A2 2ab b2 примеры. Куб разности и разность кубов: правила применения формул сокращенного умножения

Формулы или правила сокращенного умножения используются в арифметике, а точнее - в алгебре, для более быстрого процесса вычисления больших алгебраических выражений. Сами же формулы получены из существующих в алгебре правил для умножения нескольких многочленов.

Использование данных формул обеспечивает достаточно оперативное решение различных математических задач, а также помогает осуществлять упрощение выражений. Правила алгебраических преобразований позволяют выполнять некоторые манипуляции с выражениями, следуя которым можно получить в левой части равенства выражение, стоящее в правой части, или преобразовать правую часть равенства (чтобы получить выражение, стоящее в левой части после знака равенства).

Удобно знать формулы, применяемые для сокращенного умножения, на память, так как они нередко используются при решении задач и уравнений. Ниже перечислены основные формулы, входящие в данный список, и их наименование.

Квадрат суммы

Чтобы вычислить квадрат суммы, необходимо найти сумму, состоящую из квадрата первого слагаемого, удвоенного произведения первого слагаемого на второе и квадрата второго. В виде выражения данное правило записывается следующим образом: (а + с)² = a² + 2ас + с².

Квадрат разности

Чтобы вычислить квадрат разности, необходимо вычислить сумму, состоящую из квадрата первого числа, удвоенного произведения первого числа на второе (взятое с противоположным знаком) и квадрата второго числа. В виде выражения данное правило выглядит следующим образом: (а - с)² = а² - 2ас + с².

Разность квадратов

Формула разности двух чисел, возведенных в квадрат, равна произведению суммы этих чисел на их разность. В виде выражения данное правило выглядит следующим образом: a² - с² = (a + с)·(a - с).

Куб суммы

Чтобы вычислить куб суммы двух слагаемых, необходимо вычислить сумму, состоящую из куба первого слагаемого, утроенного произведения квадрата первого слагаемого и второго, утроенного произведения первого слагаемого и второго в квадрате, а также куба второго слагаемого. В виде выражения данное правило выглядит следующим образом: (а + с)³ = а³ + 3а²с + 3ас² + с³.

Сумма кубов

Согласно формуле, приравнивается к произведению суммы данных слагаемых на их неполный квадрат разности. В виде выражения данное правило выглядит следующим образом: а³ + с³ = (а + с)·(а² - ас + с²).

Пример. Необходимо вычислить объем фигуры, которая образована сложением двух кубов. Известны лишь величины их сторон.

Если значения сторон небольшие, то выполнить вычисления просто.

Если же длины сторон выражаются в громоздких числах, то в этом случае проще применить формулу "Сумма кубов", которая значительно упростит вычисления.

Куб разности

Выражение для кубической разности звучит так: как сумма третьей степени первого члена, утроенного отрицательного произведения квадрата первого члена на второй, утроенного произведения первого члена на квадрат второго и отрицательного куба второго члена. В виде математического выражения куб разности выглядит следующим образом: (а - с)³ = а³ - 3а²с + 3ас² - с³.

Разность кубов

Формула разности кубов отличается от суммы кубов лишь одним знаком. Таким образом, разность кубов - формула, равная произведению разности данных чисел на их неполный квадрат суммы. В виде математического выражения разность кубов выглядит следующим образом: а 3 - с 3 = (а - с)(а 2 + ас + с 2).

Пример. Необходимо вычислить объем фигуры, которая останется после вычитания из объема синего куба объемной фигуры желтого цвета, которая также является кубом. Известна лишь величина стороны маленького и большого куба.

Если значения сторон небольшие, то вычисления довольно просты. А если длины сторон выражаются в значительных числах, то стоит применить формулу, озаглавленную "Разность кубов" (или "Куб разности"), которае значительно упростит вычисления.

Математические выражения (формулы) сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне не заменимы во многих областях точных наук. Эти 7 символьных записей не заменимы при упрощении выражений, решении уравнений, при умножении многочленов, сокращении дробей , решении интегралов и многом другом. А значит будет очень полезно разобраться как они получаются, для чего они нужны, и самое главное, как их запомнить и потом применять. Потом применяя формулы сокращенного умножения на практике самым сложным будет увидеть, что есть х и что есть у. Очевидно, что никаких ограничений для a и b нет, а значит это могут быть любые числовые или буквенные выражения.

И так вот они:

Первая х 2 - у 2 = (х - у) (х+у) .Чтобы рассчитать разность квадратов двух выражений надо перемножить разности этих выражений на их суммы.

Вторая (х + у) 2 = х 2 + 2ху + у 2 . Чтобы найти квадрат суммы двух выражений нужно к квадрату первого выражения прибавить удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Третья (х - у) 2 = х 2 - 2ху + у 2 . Чтобы вычислить квадрат разности двух выражений нужно от квадрата первого выражения отнять удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Четвертая (х + у) 3 = х 3 + 3х 2 у + 3ху 2 + у 3. Чтобы вычислить куб суммы двух выражений нужно к кубу первого выражения прибавить утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

Пятая (х - у) 3 = х 3 - 3х 2 у + 3ху 2 - у 3 . Чтобы рассчитать куб разности двух выражений необходимо от куба первого выражения отнять утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

Шестая х 3 + у 3 = (х + у) (х 2 - ху + у 2) Чтобы высчитать сумму кубов двух выражений нужно умножить суммы первого и второго выражения на неполный квадрат разности этих выражений.

Седьмая х 3 - у 3 = (х - у) (х 2 + ху + у 2) Чтобы произвести вычисление разности кубов двух выражений надо умножить разность первого и второго выражения на неполный квадрат суммы этих выражений.

Не сложно запомнить, что все формулы применяются для произведения расчетов и в противоположном направлении (справа налево).

О существовании этих закономерностей з нали еще около 4 тысяч лет тому назад. Их широко применяли жители древнего Вавилона и Египта. Но в те эпохи они выражались словесно или геометрически и при расчетах не использовали буквы.

Разберем доказательство квадрата суммы (а + b) 2 = a 2 +2ab +b 2 .

Первым эту математическую закономерность доказал древнегреческий учёный Евклид, работавший в Александрии в III веке до н.э., он использовал для этого геометрический способ доказательства формулы, так как буквами для обозначения чисел не пользовались и учёные древней Эллады. Ими повсеместно употреблялись не “а 2 ”, а “квадрат на отрезке а”, не “ab”, а “прямоугольник , заключенный между отрезками a и b”.

Применяют для упрощения вычислений, а также разложение многочленов на множители, быстрого умножения многочленов. Большинство формул сокращенного умножения можно получить из бинома Ньютона - в этом Вы скоро убедитесь.

Формулы для квадратов применяют в вычислениях чаще. Их начинают изучать в школьной программе начиная с 7 класса и до конца обучения формулы для квадратов и кубов школьники должны знать на зубок.

Формулы для кубов не сильно сложные и их нужно знать при сведении многочленов к стандартному виду, для упрощения подъема суммы или разности переменной и числа к кубу.

Формулы обозначены красным получают из предыдущих группировкой подобных слагаемых.

Формулы для четвертого и пятого степени в школьном курсе мало кому пригодятся, однако есть задачи при изучении высшей математики где нужно вычислять коэффициенты при степенях.


Формулы для степени n расписаны через биномиальные коэффициенты с использованием факториалов следующие

Примеры применения формул сокращенного умножения

Пример 1. Вычислить 51^2.

Решение. Если есть калькулятор то без проблем находите

Это я пошутил - с калькулятором мудрые все, без него... (не будем о грустном).

Не имея калькулятора и зная приведенные выше правила квадрат числа находим по правилу

Пример 2. Найти 99^2.

Решение. Применим вторую формулу

Пример 3. Возвести в квадрат выражение
(x+y-3).

Решение. Сумму первых двух слагаемых мысленно считаем одним слагаемым и по второй формуле сокращенного умножения имеем

Пример 4. Найти разность квадратов
11^2-9^2.

Решение. Поскольку числа небольшие то можно просто подставить значения квадратов

Но цель у нас совсем другая - научиться использовать формулы сокращенного умножения для упрощения вычислений. Для этого примера применим третью формулу

Пример 5. Найти разность квадратов
17^2-3^2 .

Решение. На этом примере Вы уже захотите изучить правила чтобы вычисления свести к одной строке

Как видите - ничего удивительного мы не делали.

Пример 6. Упростить выражение
(x-y)^2-(x+y)^2.

Решение. Можно раскладывать квадраты, а позже сгруппировать подобные слагаемые. Однако можно прямо применить разность квадратов

Просто и без длинных решений.

Пример 7. Возвести в куб многочлен
x^3-4.

Решение . Применим 5 формулу сокращенного умножения

Пример 8. Записать в виде разности квадратов или их сумме
а) x^2-8x+7
б) x^2+4x+29

Решение. а) Перегруппируем слагаемые

б) Упрощаем на основе предыдущих рассуждений

Пример 9. Разложить рациональную дробь

Решение. Применим формулу разности квадратов

Составим систему уравнений для определения констант

К утроенному первому уравнению добавим второе. Найденное значение подставляем в первое уравнение

Окончательно разложение примет вид

Разложить рациональную дробь часто необходимо перед интегрированием, чтобы снизить степень знаменателя.

Пример 10. Используя бином Ньютона расписать
выражение (x-a)^7.

Решение. Что такое бином Ньютона Вы вероятно уже знаете. Если нет то ниже приведены биномиальные коэффициенты

Они образуются следующим образом: по краю идут единицы, коэффициенты между ними в нижней строке образуют суммированием соседних верхних. Если ищем разницу в каком-то степени, то знаки в расписании чередуются от плюса к минусу. Таким образом для седьмого порядка получим такой расклад

Внимательно также посмотрите как меняются показатели - для первой переменной они уменьшаются на единицу в каждом следующем слагаемом, соответственно для второй - на единицу растут. В сумме показатели всегда должны быть равны степени разложения (=7 ).

Думаю на основе приведенного выше материала Вы сможете решить задачи на бином Ньютона. Изучайте формулы сокращенного умножения и применяйте везде, где это может упростить вычисления и сэкономит время выполнения задания.

>>Математика: Формулы сокращенного умножения

Формулы сокращенного умножения

Имеется несколько случаев, когда умножение одного многочлена на другой приводит к компактному, легко запоминающемуся результату. В этих случаях предпочтительнее не умножать каждый раз один многочлен на другой, а пользоваться готовым результатом. Рассмотрим эти случаи.

1. Квадрат суммы и квадрат разности:

Пример 1. Раскрыть скобки в выражении:

а) (Зх + 2) 2 ;

б) (5а 2 - 4b 3) 2

а) Воспользуемся формулой (1), учтя, что в роли а выступает Зх, а в роли b - число 2.
Получим:

(Зх + 2) 2 = (Зх) 2 + 2 Зх 2 + 2 2 = 9x 2 + 12x + 4.

б) Воспользуемся формулой (2) , учтя, что в роли а выступает5а 2 , а в ролиb выступает 4b 3 . Получим:

(5а 2 -4b 3) 2 = (5а 2) 2 - 2- 5a 2 4b 3 + (4b 3) 2 = 25a 4 -40a 2 b 3 + 16b 6 .

При использовании формул квадрата суммы или квадрата разности учитывайте, что
(- a - b) 2 = (а + b) 2 ;
(b-a) 2 = (a-b) 2 .

Это следует из того, что (- а) 2 = а 2 .

Отметим, что на формулах (1) и (2) основаны некоторые математические фокусы, позволяющие производить вычисления в уме.

Например, можно практически устно возводить в квадрат числа, оканчивающиеся на 1 и 9. В самом деле

71 2 = (70 + 1) 2 = 70 2 + 2 70 1 + 1 2 = 4900 + 140 + 1 = 5041;
91 2 = (90 + I) 2 = 90 2 + 2 90 1 + 1 2 = 8100 + 180 + 1 = 8281;
69 2 = (70 - I) 2 = 70 2 - 2 70 1 + 1 2 = 4900 - 140 + 1 = 4761.

Иногда можно быстро возвести в квадрат и число, оканчивающееся цифрой 2 или цифрой 8. Например,

102 2 = (100 + 2) 2 = 100 2 + 2 100 2 + 2 2 = 10 000 + 400 + 4 = 10 404;

48 2 = (50 - 2) 2 = 50 2 - 2 50 2 + 2 2 = 2500 - 200 + 4 = 2304.

Но самый элегантный фокус связан с возведением в квадрат чисел, оканчивающихся цифрой 5.
Проведем соответствующие рассуждения для 85 2 .

Имеем:

85 2 = (80 + 5) 2 = 80 2 + 2 80 5 + 5 2 =-80 (80+ 10)+ 25 = 80 90 + 25 = 7200 + 25 = 7225.

Замечаем, что для вычисления 85 2 достаточно было умножить 8 на 9 и к полученному результату приписать справа 25. Аналогично можно поступать и в других случаях. Например, 35 2 = 1225 (3 4 = 12 и к полученному числу приписали справа 25);

65 2 = 4225; 1252 = 15625 (12 18 = 156 и к полученному числу приписали справа 25).

Раз уж мы с вами заговорили о различных любопытных обстоятельствах, связанных со скучными (на первый взгляд) формулами (1) и (2), то дополним этот разговор следующим геометрическим рассуждением. Пусть а и b - положительные числа. Рассмотрим квадрат со стороной а + b и вырежем в двух его углах квадраты со сторонами, соответственно равными а и b (рис. 4).


Площадь квадрата со стороной а + b равна (а + b) 2 . Но этот квадрат мы разрезали на четыре части: квадрат со стороной а (его площадь равна а 2), квадрат со стороной b (его площадь равна b 2), два прямоугольника со сторонами а и b (площадь каждого такого прямоугольника равна ab). Значит, (а + b) 2 = а 2 + b 2 + 2аb, т. е. получили формулу (1).

Умножим двучлен а + b на двучлен а - b. Получим:
(а + b) (а - b) = а 2 - аb + bа - b 2 = а 2 - b 2 .
Итак

Любое равенство в математике употребляется как слева направо (т.е. левая часть равенства заменяется его правой частью), так и справа налево (т.е. правая часть равенства заменяется его левой частью). Если формулу C) использовать слева направо, то она позволяет заменить произведение (а + b) (а - b) готовым результатом а 2 - b 2 . Эту же формулу можно использовать справа налево, тогда она позволяет заменить разность квадратов а 2 - b 2 произведением (а + b) (а - b). Формуле (3) в математике дано специальное название - разность квадратов.

Замечание. Не путайте термины «разность квадратов» к и «квадрат разности». Разность квадратов - это а 2 - b 2 , значит, речь идет о формуле (3); квадрат разности - это (a- b) 2 , значит речь идет о формуле (2). На обычном языке формулу (3) читают «справа налево» так:

разность квадратов двух чисел (выражений) равна произведению суммы этих чисел (выражений) на их разность,

Пример 2. Выполнить умножение

(3x- 2y)(3x+ 2y)
Решение. Имеем:
(Зх - 2у) (Зх + 2у)= (Зx) 2 - (2у) 2 = 9x 2 - 4y 2 .

Пример 3. Представить двучлен 16x 4 - 9 в виде произведения двучленов.

Решение. Имеем: 16x 4 =(4x 2) 2 , 9 = З 2 , значит, заданный двучлен есть разность квадратов, т.е. к нему можно применить формулу (3), прочитанную справа налево. Тогда получим:

16x 4 - 9 = (4x 2) 2 - З 2 = (4x 2 + 3)(4x 2 - 3)

Формула (3), как и формулы (1) и (2), используется для математических фокусов. Смотрите:

79 81 = (80 - 1) (80 + 1) - 802 - I2 = 6400 - 1 = 6399;
42 38 = D0 + 2) D0 - 2) = 402 - 22 = 1600 - 4 = 1596.

Завершим разговор о формуле разности квадратов любопытным геометрическим рассуждением. Пусть а и b - положительные числа, причем а > b. Рассмотрим прямоугольник со сторонами а + b и а - b (рис. 5). Его площадь равна (а + b) (а - b). Отрежем прямоугольник со сторонами b и а - b и подклеим его к оставшейся части так, как показано на рисунке 6. Ясно, что полученная фигура имеет ту же площадь, т. е. (а + b) (а - b). Но эту фигуру можно
построить так: из квадрата со стороной а вырезать квадрат со стороной b (это хорошо видно на рис. 6). Значит, площадь новой фигуры равна а 2 - b 2 . Итак, (а + b) (а - b) = а 2 - b 2 , т. е. получили формулу (3).

3. Разность кубов и сумма кубов

Умножим двучлен а - b на трехчлен а 2 + ab + b 2 .
Получим:
(a - b) (а 2 + ab + b 2) = а а 2 + а ab + а b 2 - b а 2 - b аb -b b 2 = а 3 + а 2 b + аb 2 -а 2 b-аb 2 -b 3 = а 3 -b 3 .

Аналогично

(а + b) (а 2 - аb + b 2) = а 3 + b 3

(проверьте это сами). Итак,

Формулу (4) обычно называют разностью кубов , формулу(5) - суммой кубов. Попробуем перевести формулы (4) и (5) на обычный язык. Прежде чем это сделать, заметим, что выражение a 2 + ab + b 2 похоже на выражение а 2 + 2ab + b 2 , которое фигурировало в формуле (1) и давало (а + b) 2 ; выражение а 2 - ab + b 2 похоже на выражение а 2 - 2ab + b 2 , которое фигурировало в формуле (2) и давало (а - b) 2 .

Чтобы отличить (в языке) эти пары выражений друг от друга, каждое из выражений а 2 + 2ab + b 2 и а 2 - 2ab + b 2 называют полным квадратом (суммы или разности), а каждое из выражений а 2 + ab + b 2 и а 2 - ab + b 2 называют неполным квадратом (суммы или разности). Тогда получается следующий перевод формул (4) и (5) (прочитанных «справа налево») на обычный язык:

разность кубов двух чисел (выражений) равна произведению разности этих чисел (выражений) на неполный квадрат их суммы; сумма кубов двух чисел (выражений) равна произведению суммы этих чисел (выражений) на неполный квадрат их разности.

Замечание. Все полученные в этом параграфе формулы (1)-(5) используются как слева направо, так и справа налево, только в первом случае (слева направо) говорят, что (1)-(5) - формулы сокращенного умножения, а во втором случае (справа налево) говорят, что (1)-(5) - формулы разложения на множители.

Пример 4. Выполнить умножение (2х- 1)(4x 2 + 2х +1).

Решение. Так как первый множитель есть разность одночленов 2х и 1, а второй множитель - неполный квадрат их суммы, то можно воспользоваться формулой (4). Получим:

(2х - 1)(4x 2 + 2х + 1) = (2x) 3 - I 3 = 8x 3 - 1.

Пример 5. Представить двучлен 27а 6 + 8b 3 в виде произведения многочленов.

Решение. Имеем: 27а 6 = (За 2) 3 , 8b 3 =(2b) 3 . Значит, заданный двучлен есть сумма кубов, т. е. к нему можно применить формулу 95), прочитанную справа налево. Тогда получим:

27а 6 + 8b 3 = (За 2) 3 + (2b) 3 = (За 2 + 2Ь) ((За 2) 2 - За 2 2Ь + (2b) 2) = (За 2 + 2Ь) (9а 4 - 6а 2 Ь + 4b 2).

Помощь школьнику онлайн , Математика для 7 класса скачать , календарно-тематическое планирование

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Формулы сокращенного выражения очень часто применяются на практике, так что их все желательно выучить наизусть. До этого момента нам будет служить верой и правдой , которую мы рекомендуем распечатать и все время держать перед глазами:

Первые четыре формулы из составленной таблицы формул сокращенного умножения позволяют возводить в квадрат и куб сумму или разность двух выражений. Пятая предназначена для краткого умножения разности и суммы двух выражений. А шестая и седьмая формулы используются для умножения суммы двух выражений a и b на их неполный квадрат разности (так называют выражение вида a 2 −a·b+b 2 ) и разности двух выражений a и b на неполный квадрат их суммы (a 2 +a·b+b 2 ) соответственно.

Стоит отдельно заметить, что каждое равенство в таблице представляет собой тождество . Этим объясняется, почему формулы сокращенного умножения еще называют тождествами сокращенного умножения.

При решении примеров, особенно в которых имеет место разложение многочлена на множители , ФСУ часто используют в виде с переставленными местами левыми и правыми частями:


Три последних тождества в таблице имеют свои названия. Формула a 2 −b 2 =(a−b)·(a+b) называется формулой разности квадратов , a 3 +b 3 =(a+b)·(a 2 −a·b+b 2 ) - формулой суммы кубов , а a 3 −b 3 =(a−b)·(a 2 +a·b+b 2 ) - формулой разности кубов . Обратите внимание, что соответствующим формулам с переставленными частями из предыдущей таблицы фсу мы никак не назвали.

Дополнительные формулы

В таблицу формул сокращенного умножения не помешает добавить еще несколько тождеств.

Сферы применения формул сокращенного умножения (фсу) и примеры

Основное предназначение формул сокращенного умножения (фсу) объясняется их названием, то есть, оно состоит в кратком умножении выражений. Однако сфера применения ФСУ намного шире, и не ограничивается кратким умножением. Перечислим основные направления.

Несомненно, центральное приложение формулы сокращенного умножения нашли в выполнении тождественных преобразований выражений . Наиболее часто эти формулы используются в процессе упрощения выражений .

Пример.

Упростите выражение 9·y−(1+3·y) 2 .

Решение.

В данном выражении возведение в квадрат можно выполнить сокращенно, имеем 9·y−(1+3·y) 2 =9·y−(1 2 +2·1·3·y+(3·y) 2) . Остается лишь раскрыть скобки и привести подобные члены: 9·y−(1 2 +2·1·3·y+(3·y) 2)= 9·y−1−6·y−9·y 2 =3·y−1−9·y 2 .