED. В результате останется отрезок AЕ, который составляет 9 / 15 отрезка АВ. Значит, мы можем написать:

    Сделанный нами пример показывает, что числитель разности получился от вычитания числителей, а знаменатель остался тот же самый.

    Следовательно, чтобы сделать вычитание дробей с одинаковыми знаменателями, нужновычесть числитель вычитаемого из числителя уменьшаемого и оставить прежний знаменатель.

    2. Вычитание дробей с разными знаменателями.

    Пример. 3 / 4 - 5 / 8

    Предварительно приведём эти дроби к наименьшему общему знаменателю:

    Промежуточное звено 6 / 8 - 5 / 8 написано здесь для большей ясности, но его можно в дальнейшем пропускать.

    Таким образом, чтобы вычесть дробь из дроби, нужно предварительно привести их к наименьшему общему знаменателю, затем из числителя уменьшаемого вычесть числитель вычитаемого и под их разностью подписать общий знаменатель.

    Рассмотрим пример:

    3. Вычитание смешанных чисел.

    Пример. 10 3 / 4 - 7 2 / 3 .

    Приведём дробные части уменьшаемого и вычитаемого к наименьшему общему знаменателю:

    Мы вычли целое из целого и дробь из дроби. Но бывают случаи, когда дробная часть вычитаемого больше дробной части уменьшаемого. В таких случаях нужно взять одну единицу из целой части уменьшаемого, раздробить её в те доли, в каких выражена дробная часть, и прибавить к дробной части уменьшаемого. А затем вычитание будет выполняться так же, как и в предыдущем примере:

    § 89. Умножение дробей.

    При изучении умножения дробей мы будем рассматривать следующие вопросы:

    1. Умножение дроби на целое число.
    2. Нахождение дроби данного числа.
    3. Умножение целого числа на дробь.
    4. Умножение дроби на дробь.
    5. Умножение смешанных чисел.
    6. Понятие о проценте.
    7. Нахождение процентов данного числа. Рассмотрим их последовательно.

    1. Умножение дроби на целое число.

    Умножение дроби на целое число имеет тот же смысл, что и умножение целого числа на целое. Умножить дробь (множимое) на целое число (множитель) - значит составить сумму одинаковых слагаемых, в которой каждое слагаемое равно множимому, а число слагаемых равно множителю.

    Значит, если нужно 1 / 9 умножить на 7, то это можно выполнить так:

    Мы легко получили результат, так как действие свелось к сложению дробей с одинаковыми знаменателями. Следовательно,

    Рассмотрение этого действия показывает, что умножение дроби на целое число равносильно увеличению этой дроби во столько раз, сколько единиц содержится в целом числе. А так как увеличение дроби достигается или путём увеличения её числителя

    или путём уменьшения её знаменателя ,то мы можем либо умножить числитель на целое, либо разделить на него знаменатель, если такое деление возможно.

    Отсюда получаем правило:

    Чтобы умножить дробь на целое число, нужно умножить на это целое число числитель и оставить тот же знаменатель или, если возможно, разделить на это число знаменатель, оставив без изменения числитель.

    При умножении возможны сокращения, например:

    2. Нахождение дроби данного числа. Существует множество задач, при решении которых приходится находить, или вычислять, часть данного числа. Отличие этих задач от прочих состоит в том, что в них даётся число каких-нибудь предметов или единиц измерения и требуется найти часть этого числа, которая здесь же указывается определённой дробью. Для облегчения понимания мы сначала приведём примеры таких задач, а потом познакомим со способом их решения.

    Задача 1. У меня было 60 руб.; 1 / 3 этих денег я израсходовал на покупку книг. Сколько стоили книги?

    Задача 2. Поезд должен пройти расстояние между городами А и В, равное 300 км. Он уже прошёл 2 / 3 этого расстояния. Сколько это составляет километров?

    Задача 3. В селе 400 домов, из них 3 / 4 кирпичных, остальные деревянные. Сколько всего кирпичных домов?

    Вот некоторые из тех многочисленных задач на нахождение части от данного числа, с которыми нам приходится встречаться. Их обычно называют задачами на нахождение дроби данного числа.

    Решение задачи 1. Из 60 руб. я израсходовал на книги 1 / 3 ; Значит, для нахождения стоимости книг нужно число 60 разделить на 3:

    Решение задачи 2. Смысл задачи заключается в том, что нужно найти 2 / 3 от 300 км. Вычислим сначала 1 / 3 от 300; это достигается при помощи деления 300 км на 3:

    300: 3 = 100 (это 1 / 3 от 300).

    Для нахождения двух третей от 300 нужно полученное частное увеличить вдвое, т. е. умножить на 2:

    100 х 2 = 200 (это 2 / 3 от 300).

    Решение задачи 3. Здесь нужно определить число кирпичных домов, которые составляют 3 / 4 от 400. Найдём сначала 1 / 4 от 400,

    400: 4 = 100 (это 1 / 4 от 400).

    Для вычисления трёх четвертей от 400 полученное частное нужно увеличить втрое, т. е. умножить на 3:

    100 х 3 = 300 (это 3 / 4 от 400).

    На основании решения этих задач мы можем вывести следующее правило:

    Чтобы найти величину дроби от данного числа, нужно разделить это число на знаменатель дроби и полученное частное умножить на её числитель.

    3. Умножение целого числа на дробь.

    Ранее (§ 26) было установлено, что умножение целых чисел нужно понимать, как сложение одинаковых слагаемых (5 x 4 = 5+5 +5+5 = 20). В настоящем параграфе (пункт 1) было установлено, что умножить дробь на целое число - это значит найти сумму одинаковых слагаемых, равных этой дроби.

    В обоих случаях умножение состояло в нахождении суммы одинаковых слагаемых.

    Теперь мы переходим к умножению целого числа на дробь. Здесь мы встретимся с таким, например, умножением: 9 2 / 3 . Совершенно очевидно, что прежнее определение умножения не подходит к данному случаю. Это видно из того, что мы не можем такое умножение заменить сложением равных между собой чисел.

    В силу этого нам придётся дать новое определение умножения, т. е., иными словами, ответить на вопрос, что следует разуметь под умножением на дробь, как нужно понимать это действие.

    Смысл умножения целого числа на дробь выясняется из следующего определения: умножить целое число (множимое) на дробь (множитель) - значит найти эту дробь множимого.

    Именно, умножить 9 на 2 / 3 - значит найти 2 / 3 от девяти единиц. В предыдущем пункте решались такие задачи; поэтому легко сообразить, что у нас в результате получится 6.

    Но теперь возникает интересный и важный вопрос: почему такие на первый взгляд различные действия, как нахождение суммы равных чисел и нахождение дроби числа, в арифметике называются одним и тем же словом «умножение»?

    Происходит это потому, что прежнее действие (повторение числа слагаемым несколько раз) и новое действие (нахождение дроби числа) дают ответ на однородные вопросы. Значит, мы исходим здесь из тех соображений, что однородные вопросы или задачи решаются одним и тем же действием.

    Чтобы это понять, рассмотрим следующую задачу: «1 м сукна стоит 50 руб. Сколько будет стоить 4 м такого сукна?»

    Эта задача решается умножением числа рублей (50) на число метров (4), т. е. 50 x 4 = 200 (руб.).

    Возьмём такую же задачу, но в ней количество сукна будет выражено дробным числом: «1 м сукна стоит 50 руб. Сколько будет стоить 3 / 4 м такого сукна?»

    Эту задачу тоже нужно решать умножением числа рублей (50) на число метров (3 / 4) .

    Можно и ещё несколько раз, не меняя смысла задачи, изменить в ней числа, например взять 9 / 10 м или 2 3 / 10 м и т. д.

    Так как эти задачи имеют одно и то же содержание и отличаются только числами, то мы называем действия, применяемые при их решении, одним и тем же словом - умножение.

    Как выполняется умножение целого числа на дробь?

    Возьмём числа, встретившиеся в последней задаче:

    Согласно определению мы должны найти 3 / 4 от 50. Найдём сначала 1 / 4 от 50, а затем 3 / 4 .

    1 / 4 числа 50 составляет 50 / 4 ;

    3 / 4 числа 50 составляют .

    Следовательно.

    Рассмотрим ещё один пример: 12 5 / 8 = ?

    1 / 8 числа 12 составляет 12 / 8 ,

    5 / 8 числа 12 составляют .

    Следовательно,

    Отсюда получаем правило:

    Чтобы умножить целое число на дробь, надо умножить целое число на числитель дроби и это произведение сделать числителем, а знаменателем подписать знаменатель данной дроби.

    Запишем это правило с помощью букв:

    Чтобы это правило стало совершенно понятным, следует помнить, что дробь можно рассматривать как частное. Поэтому найденное правило полезно сравнить с правилом умножения числа на частное, которое было изложено в § 38

    Необходимо помнить, что прежде чем выполнять умножение, следует делать (если возможно) сокращения , например:

    4. Умножение дроби на дробь. Умножение дроби на дробь имеет тот же смысл, что и умножение целого числа на дробь, т. е. при умножении дроби на дробь нужно от первой дроби (множимого) найти дробь, стоящую во множителе.

    Именно, умножить 3 / 4 на 1 / 2 (половину) - это значит найти половину от 3 / 4 .

    Как выполняется умножение дроби на дробь?

    Возьмём пример: 3 / 4 умножить на 5 / 7 . Это значит, что нужно найти 5 / 7 от 3 / 4 . Найдем сначала 1 / 7 от 3 / 4 , а потом 5 / 7

    1 / 7 числа 3 / 4 выразится так:

    5 / 7 числа 3 / 4 выразятся так:

    Таким образом,

    Еще пример: 5 / 8 умножить на 4 / 9 .

    1 / 9 числа 5 / 8 составляет ,

    4 / 9 числа 5 / 8 составляют .

    Таким образом,

    Из рассмотрения этих примеров можно вывести следующее правило:

    Чтобы умножить дробь на дробь, нужно умножить числитель на числитель, а знаменатель - на знаменатель и первое произведение сделать числителем, а второе - знаменателем произведения.

    Это правило в общем виде можно записать так:

    При умножении необходимо делать (если возможно) сокращения. Рассмотрим примеры:

    5. Умножение смешанных чисел. Так как смешанные числа легко могут быть заменены неправильными дробями, то этим обстоятельством обычно пользуются при умножении смешанных чисел. Это значит, что в тех случаях, когда множимое, или множитель, или оба сомножителя выражены смешанными числами, то их заменяют неправильными дробями. Перемножим, например, смешанные числа: 2 1 / 2 и 3 1 / 5 . Обратим каждое из них в неправильную дробь и потом будем перемножать полученные дроби по правилу умножения дроби на дробь:

    Правило. Чтобы перемножить смешанные числа, нужно предварительно обратить их в неправильные дроби и потом перемножить по правилу умножения дроби на дробь.

    Примечание. Если один из сомножителей - целое число, то умножение может быть выполнено на основании распределительного закона так:

    6. Понятие о проценте. При решении задач и при выполнении различных практических расчётов мы пользуемся всевозможными дробями. Но нужно иметь в виду, что многие величины допускают не любые, а естественные для них подразделения. Например, можно взять одну сотую (1 / 100) рубля, это будет копейка, две сотых - это 2 коп., три сотых - 3 коп. Можно взять 1 / 10 рубля, это будет"10 коп., или гривенник. Можно взять четверть рубля, т. е. 25 коп., половину рубля, т. е. 50 коп. (полтинник). Но практически не берут, например, 2 / 7 рубля потому, что рубль на седьмые доли не делится.

    Единица измерения веса, т. е. килограмм, допускает прежде всего десятичные подразделения, например 1 / 10 кг, или 100 г. А такие доли килограмма, как 1 / 6 , 1 / 11 , 1 / 13 неупотребительны.

    Вообще наши (метрические) меры являются десятичными и допускают десятичные подразделения.

    Однако надо заметить, что крайне полезно и удобно в самых разнообразных случаях пользоваться одинаковым (однообразным) способом подразделения величин. Многолетний опыт показал, что таким хорошо оправдавшим себя делением является «сотенное» деление. Рассмотрим несколько примеров, относящихся к самым разнообразным областям человеческой практики.

    1. Цена на книги понизилась на 12 / 100 прежней цены.

    Пример. Прежняя цена книги 10 руб. Она понизилась на 1 рубль. 20 коп.

    2. Сберегательные кассы выплачивают в течение года вкладчикам 2 / 100 суммы, которая положена на сбережение.

    Пример. В кассу положено 500 руб., доход с этой суммы за год составляет 10 руб.

    3. Число выпускников одной школы составило 5 / 100 от общего числа учащихся.

    П р и м е р. В школе обучалось всего 1 200 учащихся, из них окончили школу 60 человек.

    Сотая часть числа называется процентом .

    Слово «процент» заимствовано из латинского языка и его корень «цент» означает сто. Вместе с предлогом (pro centum) это слово обозначает «за сотню». Смысл такого выражения вытекает из того обстоятельства, что первоначально в древнем Риме процентами назывались деньги, которые платил должник заимодавцу «за каждую сотню». Слово «цент» слышится в таких всем знакомых словах: центнер (сто килограммов), центиметр (говорится сантиметр).

    Например, вместо того чтобы говорить, что завод за истекший месяц дал брака 1 / 100 от всей выработанной им продукции, мы будем говорить так: завод за истекший месяц дал один процент брака. Вместо того чтобы говорить: завод выработал продукции на 4 / 100 больше установленного плана, мы будем говорить: завод перевыполнил план на 4 процента.

    Изложенные выше примеры можно высказать иначе:

    1. Цена на книги понизилась на 12 процентов прежней цены.

    2. Сберегательные кассы выплачивают вкладчикам за год 2 процента с суммы, положенной на сбережение.

    3. Число выпускников одной школы составляло 5 процентов числа всех учащихся школы.

    Для сокращения письма принято вместо слова «процент» писать значок %.

    Однако нужно помнить, что в вычислениях значок % обычно не пишется, он может быть записан в условии задачи и в окончательном результате. При выполнении же вычислений нужно писать дробь со знаменателем 100 вместо целого числа с этим значком.

    Нужно уметь заменять целое число с указанным значком дробью с знаменателем 100:

    Обратно, нужно привыкнуть вместо дроби с знаменателем 100 писать целое число с указанным значком:

    7. Нахождение процентов данного числа.

    Задача 1. Школа получила 200 куб. м дров, причём берёзовые дрова составляли 30%. Сколько было берёзовых дров?

    Смысл этой задачи состоит в том, что берёзовые дрова составляли лишь часть тех дров, которые были доставлены в школу, и эта часть выражается дробью 30 / 100 . Значит, перед нами задача на нахождение дроби от числа. Для её решения мы должны 200 умножить на 30 / 100 (задачи на нахождение дроби числа решаются умножением числа на дробь.).

    Значит, 30% от 200 равняются 60.

    Дробь 30 / 100 , встречавшаяся в этой задаче, допускает сокращение на 10. Можно было бы с самого начала выполнить это сокращение; решение задачи от этого не изменилось бы.

    Задача 2. В лагере было 300 детей различных возрастов. Дети 11 лет составляли 21%, дети 12 лет составляли 61% и, наконец, 13-летних детей было 18%. Сколько было детей каждого возраста в лагере?

    В этой задаче нужно выполнить три вычисления, т. е. последовательно найти число детей 11 лет, потом 12 лет и, наконец, 13 лет.

    Значит, здесь нужно будет три раза отыскать дробь от числа. Сделаем это:

    1) Сколько было детей 11-летнего возраста?

    2) Сколько было детей 12-летнего возраста?

    3) Сколько было детей 13-летнего возраста?

    После решения задачи полезно сложить найденные числа; сумма их должна составить 300:

    63 + 183 + 54 = 300

    Следует также обратить внимание на то, что сумма процентов, данных в условии задачи, составляет 100:

    21% + 61% + 18% = 100%

    Это говорит о том, что общее число детей, находившихся в лагере, было принято за 100%.

    3 а д а ч а 3. Рабочий получил за месяц 1 200 руб. Из них 65% он израсходовал на питание, 6% - на квартиру и отопление, 4% - на газ, электричество и радио, 10% - на культурные нужды и 15% - сберёг. Сколько денег израсходовано на указанные в задаче нужды?

    Для решения этой задачи нужно 5 раз найти дробь от числа 1 200. Сделаем это.

    1) Сколько денег израсходовано на питание? В задаче сказано, что этот расход составляет 65% от всего заработка, т. е. 65 / 100 от числа 1 200. Сделаем вычисление:

    2) Сколько денег уплачено за квартиру с отоплением? Рассуждая подобно предыдущему, мы придём к следующему вычислению:

    3) Сколько денег уплатили за газ, электричество и радио?

    4) Сколько денег израсходовано на культурные нужды?

    5) Сколько денег рабочий сберёг?

    Для проверки полезно сложить числа, найденные в этих 5 вопросах. Сумма должна составить 1 200 руб. Весь заработок принят за 100%, что легко проверить, сложив числа процентов, данные в условии задачи.

    Мы решили три задачи. Несмотря на то, что в этих задачах речь шла о различных вещах (доставка дров для школы, число детей различных возрастов, расходы рабочего), они решались одним и тем же способом. Это произошло потому, что во всех задачах нужно было найти несколько процентов от данных чисел.

    § 90. Деление дробей.

    При изучении деления дробей мы будем рассматривать следующие вопросы:

    1. Деление целого числа на целое.
    2. Деление дроби на целое число
    3. Деление целого числа на дробь.
    4. Деление дроби на дробь.
    5. Деление смешанных чисел.
    6. Нахождение числа по данной его дроби.
    7. Нахождение числа по его процентам.

    Рассмотрим их последовательно.

    1. Деление целого числа на целое.

    Как было указано в отделе целых чисел, делением называется действие, состоящее в том, что по данному произведению двух сомножителей (делимому) и одному из этих сомножителей (делителю) отыскивается другой сомножитель.

    Деление целого числа на целое мы рассматривали в отделе целых чисел. Мы встретили там два случая деления: деление без остатка, или «нацело» (150: 10 = 15), и деление с остатком (100: 9 = 11 и 1 в остатке). Мы можем, следовательно, сказать, что в области целых чисел точное деление не всегда возможно, потому что делимое не всегда является произведением делителя на целое число. После введения умножения на дробь мы можем всякий случай деления целых чисел считать возможным (исключается только деление на нуль).

    Например, разделить 7 на 12 -это значит найти такое число, произведение которого на 12 было бы равно 7. Таким числом является дробь 7 / 12 потому что 7 / 12 12 =7. Ещё пример: 14: 25 = 14 / 25 , потому что 14 / 25 25 = 14.

    Таким образом, чтобы разделить целое число на целое, нужно составить дробь, числитель которой равен делимому, а знаменатель - делителю.

    2. Деление дроби на целое число.

    Разделить дробь 6 / 7 на 3. Согласно данному выше определению деления мы имеем здесь произведение (6 / 7) и один из сомножителей (3); требуется найти такой второй сомножитель, который от умножения на 3 дал бы данное произведение 6 / 7 . Очевидно, он должен быть втрое меньше этого произведения. Значит, поставленная перед нами задача состояла в том, чтобы дробь 6 / 7 уменьшить в 3 раза.

    Мы уже знаем, что уменьшение дроби можно выполнить или путём уменьшения её числителя, или путём увеличения её знаменателя. Поэтому можно написать:

    В данном случае числитель 6 делится на 3, поэтому следует уменьшить в 3 раза числитель.

    Возьмём другой пример: 5 / 8 разделить на 2. Здесь числитель 5 не делится нацело на 2, значит, на это число придётся умножить знаменатель:

    На основании этого можно высказать правило: чтобы разделить дробь на целое число, нужно разделить на это целое число числитель дроби (если это возможно), оставив тот же знаменатель, или умножить на это число знаменатель дроби, оставив тот же числитель.

    3. Деление целого числа на дробь.

    Пусть требуется разделить 5 на 1 / 2 , т. е. найти такое число, которое после умножения на 1 / 2 даст произведение 5. Очевидно, это число должно быть больше 5, так как 1 / 2 есть правильная дробь, а при умножении числа на правильную дробь произведение должно быть меньше множимого. Чтобы это было понятнее, запишем наши действия следующим образом: 5: 1 / 2 = х , значит, х 1 / 2 = 5.

    Мы должны найти такое число х , которое, будучи умножено на 1 / 2 дало бы 5. Так как умножить некоторое число на 1 / 2 - это значит найти 1 / 2 этого числа, то, следовательно, 1 / 2 неизвестного числа х равна 5, а всё число х вдвое больше, т. е. 5 2 = 10.

    Таким образом, 5: 1 / 2 = 5 2 = 10

    Проверим:

    Рассмотрим ещё один пример. Пусть требуется разделить 6 на 2 / 3 . Попробуем сначала найти искомый результат с помощью чертежа (рис. 19).

    Рис.19

    Изобразим отрезок АВ, равный 6 каким-нибудь единицам, и разделим каждую единицу на 3 равные части. В каждой единице три трети (3 / 3) во всём отрезке АВ в 6 раз больше,т. е. 18 / 3 . Соединим при помощи маленьких скобочек 18 полученных отрезков по 2; получится всего 9 отрезков. Значит дробь 2 / 3 содержится в б единицах 9 раз, или, иными словами, дробь 2 / 3 в 9 раз меньше 6 целых единиц. Следовательно,

    Каким образом получить этот результат без чертежа при помощи одних только вычислений? Будем рассуждать так: требуется 6 разделить на 2 / 3 , т. е. требуется ответить на вопрос, сколько раз 2 / 3 содержатся в 6. Узнаем сначала: сколько раз 1 / 3 содержится в 6? В целой единице - 3 трети, а в 6 единицах - в 6 раз больше, т. е. 18 третей; для нахождения этого числа мы должны 6 умножить на 3. Значит, 1 / 3 содержится в б единицах 18 раз, а 2 / 3 содержатся в б не 18 раз, а вдвое меньше раз, т. е. 18: 2 = 9. Следовательно, при делении 6 на 2 / 3 мы выполнили следующие действия:

    Отсюда получаем правило деления целого числа на дробь. Чтобы разделить целое число на дробь, надо это целое число умножить на знаменатель данной дроби и, сделав это произведение числителем, разделить его на числитель данной дроби.

    Запишем правило при помощи букв:

    Чтобы это правило стало совершенно понятным, следует помнить, что дробь можно рассматривать как частное. Поэтому найденное правило полезно сравнить с правилом деления числа на частное, которое было изложено в § 38 . Обратите внимание на то, что там была получена такая же формула.

    При делении возможны сокращения, например:

    4. Деление дроби на дробь.

    Пусть требуется разделить 3 / 4 на 3 / 8 . Что будет обозначать число, которое получится в результате деления? Оно будет давать ответ на вопрос, сколько раз дробь 3 / 8 содержится в дроби 3 / 4 . Чтобы разобраться в этом вопросе, сделаем чертёж (рис. 20).

    Возьмём отрезок АВ, примем его за единицу, разделим на 4 равные части и отметим 3 такие части. Отрезок АС будет равен 3 / 4 отрезка АВ. Разделим теперь каждый из четырёх первоначальных отрезков пополам, тогда отрезок АВ разделится на 8 равных частей и каждая такая часть будет равна 1 / 8 отрезка АВ. Соединим дугами по 3 таких отрезка, тогда каждый из отрезков AD и DC будет равен 3 / 8 отрезка АВ. Чертёж показывает, что отрезок, равный 3 / 8 , содержится в отрезке, равном 3 / 4 , ровно 2 раза; значит, результат деления можно записать так:

    3 / 4: 3 / 8 = 2

    Рассмотрим ещё один пример. Пусть требуется разделить 15 / 16 на 3 / 32:

    Мы можем рассуждать так: нужно найти такое число, которое после умножения на 3 / 32 Даст произведение, равное 15 / 16 . Запишем вычисления так:

    15 / 16: 3 / 32 = х

    3 / 32 х = 15 / 16

    3 / 32 неизвестного числа х составляют 15 / 16

    1 / 32 неизвестного числа х составляет ,

    32 / 32 числа х составляют .

    Следовательно,

    Таким образом, чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй, а знаменатель первой дроби умножить на числитель второй и первое произведение сделать числителем, а второе - знаменателем.

    Запишем правило с помощью букв:

    При делении возможны сокращения, например:

    5. Деление смешанных чисел.

    При делении смешанных чисел их нужно предварительно обращать в неправильные дроби,а затем производить деление полученных дробей по правилам деления дробных чисел. Рассмотрим пример:

    Обратим смешанные числа в неправильные дроби:

    Теперь разделим:

    Таким образом, чтобы разделить смешанные числа, нужно обратить их в неправильные дроби и затем разделить по правилу деления дробей.

    6. Нахождение числа по данной его дроби.

    Среди различных задач на дроби иногда встречаются такие, в которых даётся величина какой-нибудь дроби неизвестного числа и требуется найти это число. Этого типа задачи будут обратными по отношению к задачам на нахождение дроби данного числа; там давалось число и требовалось найти некоторую дробь от этого числа, здесь даётся дробь от числа и требуется найти само это число. Эта мысль станет ещё яснее, если мы обратимся к решению такого типа задач.

    Задача 1. В первый день стекольщики остеклили 50 окон, что составляет 1 / 3 всех окон построенного дома. Сколько всего окон в этом доме?

    Решение. В задаче сказано, что остеклённые 50 окон составляют 1 / 3 всех окон дома, значит, всего окон в 3 раза больше, т. е.

    В доме было 150 окон.

    Задача 2. Магазин продал 1 500 кг муки, что составляет 3 / 8 всего запаса муки, имевшегося в магазине. Каков был первоначальный запас муки в магазине?

    Решение. Из условия задачи видно, что проданные 1 500 кг муки составляют 3 / 8 всего запаса; значит, 1 / 8 этого запаса будет в 3 раза меньше, т. е. для её вычисления нужно 1500 уменьшить в 3 раза:

    1 500: 3 = 500 (это 1 / 8 запаса).

    Очевидно, весь запас будет в 8 раз больше. Следовательно,

    500 8 = 4 000 (кг).

    Первоначальный запас муки в магазине был равен 4 000 кг.

    Из рассмотрения этой задачи можно вывести следующее правило.

    Чтобы найти, число по данной величине его дроби, достаточно разделить эту величину на числитель дроби и результат умножить на знаменатель дроби.

    Мы решили две задачи на нахождение числа по данной его дроби. Такие задачи, как это особенно хорошо видно из последней, решаются двумя действиями: делением (когда находят одну часть) и умножением (когда находят всё число).

    Однако после того как мы изучили деление дробей, указанные выше задачи можно решать одним действием, а именно: делением на дробь.

    Например, последняя задача может быть решена одним действием так:

    В дальнейшем задачи на нахождение числа по его дроби мы будем решать одним действием - делением.

    7. Нахождение числа по его процентам.

    В этих задачах нужно будет найти число, зная несколько процентов этого числа.

    Задача 1. В начале текущего года я получил в сберегательной кассе 60 руб. дохода с суммы, положенной мной на сбережение год назад. Сколько денег я положил в сберегательную кассу? (Кассы дают вкладчикам 2% дохода в год.)

    Смысл задачи состоит в том, что некоторая сумма денег была положена мной в сберегательную кассу и пролежала там год. По прошествии года я получил с неё 60 руб. дохода, что составляет 2 / 100 тех денег, которые я положил. Сколько же денег я положил?

    Следовательно, зная часть этих денег, выраженную двумя способами (в рублях и дробью), мы должны найти всю, пока неизвестную, сумму. Это обыкновенная задача на нахождение числа по данной его дроби. Решаются такие задачи делением:

    Значит, в сберегательную кассу было положено 3000 руб.

    Задача 2. Рыболовы за две недели выполнили месячный план на 64%, заготовив 512 т рыбы. Какой у них был план?

    Из условия задачи известно, что рыболовы выполнили часть плана. Эта часть равна 512 т, что составляет 64% плана. Сколько тонн рыбы нужно заготовить по плану, нам неизвестно. В нахождении этого числа и будет состоять решение задачи.

    Такие задачи решаются делением:

    Значит, по плану нужно заготовить 800 т рыбы.

    Задача 3. Поезд шёл из Риги в Москву. Когда он миновал 276-й километр, один из пассажиров спросил проходящего кондуктора, какую часть пути они уже проехали. На это кондуктор ответил: «Проехали уже 30% всего пути». Каково расстояние от Риги до Москвы?

    Из условия задачи видно, что 30% пути от Риги до Москвы составляют 276 км. Нам нужно найти всё расстояние между этими городами, т. е. по данной части найти целое:

    § 91. Взаимно обратные числа. Замена деления умножением.

    Возьмём дробь 2 / 3 и переставим числитель на место знаменателя, получится 3 / 2 . Мы получили дробь, обратную данной.

    Для того чтобы получить дробь, обратную данной, нужно её числитель поставить на место знаменателя, а знаменатель - на место числителя. Этим способом мы можем получить дробь, обратную любой дроби. Например:

    3 / 4 , обратная 4 / 3 ; 5 / 6 , обратная 6 / 5

    Две дроби, обладающие тем свойством, что числитель первой является знаменателем второй, а знаменатель первой является числителем второй, называются взаимно обратными.

    Теперь подумаем, какая дробь будет обратной для 1 / 2 . Очевидно, это будет 2 / 1 , или просто 2. Отыскивая дробь, обратную данной, мы получили целое число. И этот случай не единичный; напротив, для всех дробей с числителем 1 (единица) обратными будут целые числа, например:

    1 / 3 , обратная 3; 1 / 5 , обратная 5

    Так как при отыскании обратных дробей мы встретились и с целыми числами, то в дальнейшем мы будем говорить не об обратных дробях, а об обратных числах.

    Выясним, как написать число, обратное целому числу. Для дробей это решается просто: нужно знаменатель поставить на место числителя. Этим же способом можно получить обратное число и для целого числа, так как у любого целого числа можно подразумевать знаменатель 1. Значит, число, обратное 7, будет 1 / 7 , потому что 7 = 7 / 1 ; для числа 10 обратное будет 1 / 10 , так как 10 = 10 / 1

    Эту мысль можно выразить иначе: число, обратное данному числу, получается от деления единицы на данное число . Такое утверждение справедливо не только для целых чисел, но и для дробей. В самом деле, если требуется написать число, обратное дроби 5 / 9 , то мы можем взять 1 и разделить ее на 5 / 9 , т. е.

    Теперь укажем одно свойство взаимно обратных чисел, которое будет нам полезно: произведение взаимно обратных чисел равно единице. В самом деле:

    Пользуясь этим свойством, мы можем находить обратные числа следующим путём. Пусть нужно найти число, обратное 8.

    Обозначим его буквой х , тогда 8 х = 1, отсюда х = 1 / 8 . Найдём ещё число, обратное 7 / 12 обозначим его буквой х , тогда 7 / 12 х = 1, отсюда х = 1: 7 / 12 или х = 12 / 7 .

    Мы ввели здесь понятие о взаимно обратных числах для того, чтобы немного дополнить сведения о делении дробей.

    Когда мы делим число 6 на 3 / 5 , то мы выполняем следующие действия:

    Обратите особое внимание на выражение и сравните его с заданным: .

    Если взять выражение отдельно, без связи с предыдущим, то нельзя решить вопрос, откуда оно возникло: от деления 6 на 3 / 5 или от умножения 6 на 5 / 3 . В обоих случаях получается одно и то же. Поэтому мы можем сказать, что деление одного числа на другое можно заменить умножением делимого на число, обратное делителю.

    Примеры, которые мы даём ниже, вполне подтверждают этот вывод.

    В прошлый раз мы научились складывать и вычитать дроби (см. урок «Сложение и вычитание дробей »). Наиболее сложным моментом в тех действиях было приведение дробей к общему знаменателю.

    Теперь настала пора разобраться с умножением и делением. Хорошая новость состоит в том, что эти операции выполняются даже проще, чем сложение и вычитание. Для начала рассмотрим простейший случай, когда есть две положительные дроби без выделенной целой части.

    Чтобы умножить две дроби, надо отдельно умножить их числители и знаменатели. Первое число будет числителем новой дроби, а второе - знаменателем.

    Чтобы разделить две дроби, надо первую дробь умножить на «перевернутую» вторую.

    Обозначение:

    Из определения следует, что деление дробей сводится к умножению. Чтобы «перевернуть» дробь, достаточно поменять местами числитель и знаменатель. Поэтому весь урок мы будем рассматривать в основном умножение.

    В результате умножения может возникнуть (и зачастую действительно возникает) сократимая дробь - ее, разумеется, надо сократить. Если после всех сокращений дробь оказалась неправильной, в ней следует выделить целую часть. Но чего точно не будет при умножении, так это приведения к общему знаменателю: никаких методов «крест-накрест», наибольших множителей и наименьших общих кратных.

    По определению имеем:

    Умножение дробей с целой частью и отрицательных дробей

    Если в дробях присутствует целая часть, их надо перевести в неправильные - и только затем умножать по схемам, изложенным выше.

    Если в числителе дроби, в знаменателе или перед ней стоит минус, его можно вынести за пределы умножения или вообще убрать по следующим правилам:

    1. Плюс на минус дает минус;
    2. Минус на минус дает плюс.

    До сих пор эти правила встречались только при сложении и вычитании отрицательных дробей, когда требовалось избавиться от целой части. Для произведения их можно обобщить, чтобы «сжигать» сразу несколько минусов:

    1. Вычеркиваем минусы парами до тех пор, пока они полностью не исчезнут. В крайнем случае, один минус может выжить - тот, которому не нашлось пары;
    2. Если минусов не осталось, операция выполнена - можно приступать к умножению. Если же последний минус не зачеркнут, поскольку ему не нашлось пары, выносим его за пределы умножения. Получится отрицательная дробь.

    Задача. Найдите значение выражения:

    Все дроби переводим в неправильные, а затем выносим минусы за пределы умножения. То, что осталось, умножаем по обычным правилам. Получаем:

    Еще раз напомню, что минус, который стоит перед дробью с выделенной целой частью, относится именно ко всей дроби, а не только к ее целой части (это касается двух последних примеров).

    Также обратите внимание на отрицательные числа: при умножении они заключаются в скобки. Это сделано для того, чтобы отделить минусы от знаков умножения и сделать всю запись более аккуратной.

    Сокращение дробей «на лету»

    Умножение - весьма трудоемкая операция. Числа здесь получаются довольно большие, и чтобы упростить задачу, можно попробовать сократить дробь еще до умножения . Ведь по существу, числители и знаменатели дробей - это обычные множители, и, следовательно, их можно сокращать, используя основное свойство дроби. Взгляните на примеры:

    Задача. Найдите значение выражения:

    По определению имеем:

    Во всех примерах красным цветом отмечены числа, которые подверглись сокращению, и то, что от них осталось.

    Обратите внимание: в первом случае множители сократились полностью. На их месте остались единицы, которые, вообще говоря, можно не писать. Во втором примере полного сокращения добиться не удалось, но суммарный объем вычислений все равно уменьшился.

    Однако ни в коем случае не используйте этот прием при сложении и вычитании дробей! Да, иногда там встречаются похожие числа, которые так и хочется сократить. Вот, посмотрите:

    Так делать нельзя!

    Ошибка возникает из-за того, что при сложении в числителе дроби появляется сумма, а не произведение чисел. Следовательно, применять основное свойство дроби нельзя, поскольку в этом свойстве речь идет именно об умножении чисел.

    Других оснований для сокращения дробей просто не существует, поэтому правильное решение предыдущей задачи выглядит так:

    Правильное решение:

    Как видите, правильный ответ оказался не таким красивым. В общем, будьте внимательны.

    Для решения различных заданий из курса математики, физики приходится производить деление дробей. Это сделать очень легко, если знать определенные правила выполнения этого математического действия.

    Прежде чем перейти к формулированию правило том, как делить дроби, давайте вспомним некоторые математические термины:

    1. Верхняя часть дроби называется числителем, а нижняя – знаменателем.
    2. При делении числа называются так: делимое: делитель = частное

    Как делить дроби: простые дроби

    Для выполнения деления двух простых дробей следует умножить делимое на дробь, обратную делителю. Эту дробь по-другому называют еще перевернутой, потому что она получается в результате замены местами числителя и знаменателя. Например:

    3/77: 1/11 = 3 /77 * 11 /1 = 3/7

    Как делить дроби: смешанные дроби

    Если нам предстоит разделить смешанные дроби, то здесь тоже все достаточно просто и понятно. Сначала переводим смешанную дробь в обычную неправильную дробь. Для этого умножаем знаменатель такой дроби на целое число и числитель прибавляем к полученному произведению. В итоге мы получили новый числитель смешанной дроби, а знаменатель ее останется без изменения. Дальше деление дробей будет осуществляться точно так же, как и деление простых дробей. Например:

    10 2/3: 4/15 = 32/3: 4/15 = 32/3 * 15 /4 = 40/1 = 40

    Как делить дробь на число

    Для того чтобы разделить простую дробь на число, последнее следует написать в виде дроби (неправильной). Это сделать очень легко: на месте числителя пишется это число, а знаменатель такой дроби равен единице. Дальше деление выполняется обычным способом. Рассмотрим это на примере:

    5/11: 7 = 5/11: 7/1 = 5/11 * 1/7 = 5/77

    Как делить десятичные дроби

    Нередко взрослый человек испытывает затруднения при необходимости без помощи калькулятора разделить целое число или десятичную дробь на десятичную дробь.

    Итак, чтобы выполнить деление десятичных дробей, нужно в делителе просто зачеркнуть запятую и перестать обращать на нее внимание. В делимом запятую нужно передвинуть вправо ровно на столько знаков, сколько было в дробной части делителя, при необходимости дописывая нули. И дальше производят обычное деление на целое число. Чтобы это стало более понятно, приведем следующий пример.

    Обыкновенные дробные числа впервые встречают школьников в 5 классе и сопровождают их на протяжении всей жизни, так как в быту зачастую требуется рассматривать или использовать какой-то объект не целиком, а отдельными кусками. Начало изучения этой темы - доли. Доли - это равные части , на которые разделен тот или иной предмет. Ведь не всегда получается выразить, допустим, длину или цену товара целым числом, следует принять во внимание части или доли какой-либо меры. Образованное от глагола «дробить» - разделять на части, и имея арабские корни, в VIII веке возникло само слово «дробь» в русском языке.

    Дробные выражения продолжительное время считали самым сложным разделом математики. В XVII веке, при появлении первоучебников по математике, их называли «ломаные числа», что очень сложно отображалось в понимании людей.

    Современному виду простых дробных остатков, части которых разделены именно горизонтальной чертой, впервые поспособствовал Фибоначчи - Леонардо Пизанский. Его труды датированы в 1202 году. Но цель этой статьи - просто и понятно объяснить читателю, как происходит умножение смешанных дробей с разными знаменателями.

    Умножение дробей с разными знаменателями

    Изначально стоит определить разновидности дробей :

    • правильные;
    • неправильные;
    • смешанные.

    Далее нужно вспомнить, как происходит умножение дробных чисел с одинаковыми знаменателями. Само правило этого процесса несложно сформулировать самостоятельно: результатом умножения простых дробей с одинаковыми знаменателями является дробное выражение, числитель которой есть произведение числителей, а знаменатель - произведение знаменателей данных дробей. То есть, по сути, новый знаменатель есть квадрат одного из существующих изначально.

    При умножении простых дробей с разными знаменателями для двух и более множителей правило не меняется:

    a/ b * c/ d = a*c / b*d.

    Единственное отличие в том, что образованное число под дробной чертой будет произведением разных чисел и, естественно, квадратом одного числового выражения его назвать невозможно.

    Стоит рассмотреть умножение дробей с разными знаменателями на примерах:

    • 8/ 9 * 6/ 7 = 8*6 / 9*7 = 48/ 63 = 16/2 1 ;
    • 4/ 6 * 3/ 7 = 2/ 3 * 3/7 <> 2*3 / 3*7 = 6/ 21 .

    В примерах применяются способы сокращения дробных выражений. Можно сокращать только числа числителя с числами знаменателя, рядом стоящие множители над дробной чертой или под ней сокращать нельзя.

    Наряду с простыми дробными числами, существует понятие смешанных дробей. Смешанное число состоит из целого числа и дробной части, то есть является суммой этих чисел:

    1 4/ 11 =1 + 4/ 11.

    Как происходит перемножение

    Предлагается несколько примеров для рассмотрения.

    2 1/ 2 * 7 3/ 5 = 2 + 1/ 2 * 7 + 3/ 5 = 2*7 + 2* 3/ 5 + 1/ 2 * 7 + 1/ 2 * 3/ 5 = 14 + 6/5 + 7/ 2 + 3/ 10 = 14 + 12/ 10 + 35/ 10 + 3/ 10 = 14 + 50/ 10 = 14 + 5=19.

    В примере используется умножение числа на обыкновенную дробную часть , записать правило для этого действия можно формулой:

    a * b/ c = a*b / c.

    По сути, такое произведение есть сумма одинаковых дробных остатков, а количество слагаемых указывает это натуральное число. Частный случай:

    4 * 12/ 15 = 12/ 15 + 12/ 15 + 12/ 15 + 12/ 15 = 48/ 15 = 3 1/ 5.

    Существует еще один вариант решения умножения числа на дробный остаток. Стоит просто разделить знаменатель на это число:

    d * e/ f = e/ f: d.

    Этим приемом полезно пользоваться, когда знаменатель делится на натуральное число без остатка или, как говорится, нацело.

    Перевести смешанные числа в неправильные дроби и получить произведение ранее описанным способом:

    1 2/ 3 * 4 1/ 5 = 5/ 3 * 21/ 5 = 5*21 / 3*5 =7.

    В этом примере участвует способ представления смешанной дроби в неправильную, его также можно представить в виде общей формулы:

    a b c = a * b + c / c, где знаменатель новой дроби образуется при умножении целой части со знаменателем и при сложении его с числителем исходного дробного остатка, а знаменатель остается прежним.

    Этот процесс работает и в обратную сторону. Для выделения целой части и дробного остатка нужно поделить числитель неправильной дроби на ее знаменатель «уголком».

    Умножение неправильных дробей производят общепринятым способом. Когда запись идет под единой дробной чертой, по мере необходимости нужно сделать сокращение дробей, чтобы уменьшить таким методом числа и проще посчитать результат.

    В интернете существует множество помощников, чтобы решать даже сложные математические задачи в различных вариациях программ. Достаточное количество таких сервисов предлагают свою помощь при счете умножения дробей с разными числами в знаменателях - так называемые онлайн-калькуляторы для расчета дробей. Они способны не только умножить, но и произвести все остальные простейшие арифметические операции с обыкновенными дробями и смешанными числами. Работать с ним несложно, на странице сайта заполняются соответствующие поля, выбирается знак математического действия и нажимается «вычислить». Программа считает автоматически.

    Тема арифметических действий с дробными числами актуальна на всем протяжении обучения школьников среднего и старшего звена. В старших классах рассматривают уже не простейшие виды, а целые дробные выражения , но знания правил по преобразованию и расчетам, полученные ранее, применяются в первозданном виде. Хорошо усвоенные базовые знания дают полную уверенность в удачном решении наиболее сложных задач.

    В заключение имеет смысл привести слова Льва Николаевича Толстого, который писал: «Человек есть дробь. Увеличить своего числителя - свои достоинства, - не во власти человека, но всякий может уменьшить своего знаменателя - своё мнение о самом себе, и этим уменьшением приблизиться к своему совершенству».