Государственный комитет российской федерации по высшему образованию. Появление первых квантовых дальномеров Приборы для передачи показаний дальномеров

Создание лазерных импульсных дальномеров явилось одним из первых применений лазеров в военной технике. Измерение дальности до цели является типовой задачей артиллерийской стрельбы, которая уже давно решалась оптическими средствами, но с недостаточной точностью, требовала громоздких приборов и высокой квалификации и тренированности персонала. Радиолокация позволила измерять дальность до целей путём измерения времени задержки отражённого от цели радиоимпульса. Принцип действия квантовых дальномеров основан на измерении времени прохождения светового сигнала до цели и обратно и заключается в следующем: мощный импульс излучения малой длительности, генерируемый оптическим квантовым генератором (ОКГ) дальномера, формируется оптической системой и направляется к цели, дальность до которой необходимо измерить. Отраженный от цели импульс излучения, пройдя оптическую систему, попадает на фотоприемник дальномера. Момент излучения зондирующего и моменты поступления отраженных сигналов регистрируются блоком запуска (БЗ) и фотоприемным устройством (ФПУ), которые вырабатывают электрические сигналы для запуска и остановки измерителя временных интервалов (ИВИ). ИВИ измеряет временной интервал между передними фронтами излученного и отраженного импульсов. Дальность до цели пропорциональна этому интервалу и определяется по формуле, где - дальность до цели, м; - скорость света в атмосфере, м/с; - измеренный временной интервал, с.

Результат измерения в метрах высвечивается на цифровом индикаторе в поле зрения левого окуляра дальномера. Для создания оптического аналога радиолокатора не хватало только мощного импульсного источника света с хорошей направленностью луча. Твердотельный лазер с модулированной добротностью явился прекрасным решением этой проблемы. Первые советские лазерные дальномеры были разработаны в середине 60-х годов предприятиями оборонной промышленности, имевшими огромный опыт в создании оптических приборов. НИИ «Полюс» в это время ещё только формировался. Первой работой института в этом направлении была разработка рубинового элемента 5,5 х 75 для лазерного дальномера, создаваемого ЦНИИАГ. Разработка была успешно завершена в 1970 г созданием такого элемента с приёмкой заказчика. Отдел института, возглавляемый В.М. Кривцуном, в эти же годы разрабатывал рубиновые лазеры для космических траекторных измерений и оптической локации Луны. Был накоплен большой задел по созданию твердотельных лазеров полевого применения и их стыковке с аппаратурой заказчика. С использованием нашего лазера НИИ Космического приборостроения (Директор - Л.И. Гусев, Главный конструктор комплекса - В.Д. Шаргородский) провёл в 1972 - 73 гг успешную оптическую локацию Луноходов, доставленных советскими космическими кораблями на поверхность Луны. При этом определялось и местонахождение Луноходов на Луне методом сканирования лазерного луча. В 70-х годах эти работы были продолжены разработкой локационного лазера на гранате с неодимом («Кандела», Главный конструктор Зверев Г.М., ведущие исполнители М.Б. Житкова, В.В. Шульженко, В.П. Мызников). Ранее намеченный для использования в авиации, этот лазер был успешно применен для оснащения и многолетней эксплуатации широкой сети лазерных станций траекторных измерений спутников на Майданаке на Памире, на Дальнем Востоке, в Крыму и в Казахстане. В настоящее время на этих станциях работает уже 3-е поколение лазеров, разработанных в НИИ «Полюс» (И.В.Васильев, С.В.Зиновьев и др.). Опыт разработки лазеров военного применения дал возможность приступить к разработке непосредственно лазерных дальномеров в «Полюсе». Инициатива по разработке дальномеров в институте, проявленная Г.М. Зверевым, в 1970 г. возглавившим комплексное отделение института по разработке активных и нелинейных элементов, твердотельных лазеров и приборов на них, была активно поддержана директором М.Ф.Стельмахом и руководством отрасли.

В начале 70-х годов институт единственный в стране владел технологией выращивания монокристаллов и электрооптических затворов, что дало возможность создавать приборы существенно меньшей массы и габаритов. Так, типовая энергия накачки рубинового лазера для дальномера составляла 200 Дж, а для гранатового лазера только 10 Дж. В несколько раз сокращалась и длительность импульса лазера, что повышало точность измерений. Первая разработка прибора началась в конце 60-х годов под руководством В.М. Кривцуна. В качестве компоновочной идеи им была выбрано схема с одним объективом, с использованием электрооптического элемента в качестве коммутатора входного и выходного каналов. Эта схема была подобна схеме радиолокатора с антенным переключателем. Был выбран лазер на кристалле АИГ:Nd, позволявший получать достаточную выходную энергию ИК излучения (20 мДж). Завершить разработку прибора В.М.Кривцуну не удалось, он тяжело заболел и в 1971 г. скончался. Завершать разработку пришлось А.Г. Ершову, ранее разрабатывавшему перестраиваемые лазеры для научных исследований. Оптическую схему пришлось сменить на классическую с раздельными объективами передатчика и приёмника, так как в совмещённой схеме не удалось справиться с засветкой фотоприёмника мощным импульсом передатчика. Успешные натурные испытания первого НИР-овского образца прибора «Контраст- 2» прошли в июне 1971 г. Заказчиком ОКР первого в стране лазерного дальномера выступило Военно-топографическое управление. Разработка была завершена в очень короткий срок. Уже в 1974 году квантовый топографический дальномер КТД-1(рис. 1.2.1) был принят на снабжение и передан в серийное производство на завод «Тантал» в Саратове.


Рис. 1.2.1

При этой разработке полностью проявился талант Главного конструктора А.Г. Ершова, сумевшего правильно выбрать основные технические решения прибора, организовать разработку смежными подразделениями его блоков и узлов, новых функциональных элементов. Прибор обладал дальностью действия до 20 км с погрешностью менее 1,7 м. Дальномер КТД-1 выпускался серийно много лет в Саратове, а так же на заводе ВТУ в Москве. За период 1974 - 1980гг. в войска поступило более 1000 таких приборов. Они успешно использовались при решении многих задач военной и гражданской топографии. Для лазерных дальномеров в институте бы разработан целый рях новых элементов. В материаловедческих подразделениях под руководством В.М. Гармаша и В.П. Клюева были созданы высококачественные активные элементы из алюмо-иттриевого граната и алюмината иттрия с неодимом. Н.Б. Ангертом, В.А. Пашковым и А.М. Онищенко были созданы не имеющие аналогов в мире электрооптические затворы из ниобата лития. В подразделении П.А. Цетлин были созданы пассивные затворы на красителях. На этой элементной базе Е.М. Швом и Н.С. Устименко разработали малогабаритные лазерные излучатели ИЛТИ-201 и ИЗ-60 для малогабаритных дальномеров. В это же время были разработаны перспективные фотоприемные устройства на базе германиевого лавинного фотодиода в отделе А.В. Иевского В.А. Афанасьевым и М.М. Земляновым. Первый малогабаритный (в виде бинокля) лазерный дальномер ЛДИ-3(рис. 1.2.2) был испытан на полигоне в 1977 г., а в 1980г. были успешно проведены Государственные испытания.

Рис. 1.2.2

Прибор был освоен серийно на Ульяновском радиоламповом заводе. В 1982 году проводились Государственные сравнительные испытания прибора ЛДИ-3 и прибора 1Д13, разработанного Казанским оптико-механическим заводам по заказу МО. По ряду причин комиссия пыталась отдать предпочтение прибору КОМЗ, однако безупречная работа дальномера НИИ «Полюс» во время испытаний привела к тому, что были рекомендованы к принятию на снабжение и серийному производству оба прибора: 1Д13 для сухопутных войск и ЛДИ-3 для ВМФ. Всего за 10 лет было выпущено в производстве несколько тысяч приборов ЛДИ-3 и его дальнейшей модификации ЛДИ-3-1. В конце 80-х годов А.Г.Ершовым была разработана последняя версия дальномера-бинокля ЛДИ-3-1М с массой менее 1,3 кг. Она оказалась последней работой талантливого Главного конструктора, рано ушедшего из жизни в 1989г.

Линия разработок для ВТУ, начатая КТД-1, была продолжена новыми приборами. В результате творческого сотрудничества НИИ «Полюс» и 29 НИИ ВТС были созданы дальномер - гиротеодолит ДГТ-1 («Капитан»), измеряющий расстояния до предметов на местности с погрешностью менее 1м и угловые координаты - точнее 20 угл.сек. В 1986 г. разработан и принят на снабжение лазерный дальномер КТД-2-2 - насадка на теодолит (рис. 1.2.3).


Рис. 1.2.3

В 1970-х годах на вооружение поступили принципиально новые квантовые дальномеры (ДАК-1, ДАК-2, 1Д5 и др.). Они позволяли в короткое время с высокой точностью определять координаты объектов (целей) и разрывов снарядов. Чтобы убедиться в превосходстве их характеристик, достаточно сравнить срединные ошибки измерения дальности: ДС-1 -- 1,5 проц. (при дальности наблюдения до 3 км), ДАК -- 10 м (независимо от дальности).Применение дальномеров позволило значительно сократить время обнаружения целей, повысить вероятность их вскрытия днём и ночью и тем самым повысить эффективность огня артиллерии. Артиллерийские квантовые дальномеры являются одним из основных средств ведения разведки в артиллерийских подразделениях. Кроме основного назначения - измерения дальности, квантовые дальномеры позволяют решать задачи ведения визуальной разведки местности и противника, корректирования стрельбы, измерения горизонтальных и вертикальных углов, топогеодезической привязки элементов боевых порядков артиллерийских подразделений. Кроме того, лазерный дальномер-целеуказатель 1Д15 позволяет осуществлять подсветку целей лазерным излучением с полуактивным наведением при выполнении огневых задач высокоточными боеприпасами с головками самонаведения.В настоящее время на вооружении находятся следующие виды квантовых дальномеров: дальномер командирских и разведывательных машин ДКМР-1 (индекс 1Д8), дальномер артиллерийский квантовый ДАК-2 (1Д11) и его модификации ДАК-2М-1 (1Д11М-1) и ДАК-2М-2 (1Д11М-2), лазерный прибор разведки ЛПР-1 (1Д13), дальномер-целеуказатель 1Д15.


Квантовые дальномеры.

4.1 Принцип действия квантовых дальномеров.
Принцип действия квантовых дальномеров основан на измерении времени прохождения светового импульса (сигнала) до цели и обратно.

Определение полярных координат точек;

Обслуживание пристрелки целей (создания реперов);

Изучение местности.



Рис. 13. ДАК-2М в боевом положении.

1- приемопередатчик; 2- углоизмерительная платформа (УИП); 3- тренога; 4- кабель;

5- аккумуляторная батарея 21НКБН-3,5.

4.2.2. Основные ТТХ ДАК-2М


№№

Наименование характеристики

Показатели

1

2

3

1

Диапазон и измерения, М:

Минимальная;

Максимальная;

До целей с угловыми размерами ≥2′



8000

2

Максимальная ошибка измерения, м, не более

10

3

Режим работы:

Количество измерений дальности в серии;

Частота измерений;

Перерыв между сериями измерений, мин;

Время готовности к измерению дальности после включения питания, сек., не более;

Время пребывания в режиме готовности к измерению дальности после нажатия кнопки «ПУСК», мин., не более.



1 измерение в 5-7 секунд
30
1

4

Количество измерений (импульсов0 без подзарядки АКБ, не менее

300

5

Диапазон углов наведения:

± 4-50

6

Точность измерения углов, д.у.

± 0-01

7

Оптические характеристики:

Увеличение, крат.;

Поле зрения, град.;

Перископичность, мм.



6

8

Питание:

Напряжение штатной АКБ 21НКБН-3,5, в;

Напряжение нештатных АКБ, В;

Напряжение бортовой сети, в, (с включением в буфер АКБ напряжением 22-29 в. При этом колебания и пульсация напряжения не должны превышать ± 0,9 в).



22-29

9

Масса дальномера:

В боевом положении без укладочного ящика и запасной АКБ, кг;

В походном положении (масса комплекта), кг



10

Расчет, чел.

2

4.2.3. Комплект (состав) ДАК-2М (рис. 13)


  1. Приемопередатчик.

  2. Углоизмерительная платформа (УИП).

  3. Тренога.

  4. Кабель.

  5. Аккумуляторная батарея 21НКБН-3,5.

  6. Одиночный комплект ЗИП.

  7. Укладочный ящик.

  8. Комплект технической документации (формуляр, ТО и ИЭ).

      1. Устройство составных частей ДАК-2М.

  1. Приемопередатчик - предназначен для ведения оптической (визуальной) разведки, измерения вертикальных углов , формирования светового зондирующего импульса, приема и регистрации зондирующего и отраженных от местных предметов (целей) световых импульсов, преобразования их в импульсы напряжения, формирования импульсов для запуска и остановки измерителя временных интервалов (ИВИ).
Приемопередатчик состоит из корпуса и головки. На лицевой стороне приемопередатчика установлены наглазники. Для защиты бинокуляра от механических повреждений имеются скобы.
а) Основными блоками и узлами приемопередатчика являются:

  1. оптический квантовый генератор (ОКГ);

  2. фотоприемное устройство (ФПУ);

  3. усилитель ФПУ (УФПУ);

  4. блок запуска;

  5. измеритель временных интервалов (ИВИ);

  6. преобразователь постоянного тока (ППТ);

  7. блок поджига (БП);

  8. преобразователь постоянного тока (ППН);

  9. блок управления (БУ);

  10. блок конденсаторов (БК);

  11. разрядник;

  12. головка;

  13. бинокуляр;

  14. механизм отсчета вертикальных углов.

ОГК предназначен для формирования мощного узконаправленного импульса излучения. Физической основой действия ОКГ является усиление света с помощью вынужденного излучения. Для этого в ОКГ применяются активный элемент и система оптической накачки.

ФПУ предназначен для приема отраженных от цели импульсов (отраженных световых импульсов), их обработки и усиления. Для их усиления в составе ФПУ имеется усилитель предварительный фотоприемного устройства (УПФПУ).

УФПУ предназначен для усиления и обработки импульсов, поступающих с УПФПУ, а также для формирования останавливающих импульсов для ИВИ.

БЗ предназначен для формирования импульсов запуска ИВИ и УФПУ и задержки импульса запуска ИВИ относительно импульса излучения ОКГ на время, необходимое на прохождение останавливающих импульсов через УПФПУ и УФПУ.

ИВИ предназначен для измерения временного интервала между фронтами запускающего и одного из трех останавливающих импульсов. Преобразования его в числовое значение дальности в метрах и индикации дальности до цели, а также индикации количества целей в створе излучения.

ТТХ ИВИ:

Диапазон измеряемых дальностей - 30 – 97500 м;

Разрешающая способность по Д - не хуже 3 м;

Минимальное значение измеряемой дальности может быть установлено:

1050 м ± 75 м

2025 м ± 75 м

3000 м ± 75 м

ИВИ измеряет дальность до одной их трех целей в пределах диапазона измеряемых дальностей по выбору операторов.

ППТ предназначен для блока конденсаторов накачки и накопительных конденсаторов БП, а также для выдачи стабилизированного напряжения питания в БУ.

БП предназначен для формирования высоковольтного импульса , ионизирующего разрядный промежуток импульсной лампы накачки.

ППН предназначен для выдачи стабилизированного напряжения питания УПФПУ, УФПУ, БЗ и стабилизации частоты вращения электродвигателя оптико-механического затвора.

БУ предназначен для управления работой узлов и блоков дальномера в заданной последовательности и контроля уровня напряжения источника питания.

БК предназначен для накопления заряда.

Разрядник предназначен для снятия заряда с конденсаторов путем замыкания их на корпус приемопередатчика.

Головка предназначена для размещения визирного зеркала. В верхней части головки имеется гнездо для установки визирной вешки. Для защиты стекла головки крепится бленда.

Бинокуляр является частью визира и предназначен для наблюдения за местностью, наведения на цель, а так же для считывания показаний индикаторов дальности, счетчика целей, индикации готовности дальномера к измерению дальности и состояния АКБ.

Механизм отсчета вертикальных углов предназначен для отсчета и индикации измеренных вертикальных углов.
б) Оптическая схема приемопередатчика (рис.14)

состоит из: - канала передатчика;

Оптические каналы приемника и визира частично совпадают (имеют общие объектив и дихроичное зеркало).

Канал передатчика предназначен для создания мощного монохроматического импульса малой продолжительности и малой угловой расходимостью луча и посылки его в направлении цели.

Его состав: - ОГК (зеркало, импульсная лампа, активный элемент-стержень, отражатель, призма);

Телескопическая система Галилея – для уменьшения угловой расходимости излучения.


Канал приемника предназначен для приема отраженного от цели импульса излучения и создания на фотодиоде ФПУ необходимого уровня световой энергии. Его состав: - объектив; - дихроичное зеркало.

Рис. 14 . Оптическая схема приемопередатчика.

Слева: 1- телескоп; 2- зеркало; 3- активный элемент; 4- отражатель; 5- импульсная лампа ИСП-600; 6- призма; 7,8- зеркала; 9- окуляр.

Разъем «ПИТАНИЕ»;

Разъем СРП (для подключения счетно-решающего прибора);

Клапан осушки.
На головке приемопередатчика расположены:

Клапан осушки;

Гнездо для визирной вешки.
Переключатель «ЦЕЛЬ» предназначен для измерения дальности до первой или второй или третьей цели, находящихся в створе излучения.

Переключатель «СТРОБИРОВАНИЕ» предназначен для установки минимальных дальностей 200, 400, 1000, 2000, 3000, ближе которых измерение дальности невозможно. Указанным минимальным дальностям соответствуют положения переключателя «СТРОБИРОВАНИЕ»:

400 м - «0,4»

1000 м – «1»

2000 м – «2»

3000 м – «3»

При установке положения переключателя «СТРОБИРОВАНИЕ» в положение «3» повышается чувствительность фотоприемного устройства к отраженным сигналам (импульсам).



Рис. 15. Органы управления ДАК-2М.

1- патрон осушки; 2-узел подсветки сетки; 3-переключатель СВЕТОФИЛЬТР; 4-переключатель ЦЕЛЬ; 5,13-скоба; 6-панель управления; 7-кнопка ИЗМЕРЕНИЕ; 8-кнопка ПУСК; 9-ручка ЯРКОСТЬ; 10-тумблер ПОДСВЕТКА; 11-тумблер ПИТАНИЕ; 12-разьем КОНТРОЛЬ ПАРАМЕТРОВ ; 14-переключатель СТРОБИРОВАНИЕ; 15-уровень; 16-отражатель; 17-шкала механизма отсчета вертикальных углов.






Рис. 16. Органы управления ДАК-2М.

Слева: 1-ремень; 2-предохранитель; 3-разьем ФОНАРЬ; 4-панель контроля; 5-кольцо; 6-разьем СРП; 7,11-кольца; 8-разьем питание; 9-кнопка КАЛИБРОВКА; 10-кнопка КОНТР.НАПР.

Справа: 1-гнездо; 2-головка; 3,9-клапан осушки; 4-корпус; 5-наглазник; 6-бинокуляр; 7-рукоятка вертикального наведения; 8-кронштейн.


  1. Углоизмерительная платформа (УИП)

УИП предназначена для крепления и горизонтирования приемопередатчика, поворота его вокруг вертикальной оси и измерение горизонтальных и дирекционных углов.

Состав УИП (рис.17)

Зажимное устройство;

Устройство;

Шаровой уровень.

УИП устанавливают на треноге и крепят через резьбовую втулку становым винтов.



Рис. 17 . Углоизмерительная платформа ДАК-2М.

1-рукоятка отводки червяка; 2-уровень; 3-ручка; 4-зажимное устройство; 5-основание с колесом; 6-барабан; 7-рукоятка точного наведения; 8-гайка; 9-лимб; 10-рукоятка; 11-резьбовая втулка; 12-основание; 13-винт подъемный.


  1. Тренога предназначена для установки приемопередатчика для установки приемопередатчика в рабочее положение на необходимой высоте. Тренога состоит из стола, трех парных штанг и трех выдвижных ног. Штанги соединены между собой шарниром и зажимным устройством, в котором винтом зажимается выдвижная нога. Шарниры крепятся к столу накладками.

  1. Аккумуляторная батарея 21 НКБН-3,5 предназначена для питания блоков дальномера постоянным током через кабель.
21 – количество аккумуляторов в батарее;

НК – никель-кадмиевая система аккумулятора;

Б – тип аккумулятора – безпанельная;

Н – технологическая особенность изготовления пластин – намазная;

3,5 – номинальная емкость АКБ в ампер-часах.


- кнопки «ИЗМЕРЕНИЕ 1» и «ИЗМЕРЕНИЕ 2» - для измерения дальности до первой или второй цели, находящихся в створе излучения.


Рис. 20. Органы управления ЛПР-1.

Сверху: 1-кожух; 2-рукоятка; 3-индекс; 4-кнопки ИЗМЕРЕНИЕ1 и ИЗМЕРЕНИЕ 2; 5-ремень; 6-панель; 7-ручка тумблера ПОДСВЕТКА; 8-окуляр визира; 9-винты; 10-окуляр визира; 11-вилка; 12-крышка аккумуляторного отсека; 13-ручка тумблера ВКЛ-ВЫКЛ.

Снизу: 1-патрон осушки; 2-ркмень; 3-кронштейн; 4-крышка.

На тыльной и нижней сторонах:

Кронштейн для установки прибора на кронштейн УИУ или на кронштейн - переходник при установке прибора на буссоль;

Патрон осушки;

Объектив визира;

Объектив телескопа;

Разъем с крышкой для подключения кабеля выносных кнопок.


Рис. 21 . Поле зрения индикатора ЛПР-1

1-индикатор дальности; 2,5,6-дицимальные точки; 3-индикатор готовности (зеленого цвета); 4-индикатор разряда АКБ (красного цвета).


Примечание . При отсутствии отраженного импульса во всех разрядах индикатора дальности высвечиваются нули (00000). При отсутствии зондирующего импульса во всех разрядах индикатора дальности высвечиваются нули и в третьем разряде - децимальная точка (Рис.21. положение 5).

При наличии в створе излучения (в разрыве угломерной сетки) нескольких целей при измерении загорается децимальная точка в младшем разряде индикатора дальности (Рис.21. положение 2).

При невозможности выведения экранирующих помех за пределы разрыва угломерной сетки , а также в тех случаях, когда помеха не наблюдается, а децимальная точка в младшем (правом) разряде индикатора дальности светится, наведите дальномер на цель так, чтобы цель перекрывала, возможно, большую площадь разрыва угломерной сетки. Измерьте дальность, после чего установите рукоятку ограничения минимальной дальности на значение дальности, превышающее измеренную величину на 50-100 метров и вновь измерьте дальность. Указанные действия повторяйте до тех пор , пока не погаснет децимальная точка в старшем разряде.

При высвечивании нулей во всех разрядах индикатора дальности и свечения децимальной точки в старшем разряде (левом) (Рис.21. положение 6) индикатора необходимо поворотом рукоятки ограничения минимальной дальности уменьшить минимальную измеряемую дальность до получения достоверного результата измерения.

2. Углоизмерительное устройство (Рис.22.).
Предназначено для установки дальномера, наведение дальномера и измерения горизонтальных, вертикальных и дирекционных углов




Балтийский государственный технический университет «ВОЕНМЕХ» им. Д. Ф. Устинова

Квантовый артиллерийский дальномер ДАК-2М.

Санкт-Петербург 2002

Наводить включенный дальномер на людей,

Наводить дальномер на зеркально отражающие поверхности и на поверхности близкие по отражению к зеркальным,

Наводить дальномер на солнце.

1. Цель работы.

Целью настоящей работы является изучение принципов работы кван­товых дальномерных устройств, а также их основных узлов и особенностей построения.

2. Введение.

Наряду с радиолокационными, существуют и другие методы опреде­ления координат объекта. Так широкое применение на практике получили оптические локаторы, позволяющие определять все три координаты объекта с высокой точностью. Изучение применения оптических локаторов в качест­ве угломерных устройств выходит за рамки настоящей работы, в дальней­шем будет рассматриваться только определение дальности. Методы опреде­ления дальности с помощью оптико-электронных средств можно разделить на активные, использующие зондирующие сигналы, и пассивные. К послед­ним относятся стреоскопические дальномеры и дальномеры с фокусировкой изображения (например, дальномеры двойного изображения).

Оптические локаторы, к которым относится и данный квантовый дальномер, характеризуются очень высокой разрешающей способностью по дальности и угловым координатам, что обусловлено уменьшением, по срав­нению с устройствами радиодиапазона, длины волны на несколько поряд­ков. В квантовых (лазерных) дальномерах повышение рабочих частот позво­ляет расширить используемую полосу частот. Это позволяет формировать очень короткие (до десятков наносекунд) зондирующие импульсы. Практиче­ски это позволяет получать разрешающую способность по дальности порядка 1 метра при дальности в несколько километров.

Лазерное излучение имеет высокую направленность, что упрощает селекцию объектов, находящихся приблизительно в одном угловом направле­нии, но на существенно различных дальностях, и позволяет устранить свя­занные с этим ошибки.

3. Назначение дальномера.

Артиллерийский квантовый дальномер ДАК-2М с устройством селек­ции целей предназначен для:

          измерения дальности до подвижных и неподвижных целей, местных предметов и разрывов снарядов;

          корректировки стрельбы наземной артиллерии;

          ведения визуальной разведки местности;

          измерения горизонтальных и вертикальных углов целей;

    топогеодезической привязки элементов боевых порядков артиллерии с помощью других топогеодезических приборов.

Дальномер ДАК-2М может включаться в состав комплекса управления огнем артиллерии как устройство разведки и наблюдения, а также сопрягаться со счетно-решающими приборами комплекса.

Дальномер обеспечивает измерение дальности до целей типа танк, автомашина с вероятностью достоверного измерения 0.9 (при отсутствии в створе луча посторонних предметов).

4. Тактико-технические данные.

    Максимальная измеряемая дальность по целям типа танк-автомашина, м 9000

    Диапазон углов наведения:

    диапазон вертикальных углов наведения ±4-50

    диапазон горизонтальных углов наведения ±30

3. Точность измерения параметров цели:

    количество целей, фиксируемых на индикаторе счетчика целей 3

    максимальная ошибка измерения дальности, м <6

    разрешающая способность по дальности, м 3

    точность измерения угловых координат в обеих плоскостях ±00-01

4. Оптические характеристики канала приемника:

    диаметр входного зрачка, мм 96

Угол поля зрения 3"

В соответствии с планами дальнейшего наращивания мощи вооружённых сил капиталистических государств в сухопутные войска этих стран, и прежде всего входящих в агрессивный блок , поставляются оружие и боевая техника, созданные на базе последних достижений науки.

В настоящее время подразделения пехотных, механизированных и бронетанковых дивизий многих капиталистических стран оснащаются артиллерийскими лазерными дальномерами.

В работе лазерных дальномеров иностранных армий используется импульсный метод определения расстояния до цели, то есть измеряется интервал времени между моментом излучения зондирующего импульса и моментом приема отражённого от цели сигнала. По времени запаздывания отражённого сигнала относительно зондирующего импульса определяется дальность, значение которой в цифровой форме проецируется на специальном табло или в поле зрения окуляра. Угловые координаты цели определяются с помощью гониометров.

Аппаратура артиллерийского дальномера включает следующие основные части: передатчик, приёмник, счётчик дальности, устройство отображения, а также встроенный оптический прицел для наведения дальномера на цель. Электропитание аппаратуры осуществляется от аккумуляторных батарей.

Передатчик выполняется на основе твердотельного лазера. В качестве активного вещества применяются рубин, иттриево-алюминиевый гранат с примесью неодима и неодимовое стекло. Источниками накачки служат мощные газоразрядные импульсные лампы-вспышки. Формирование импульсов лазерного излучения мегаваттной мощности и длительностью несколько наносекунд обеспечивается модуляцией (переключением) добротности оптического резонатора. Наиболее распространен механический способ модуляции добротности с помощью вращающейся призмы. В портативных дальномерах применяется электрооптическая модуляция добротности с использованием эффекта Поккельса.

Приёмник дальномера представляет собой приёмник прямого усиления с детектором типа фотоумножителя или фотодиода. Передающая оптика уменьшает расходимость лазерного луча, а оптика приёмника фокусирует отражённый сигнал лазерного излучения на фотодетектор.

Применение артиллерийских лазерных дальномеров позволяет решать следующие задачи:

  • определение координат целей с автоматической выдачей информации в систему управления огнём;
  • корректировка огня с передового наблюдательного пункта путём измерения и выдачи координат целей по каналам связи на КП (ПУ) артиллерийских частей (подразделений);
  • ведение разведки местности и объектов противника.
Для переноски и обслуживания дальномера достаточно одного человека. На развёртывание и подготовку аппаратуры к работе требуется несколько минут. Наблюдатель, обнаружив цель, наводит на неё дальномер с помощью оптического прицела, устанавливает необходимый строб дальности и включает передатчик в режим излучения. Измеренную дальность, высветившуюся на цифровом табло, а также показания азимута и угла места цели на шкалах гониометра наблюдатель передает на КП (ПУ).

Артиллерийские лазерные дальномеры разрабатываются и серийно выпускаются в , Великобритании, Франции, Норвегии, Швеции, Нидерландах и других капиталистических странах.

В США для сухопутных войск разработаны артиллерийские лазерные дальномеры AN/GVS-3 и AN/GVS-5.

Дальномер AN/GVS-3 предназначен в основном для передовых наблюдателей полевой артиллерии. В пределах прямой видимости он обеспечивает измерение дальности и угловых координат цели с точностью ±10 м и ±7" соответственно. Координаты цели на КП (ПУ) выдаются по каналам связи путём считывания их наблюдателем с табло (дальности) и шкал на гониометрической платформе (азимута и угла места). Для боевой работы дальномер устанавливается на треноге.

Передатчик дальномера AN/GVS-3 выполнен на рубиновом лазере, модуляция добротности осуществляется с помощью вращающейся призмы. В качестве детектора используется фотоумножитель. Электропитание аппаратуры дальномера обеспечивает аккумуляторная батарея напряжением 24 В, которая в рабочем положении крепится на сошке треноги.

Дальномер AN/GVS-5 предназначен для передовых наблюдателей полевой артиллерии (как и AN/GVS-3). Кроме того, американские специалисты считают, что его можно использовать в ВВС и ВМС. По внешнему виду он напоминает полевой бинокль (рис. 1). Сообщалось, что по заказу сухопутных войск США фирма «Рэдио корпорейшн оф Америка» изготовит 20 комплектов таких дальномеров для проведения испытаний. С помощью дальномера AN/GVS-5 дальность можно измерять с точностью до ±10 м в пределах прямой видимости. Результаты измерений высвечиваются с помощью светодиодов и отображаются в окуляре оптического прицела дальномера четырёхразрядным числом (в метрах).

Рис. 1. Американский дальномер AN/GVS-5

Передатчик дальномера выполнен на основе иттриево-алюминиевого граната с примесью неодима. Добротность оптического резонатора лазера (его размеры сравнимы с размерами фильтра сигареты) модулируется электрооптическим способом с использованием красителя. Детектором приёмника служит лавинный кремниевый фотодиод. Оптическая часть дальномера состоит из передающего объектива и приемной оптики, совмещённой с прицелом и устройством защиты органов зрения наблюдателя от поражения лазерным излучением в процессе измерений. Электропитание дальномера осуществляется от встроенной кадмиево-никелевой батареи. Дальномер AN/GVS-5 поступит на вооружение войск США в ближайшие годы.

В Великобритании разработано несколько образцов дальномеров.

Дальномер фирмы предназначен для применения передовыми наблюдателями полевой артиллерии, а также целеуказания авиации при решении задач непосредственной поддержки сухопутных войск. Особенность данного дальномера - возможность подсветки цели лазерным лучом. Дальномер может совмещаться с прибором ночного видения (рис. 2). Результаты измерения угловых координат при работе с дальномером зависят от точности шкал гониометрической платформы, на которой он установлен.

Рис. 2. Английский дальномер фирмы «Ферранти», совмещённый с прибором ночного видения

Передатчик дальномера выполнен на основе иттриево-алюминиевого граната с примесью неодима. Добротность оптического резонатора модулируется электрооптическим способом с использованием ячейки Поккельса. Лазерный передатчик имеет водяное охлаждение для обеспечения работы в режиме целеуказания с высокой частотой повторения импульсов. В режиме измерения дальности частоту повторения импульсов можно изменять в зависимости от условий работы и требований по темпу выдачи координат целей. В качестве детектора приёмника используется фотодиод.

Аппаратура дальнометра позволяет измерять дальности до трёх целей, находящихся в створе лазерного луча (разнос расстояний между ними около 100 м). Результаты измерений хранятся в запоминающем устройстве дальномера, и наблюдатель может последовательно просмотреть их на цифровом табло. Электропитание аппаратуры дальномера обеспечивает аккумуляторная батарея напряжением 24 В.

Дальномер фирмы «Бар энд Страуд» портативный, он предназначается для передовых наблюдателей полевой артиллерии, а также подразделений разведки, по внешнему виду напоминает полевой бинокль (рис. 3). Для точного отсчета угловых координат он устанавливается на треноге, его можно сопрягать с приборами ночного видения или оптическими системами слежения за воздушными и наземными целями. Поступление в войска ожидается в ближайшие годы.

Рис. 3. Английский портативный дальномер фирмы «Бар энд Страуд»

Передатчик дальномера выполнен на основе иттриево-алюминиевого граната с примесью неодима. Добротность оптического резонатора лазера модулируется с помощью ячейки Поккельса. В качестве детектора приёмника используется кремниевый лавинный фотодиод. В целях уменьшения влияния помех на небольших дальностях в приёмнике предусмотрено стробирование по дальности с измерением коэффициента усиления видеоусилителя.

Оптическая часть дальномера состоит из монокулярного прицепа (служит также для передачи лазерного излучения) и приёмного объектива с узкополосным фильтром. В дальномере предусмотрена специальная защита глаз наблюдателя от поражения лазерным излучением в процессе измерения.

Дальномер работает в двух режимах - зарядка и измерение дальности. После включения питания дальномера и наведения его на цель нажимается кнопка включения передатчика. В результате первого нажатия кнопки заряжается конденсатор схемы накачки лазера. Через несколько секунд наблюдатель вторично нажимает кнопку, включая передатчик на излучение, и дальномер переводится в режим измерения дальности. В режима зарядки дальномер может находится не более 30 с, после чего конденсатор схемы накачки автоматически разряжается (если не последует включения в режим измерения дальности).

Дальность до цели отображается на цифровом светодиодном табло в течение 5 с. Для электропитания дальномера служит встроенная аккумуляторная батарея напряжением 24 В, ёмкость которой дает возможность делать несколько сотен измерений дальности. Поступление в войска этого лазерного дальномера ожидается в ближайшие годы.

В Нидерландах разработан лазерный артиллерийский дальномер LAR, предназначенный для разведывательных подразделений и полевой артиллерии. Кроме того, голландские специалисты считают, что его можно приспособить для применения в корабельной и береговой артиллерии. Дальномер изготавливается в переносном варианте (рис. 4), а также для установки на разведывательных машинах. Характерная особенность дальномера - наличие в нем встроенного электронно-оптического устройства измерения азимута и угла места цели, точность работы 2-3".

Рис. 4. Голландский дальномер LAR

Передатчик дальномера выполнен на основе лазера из неодимового стекла. Добротность оптического резонатора модулируется вращающейся призмой. В качестве детектора приёмника используется фотодиод. Для защиты зрения наблюдателя служит специальный фильтр, встроенный в оптический прицел.

С помощью дальномера LAR можно измерять дальности одновременно до двух целей, находящихся в створе лазерного луча и на удалении друг от друга не менее 30 м. Результаты измерений отображаются на цифровых табло поочерёдно (дальность до первой и второй целей, азимут, угол места) при включении соответствующих органов управления. Дальномер сопрягается с автоматизированными системами управления артиллерийским огнем, обеспечивая выдачу информации о координатах цели в двоичном коде. Для электропитания переносного дальномера служит аккумуляторная батареи напряжением 24 В, емкость которой достаточна для 150 измерений в летних условиях. При размещении дальномера на разведывательной машине электропитание подается от бортовой сети.

В Норвегии передовые наблюдатели полевой артиллерии используют лазерные дальномеры РМ81 и LP3.

Дальномер РМ81 можно сопрягать с автоматизированными системами управления артиллерийским огнем. В этом случае информация о дальности выдается в двоичном коде автоматически, а угловые координаты целей считывают со шкал гониометра (точность измерения до 3") и вводят в систему вручную. Для боевой работы дальномер устанавливается на специальной треноге.

Передатчик дальномера выполнен на основе неодимового лазера. Добротность оптического резонатора модулируется с помощью вращающейся призмы. Детектором приёмника служит фотодиод. Оптический прицел совмещён с приёмным объективом, для защиты глаз наблюдателя от поражения лазерным излучением применяется дихроичное зеркало, не пропускающее отражённый лазерный луч.

Дальномер обеспечивает измерение дальности по трём целям, находящимся в створе лазерного луча. Влияние помех от местных предметов исключается путём стробирования дальности в пределах 200-3000 м.

Дальномер LP3 производится серийно для норвежской армии и закупается многими капиталистическими странами. Для боевой работы он устанавливается на треноге (рис. 5). Угловые координаты цели считываются со шкал гониометра с точностью около 3", пределы работы по углу места цели ±20°, а по азимуту 360°.

Рис. 5. Норвежский дальномер LP3

Передатчик дальномера выполнен на основе неодимового лазера, модуляция добротности оптического резонатора осуществляется вращающейся призмой. В качестве детектора приёмника используется фотодиод. Помехи от местных предметов исключаются путём стробирования дальности в пределах 200-6000 м. Благодаря специальному устройству обеспечивается защита глаз наблюдателя от поражающего воздействия лазерного излучения.

Табло дальности выполнено на светодиодах, на нём отображаются в виде пятизначного числа (в метрах) результаты измерения расстояний одновременно до двух целей. Электропитание дальномера осуществляется стандартной аккумуляторной батареей напряжением 24 В, обеспечивающей 500-600 измерений дальности в летних условиях и не менее 50 измерений при температуре окружающего воздуха - 30°.

Во Франции имеются дальномеры ТМ-10 и TMV-26. Дальномер ТМ-10 используется артиллерийскими наблюдателями постов полевой артиллерии, а также топографическими подразделениями. Его характерная особенность - наличие гирокомпаса для точной ориентации на местности (точность привязки около ±30"). Оптическая система дальномера перископического типа. Измерять дальности можно одновременно по двум целям. Результаты измерений, включая дальность и угловые координаты, считываются наблюдателем с табло дальности и шкал гониометра через окуляр-индикатор.

Дальномер TMV-26 предназначен для применения в системах управления огнем корабельных артиллерийских установок калибра 100 мм. Приёмопередатчик дальномера устанавливается на антенной системе корабельной радиолокационной станции управления огнём. Передатчик дальномера выполнен на основе неодимового лазера, а в качестве детектора приёмника используется фотодиод.